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Abstract
Deep graph clustering is an unsupervised learning task that divides nodes in a graph into
disjoint regions with the help of graph auto-encoders. Currently, such methods have several
problems, as follows. (1) The deep graph clustering method does not effectively utilize the
generated pseudo-labels, resulting in sub-optimal model training results. (2) Each cluster has
a different confidence level, which affects the reliability of the pseudo-label. To address these
problems, we propose a Deep Self-supervised Attribute Graph Clustering model (DSAGC)
to fully leverage the information of the data itself. We divide the proposed model into two
parts: an upstream model and a downstream model. In the upstream model, we use the
pseudo-label information generated by spectral clustering to form a new high-confidence
distribution with which to optimize the model for a higher performance. We also propose a
new reliable sample selection mechanism to obtain more reliable samples for downstream
tasks. In the downstream model, we only use the reliable samples and the pseudo-label for
the semi-supervised classification task without the true label. We compare the proposed
method with 17 related methods on four publicly available citation network datasets, and the
proposedmethod generally outperformsmost existingmethods in three performancemetrics.
By conducting a large number of ablative experiments, we validate the effectiveness of the
proposed method.

Keywords Graph clustering · Pseudo-labels · Reliable sample selection · Self-supervised
learning

1 Introduction

Graph clustering with attribute features and graph structure information is a hot topic in
the study of graph data. It refers to partitioning the nodes of a complete graph into various
groups without the guidance of additional information. The samples in the same region have
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higher similarity, while the samples between different regions have a relatively lower similar-
ity. Some traditional clustering algorithms can only uncover node information or structural
information of the graph, such as k-means [1], spectral clustering [2], and DeepWalk [3].
At the same time, with the growth of data volume, the computational efficiency and per-
formance of traditional clustering are relatively low in the face of sparse, high-dimensional,
non-Euclidean space data.

Clustering tasks for regularized data (e.g., in the image domain) are currently achieving
impressive success by combining a deep neural network framework represented by Auto-
encoder (AE) and its variants [4–6] with traditional clustering techniques, such as [7–14].
This has provided insight into graph clustering, and one of the main methods is to combine
graph embedding learning with graph clustering. Firstly, graph embedding is used to reduce
the dimensionality of the original data and map it to a lower dimensional space. Then, graph
clustering is carried out using the embedding that extracts the discriminative information.
Themain graph embeddingmethods include graph convolutional network (GCN) [15], graph
attention network (GAT) [16], and their combined productwith auto-encoder, i.e., graph auto-
encoder (GAE) [17] and its variants [18–24]. The training process of the above methods is
two-steps, i.e., the clustering loss is independent of the optimization of the model, which
will lead to sub-optimal training performance. EGAE [25] uses a relaxed k-means, which
ensures the orthogonal property of the obtained embedding while allowing the clustering and
reconstruction to be optimized simultaneously. However, the above approach focuses on the
information obtained by model embedding and ignores the information generated by model
clustering.

Recently, self-supervised learning, a new paradigm of representation learning, learns
supervised information from the data itself without relying onmanual labels. Twomainmeth-
ods that can effectively exploit cluster information: self-supervision and pseudo-supervision
[26], both of which belong to unsupervised training methods. The former obtains a higher
confidence auxiliary distribution by designing a pretext task and later uses it to supervise the
target distribution training, such as DEC [7] and IDEC [27]. The latter guides the downstream
model for semi-supervised training through the pseudo-labels obtained from clustering, such
as Deep Cluster [28], IDCEC [29], and DSCNSS [30]. In addition to the above two methods,
contrastive learning (CC) can achieve the purpose of self-supervised learning by construct-
ing positive and negative sample sets to guide model training through data augmentation.
However, there are relatively fewer studies based on self-supervised learning on graph data
compared to other fields. Most of the methods mentioned above are based on the Euclidean
distance between the embedding and the k-means cluster center to determine the confidence
level of the sample, and they lack the exploration of the sample reliability mechanism of
other clustering algorithms. Many self-supervised learning methods aim to learn represen-
tative features without label information. However, whether the self-supervised mechanism
can improve the fusion of topological structure and node features in GCN remains to be
explored.

To fully use the supervised information from graph clustering and reduce the damage
of noise in this information to the accuracy of downstream models, we use pseudo-labels
generated by unsupervised learning in the pretext task as supervised information to guide
the partitioning of sample nodes. We propose a new self-supervised graph clustering model
and elaborate the symmetric graph auto-encoder clustering model in the pretext task. In this
model, a self-training module is added to the symmetric graph auto-encoder to optimize the
clustering and embedding learning simultaneously. At the same time, pseudo-labels obtained
by clustering are used to select samples with high confidence to train the downstream model.

Specifically, our contributions are summarized as follows:
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1. We propose a new self-supervised graph clustering model in which we divide the graph
clustering task into two relatively independent processes: a pretext task that performs
unsupervised clustering and a downstream task that performs semi-supervised learning.
In the absence of real labels, we use the pseudo-labels obtained after sufficient training
of the pretext task as supervised information to guide the training of the downstream
model.

2. We propose a new self-training method that does not require k-means cluster centers to
further improve the accuracy of the upstream model. We also propose a reliable sample
selection mechanism to reduce the negative impact of the cluster’s noisy samples at the
decision boundary on the model training and improve the quality of the pseudo-label as
supervised information.

3. We conduct extensive experiments on four major citation network datasets. It shows that
the pretext model can guide the downstream model to achieve higher performance. At
the same time, compared with the unsupervised graph clustering algorithms in recent
years, our DSAGC is competitive.

2 RelatedWork

2.1 Attribute Graph Clustering

Attribute graph clustering aims to divide nodes of a graph into disjoint regions by using
node features and topology information of graph data. However, some traditional clustering
methods have limited ability to extract graph information and can only extract graph node
information or topology information, such as k-means [1], spectral clustering [2], and Deep-
Walk [3]. Thanks to the development of graph neural networks (GNNs), especiallyGCNs [15,
31, 32], there has been a significant breakthrough in attribute graph clustering techniques.
Meanwhile, many current graph clustering algorithms combine graph embedding and graph
clustering. A typical example is GAE [17] and its variants. MGAE [21] proposes to use noise
to destroy node features and later induce the GAE to learn the features after marginalizing
noise to improve the model’s efficiency. ARGA [18] proposes to use an adversarial train-
ing approach to force the latent representations to match a certain prior distribution. The
performance of traditional GCN decreases significantly when the number of layers exceeds
two. AGC [23] proposes an adaptive graph convolution method to capture the information
of high-order neighborhoods by using high-order graph convolution. GALA [20] proposes a
symmetric graph auto-encoder whose decoder is learnable and symmetric to the encoder. It
adopts Laplacian sharpening as a convolutional filter, which speeds up the process of model
reconstruction. The above models utilize graph neural networks for representation learning,
and the resulting embeddings are used for subsequent clustering tasks. Since the clustering
process is independent of themodel optimization, the embedding learned by themodel hardly
guarantees that the clustering task is optimal.

2.2 Self-Supervised Clustering

Self-supervised learning can use the information carried by the data itself to guide model
training without manual labels. Nowadays, self-supervised learning has achieved good
applications in various fields, such as natural language processing and computer vision.
DeepCluster [28] proposes to use clustering to generate pseudo-labels, which are then used
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to guide the training of classifiers in an end-to-end manner. Deep subspace clustering [8,
33] maps the feature matrix to the embedding space, after which a self-expression matrix is
generated, allowing nodes to be linearly represented by other nodes in the same subspace.
DEC [7] generates high-confidence soft distributions by using student t-distributions and
guides model training in a self-optimizing manner. DSSEC [34] builds on DEC by preserv-
ing local structure while using a stacked sparse auto-encoder to allow themodel to learn more
representative representations. SDCN [41] employs AE to extract attribute features and uses
GNN to extract topological information, guiding the training of bothmodules simultaneously
through a high-confidence soft distribution.

In recent years, many graph neural networkmodels based on self-supervisedmethods have
also emerged in the graph data domain. M3S [35] proposes a multi-stage training framework
to compensate for the generalization ability of GCNs when there are fewer labels by contin-
uously adding pseudo-labels to the labeled training set. SCRL [36] proposes to construct a
feature graph by using node features and then use the shared information between the feature
graph and the topology graph as the supervisory signal to guide the model’s training. CGCN
[37] proposes to combine an attribute graph clustering network composed of variational graph
auto-encoder and Gaussian mixture model with a semi-supervised classification network. If
the pseudo-label of the unsupervisedmodel is consistent with the semi-supervised prediction,
the performance of semi-supervision is improved by adding the unlabeled nodes to the labeled
set. GCA [38] and GraphCL [22] apply contrastive learning to the domain of graph datasets,
forming two different views through data augmentation and enhancing the consistency of
different levels of object information between views through carefully designed contrastive
loss. DAEGC [39] employs a graph attention network to form an auto-encoder and guides
the self-training of graph datasets by constructing higher confidence distributions. IDCEC
[29] proposes to screen reliable samples according to the Euclidean distance between latent
representations and cluster centers and then use these samples and their pseudo-labels to
guide the training of downstream models. However, most of the above approaches focus on
the task of graph node classification, while the exploration of the task of graph clustering is
lacking. Therefore, we intend to design a new pretext task to guide the graph clustering task
in a self-supervised manner.

3 Method

In this section, we will specifically introduce our proposed DSAGC model. The structure is
shown in Fig. 1. Specifically, we describe the key modules in the model, propose an auxiliary
distribution based on spectral clustering and a reliable sample selection method, and discuss
the training strategy using the upstream model to guide the downstream model training.

3.1 Notations

A graph is represented as G = (V , E, X), where V = {v1, v2, . . . , vn} denotes the nodes set
with |V | = n, E = {ei j } denotes the edges set. Adjacency matrix A ∈ R

n∗n , where Ai j = 1
if (vi , v j ) ∈ E , otherwise Ai j = 0. Feature matrix X = {xT1 , xT2 , . . . , xTn }, where xi ∈ R

d is
a attribute vector associated with node vi . ŷcluster denotes the pseudo-labels generated by the
upstream task, which has the simplified form ŷc. ŷsel f _supervised denotes the pseudo-labels
generated by the downstream task, which has the simplified form ŷs .
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Fig. 1 The overall architecture of DSAGC. The model is mainly divided into three parts: the pretext task,
the downstream task, and the reliable sample selection module. In the pretext task, the feature matrix X
and adjacency matrix A are used as inputs. The self-supervised symmetric graph auto-encoder is trained by
combining the self-supervised loss and reconstruction loss. After that, we use the obtained embedding matrix
Z to construct a k-nearest neighbor matrix G1 and use it to perform spectral clustering. When the pretext
model is fully trained, the samples with high confidence are screened according to the information of the
pseudo-labels. In the downstream task, we perform α-order generalized Laplacian smooth filter on the reliable
samples and other samples and then input them into the DNN model. The pseudo-labels corresponding to the
reliable samples are used as supervised information for training

3.2 Deep Self-Supervised Attribute Graph Cluster (DSAGC)

Our proposed model is divided into three main parts: a pretext symmetric self-supervised
graph auto-encoder module, a downstream semi-supervised classification module, and a
reliable sample selection module. In addition to the basic reconstruction loss, the pretext
symmetric self-supervised graph auto-encoder module also uses the information provided
by spectral clustering to generate a high-confidence distribution. Then, it guides the target
distribution for training, which enables simultaneous optimization of representation learning
and clustering. When the upstreammodel is sufficiently trained, the reliable sample selection
module utilizes the obtained pseudo-labels and sets thresholds to select samples with high
confidence for each cluster, reducing the influence of noisy samples at the cluster boundaries.
The downstreammodel is a semi-supervised model. Unlike other graph self-supervised algo-
rithms that expand the labeled set by using pseudo-labels with high confidence, it only uses
the reliable samples passed in from the pretext task with the corresponding pseudo-labels for
training, without a real label involved in the training.

3.2.1 Pretext Task: Self-Supervised Symmetric Graph Auto-Encoder (SSGAE)

In the pretext task, we adopt a symmetric graph auto-encoder similar to the one in GALA[20].
In the encoder part, we use a two-layer GCN network where the structure of each layer is

represented as follows: H (l+1) = σ
(

˜D− 1
2 ˜A˜D− 1

2 H (l)W (l)
)

, where ˜A = A + I , ˜Dii =
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∑n
j=1

˜Ai j . In the decoder part, we use a two-layer Laplacian sharpening filter, where the

structure of each layer is represented as follows: H (l+1) = σ
(

̂D− 1
2 ̂ÂD− 1

2 H (l)W (l)
)

, where

̂A = 2I − A, ̂D = 2I + D. At the same time, we borrow from SGC [40] and keep the
activation function only in the first layer of the encoder network and the last layer of the
decoder network to reduce the probability of model overfitting. The encoder part of the
model makes the features of neighboring samples gradually similar, and the decoder part
restores the differences between samples so that the resulting embedding obtainsmore sample
information. The basic loss function of the model is a reconstruction of the feature matrix X ,
which is expressed as follows.

Lre = min
∥

∥̂X − X
∥

∥

2
F (1)

Where ̂X is the reconstructed feature matrix and ‖·‖F mainly refers to the Frobenius norm.
However, it is difficult to rely solely on the reconstruction of graph data to ensure that
learned embeddings are appropriate for specific downstream tasks. Some literatures [7,
27, 39, 41] have used the Student’s T-distribution to construct auxiliary distributions with
higher confidence, using the additional information generated by clustering for guidance and
obtaining better model performance.

TheStudent’s t-distribution is based on theEuclidean distance, and one of its basic assump-
tions is that the closer the distance of a sample to the cluster center, the higher the probability
that it corresponds to this cluster. However, some combinations of graph auto-encoders and
k-means are not ideal, which limits the effectiveness of this self-training method. One of our
basic assumptions is that the larger the inner product distance, the more similar the samples
are. Therefore, the higher the probability of belonging to the same cluster.We use the obtained
embedding Z as well as the cosine similarity to construct the similarity matrix S ∈ R

n∗n :

Si j = Zi,:ZT
j,:

‖Zi,:‖2‖Z j,:‖2 (2)

Here, ‖·‖2 denotes the L2 normalization. After that, we use the label information obtained
by spectral clustering to divide the similarity matrix S. We multiply the values of node pairs
in the same cluster by a factor (1 + t), while for node pairs that do not belong to the same
cluster by a factor (1 − t) to obtain the auxiliary distribution S

′
, where t ∈ (0, 1) is the

hyper-parameter, when its value is larger, further widens the difference between the features
of samples in the same cluster and those in different clusters:

S
′
i j =

{

Si j × (1 + t) , j ∈ Ci

Si j × (1 − t) , j /∈ Ci
(3)

The auxiliary distribution S
′
is normalized to get:

S
′
i j = S

′
i j

∑

k S
′
ik

(4)

The model then performs self-training via KL divergence:

Lse = K L
(

S
′ ‖S

)

=
∑

i

∑

j

S
′
i j log

S
′
i j

Si j
(5)
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We jointly optimize the embedding of the symmetric graph auto-encoder and clustering
learning by defining the overall loss function of the pretext model as:

L = Lre + γ Lse (6)

Where Lre and Lse represent reconstruction loss and self-supervised loss, respectively, γ is
the trade-off between them. Meanwhile, to avoid the instability of self-supervised optimiza-
tion in the training process, we update the auxiliary distribution S

′
every five iterations in the

experiment.

3.2.2 Reliable Sample Selection

Most existing self-supervised works focus on using pseudo-labels generated by clustering
as a complement to real labels for semi-supervised tasks. One of the main reasons for this
is the presence of noise in the pseudo-labels, which accumulates errors with the training
process and affects the overall performance of the model. IDCEC [29] proposes to use k-
means to cluster the embeddings of image data and to use the Euclidean distance between
the embedded nodes and the cluster centers as a measure of sample confidence. We choose
the samples whose distances are less than some fixed threshold as reliable samples. This
method effectively reduces the effect of sample embedding misclassification at the clustering
boundary. However, this method depends on the quality of the clustering centers and is also
affected by the number of samples in each cluster. Inspired by the above ideas, we explore a
new mechanism for reliable sample selection based on the spectral clustering algorithm.

One of our basic ideas is that the selected samples need to satisfy the requirement of
expanding the similarity between the target node and the rest of the samples in the same
cluster while narrowing the similarity between it and the samples in different clusters.

Firstly, we use the pseudo-labels divide the samples into k disjoint clusters, C j , j =
1, . . . , k. Also, we use the similarity matrix S in Eq. 5 to select samples that belong to the
same cluster C j and sum the similarity of each of these target nodes u with the remaining
nodes v to obtain a vector of |C j |:

DC j = {d1, d2, . . . d|C j |}, du =
∑

v∈C j

suv (7)

It measures the importance of the similarity of sample u in clusterC j . After that, we select
the samples corresponding to the top k1% points with the largest values among them as the
reliable samples sample1 corresponding to cluster C j .

In addition, we add an interval constraint ζ between the similarity of samples in the same
cluster and the similarity of samples in different clusters in order to filter out the noisy samples
near the decision boundary. We subtract the maximum similarity sua of the target sample u
in the same cluster and the maximum similarity sub in different clusters.

ζu = sua − sub,

{

sua = max sui , i ∈ C j

sub = max su j , j /∈ C j
(8)

Considering that the similarity gap between same-cluster samples and opposite-cluster
samples varies by cluster class, we decide to sort the ζu of each cluster from largest to smallest
and select the k2%-th of them as the interval of each clusterm j . Afterwards, for convenience,
we let theminimumvalue ofm j be the uniform intervalm. If the resulting difference is greater
than or equal to the set interval m, we make it a reliable sample sample2. Ultimately, only
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samples that satisfy both of the previous two conditions can be selected as reliable samples
sample, i.e.:

sample = sample1 ∩ sample2 (9)

After selecting reliable samples, we use them and their corresponding pseudo-labels as a
training set to guide the downstream classification task in a semi-supervised way.

3.2.3 Downstream Task

In most recent works, the pseudo-label is only used as an expanded supervised information
to improve the performance of semi-supervised classification tasks. However, this approach
still requires the use of real labels. In this paper, we try to use only pseudo-labels and
the corresponding reliable samples as supervised information for the model. Meanwhile, we
introduce a Laplacian smoothing filter mentioned in the Adaptive Graph Encoder (AGE) [24]
to better filter the high-frequency noise in the reliable samples and improve the performance
of the downstream model. We compare the differences in performance from two different
graph convolution methods in the ablation study section.

First, the feature matrix is multiplied by the α-layers graph convolution filter:

˜X = HαX (10)

Here, H is a Laplacian smoothing filter followed by AGE, i.e., H = I − β˜L , where ˜L
represents the symmetric normalized graph Laplacian matrix and β represents the inverse
of the corresponding spectral radius. The graph filter acts as a low-pass filter over the entire
range of eigenvalues of the Laplacian matrix.

After that, we input the feature matrix ˜X processed by the graph convolution filter into a
two-level DNN model.

Y = σ
(

σ
(

˜XW1
)

W2
)

(11)

WhereY represents the output of the overall downstreammodel,σ represents the activation
function ReLU, andWi represents the weight matrix of i-th layer. For each node vi , the result
of its corresponding prediction label is:

ŷsi = arg min
u

Yiu (12)

The loss function of the downstream model is

L = −
∑

i∈sample

ŷci lnŷ
s
i (13)

Where we use only the samples from the reliable sample set sample as the training set. The
pseudo-labels ŷc corresponding to these samples generated by the upstream model are used
as supervisory information, and the prediction labels ŷs generated by the downstream model
are used as training targets.

The proposed self-supervised attributed graph clustering and pretext task algorithms are
described in Algorithm 2 and Algorithm 1, respectively.
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Algorithm 1 Self-supervised Symmetric Graph Auto-Encoder (SSGAE)
Input: Graph G with n nodes; Number of cluster k; Auxiliary distribution update interval T ; Clustering
Coefficient γ ; Number of iterations I termax .
Output: Pseudo-Labels ŷcluster .
1: Update AutoEncoder’s weight by minimizing Eq. 1 to get hidden embedding Z .
2: Construct cosine distance matrix S and k-nearest neighborhood graph G1 by Z .
3: Use G1 for spectral clustering to get initial ŷcluster .
4: while i < I termax do
5: Update S and G1 by Z and update ŷcluster by spectral clustering of G1.
6: if i%T == 0 then
7: Make Auxiliary distribution S

′
by Eq. 3 and Eq. 4.

8: else
9: Calculate clustering loss according to Eq. 5 and update the pretext framework by minimizing Eq. 6.
10: end if
11: end while

Algorithm 2 Deep Self-supervised Attributed Graph Clustering (DSAGC)
Input: graph G with n nodes; Number of cluster k; Sample select threshold k1,k2; Number of iterations
I termax .
Output: Pseudo-Labels ŷsel f _supervised .
1: Use SSGAE to get embedding Z , pseudo-label ŷcluster and construct cosine distance matrix S by Z .
2: Under the guidance of ŷcluster , divide the node of S into different clusters.
3: Use the sample select threshold for selecting the reliable sample.
4: Use a α-order general Laplacian filter to deal with the input samples X of the downstream model and get

˜X .
5: while i ter ≤ I termax do
6: Train Deep Neural Network using processed samples ˜X .
7: end while

4 Experiments

4.1 Datasets

To validate the effectiveness of our proposed DSAGCmethod on the node clustering task, we
conduct extensive experiments on four benchmark datasets. These four datasets are all widely
used citation network datasets, including Cora, Citeseer, Wiki, and Pubmed. The details of
each dataset are summarized in Table 1.

4.2 Experiment Settings

In the pretext task, we adopt a symmetric graph auto-encoder as the basis and use a high-
confidence distribution based on spectral clustering as the constraint term to make the model
learn a representation that is more favorable to clustering. We follow GALA to construct the

Table 1 Summary of the datasets Datasets Nodes Features Edge Classes

Cora 2708 1433 5429 7

Citeseer 3312 3703 4732 6

Pubmed 19,717 500 44,338 3

Wiki 2405 4973 17,981 17
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similarity matrix using KNN and embedding in the embedding space and use it later in the
spectral clustering task, where the values of KNN are set to 20, 100, 20, 800, and the learning
rates are set to 0.005, 0.005, 0.001, 0.001, respectively. We also adopt the Adam optimizer
and use ReLU as the activation function at the input and output layers of the symmetric graph
auto-encoder. In the training process of the pretext task, we first obtain the model parameters
corresponding to the optimal accuracy of the pre-trainedmodel and then add the loss function
of the self-supervised term during the training process. Among them, for the convenience of
training, we uniformly set the values of the coefficient of the self-supervised term γ in the
overall loss function, t in the auxiliary distribution S

′
, and the update interval T in the four

datasets to 5, 0.5, and 5, respectively.
Similarly, we save the model parameters corresponding to the clustering accuracy of the

upstream model at convergence and later use the pseudo-labels and embeddings obtained in
this condition to select reliable samples. The threshold k1 is set to 0.3, and the threshold k2
is set to 0.4 for reliable sample selection. In the downstream task, we input all samples into a
2-layer DNN model. Where the reliable samples selected by the upstream model are used as
the training set, and their corresponding pseudo-labels are used as supervisory information.
At the same time, before the samples are input into the model, the α-order general Laplacian
matrix is used to process the samples. The specific parameter settings are consistentwith those
in [24]. The Adam optimizer is chosen for the model, the learning rate is set to 0.005 for all
datasets, and the activation function is ReLU. All codes are implemented by pytorch−1.7.0
on Windows 10.

4.3 Baselines and EvaluationMetrics

In the node clustering task, we mainly use three performance metrics to measure the model’s
performance, i.e., ACC, NMI, and ARI. We compare the proposed method DSAGCwith two
methods: the clustering algorithm that only uses node features or graph structure information
and the graph clustering algorithm based on deep learning. Algorithms that use only features
or structures for clustering include: k-means [1], spectral clustering (SC) [2], Graph-Encoder
[42], DeepWalk [3], DNGR [43], DEC [7], and TADW [44]. The deep graph clustering
algorithms include: Graph Autoencoder (GAE), Variational Graph Autoencoder (VGAE)
[17], Adversarial Regularized Graph Autoencoder (ARGE), Adversarial Regularized Vari-
ational Graph Autoencoder (ARVGE) [18], Deep Attentional Embedded Graph Clustering
(DAEGC) [39], Embedding Graph Autoencoder (EGAE) [25], Adaptive Graph Convolution
(AGC) [23], Graph convolutional Autoencoder using LAplacian smoothing and sharpening
(GALA) [20],GraphClustering viaVariationalGraphEmbedding (GC-VGE) [45], Structural
Deep Clustering Network (SDCN) [41].

The specific performance of each comparison experiment on the four datasets is shown in
Table 2. The data in bold in the table indicates the best performance tested under this metric.
The source of the data is mainly from the experimental results declared in the paper of the
corresponding method. Some methods do not test these datasets in their original text, and
we will cite results tested in other papers. The upstream model adopts a symmetric graph
auto-encoder similar to GALA, but its performance lags behind the latter by 1% to 2%, but
with the addition of a self-supervised term, its effect is reversed in some datasets. We select
reliable samples based on the optimal performance of the upstream model so that they serve
as the only supervised information to guide the downstream model. In this case, we run
the downstream model 10 times and take the average value as the final result. Compared to
our upstream and downstream task models, the accuracy is essentially improved in all three
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Table 2 Experimental results of
node clustering on Cora Dataset

Metric ACC NMI ARI

k-means 50.0 31.7 23.9

Spectral clustering 39.8 29.7 17.4

Graph encoder 30.1 5.9 4.6

DeepWalk 52.9 38.4 29.1

DNGR 41.9 31.8 14.2

DEC 46.5 23.5 15.1

TADW 53.6 36.6 24.0

GAE 53.0 39.7 29.3

VGAE 59.2 40.8 34.7

ARGE 64.0 44.9 35.2

ARVGE 63.8 45.0 37.4

DAEGC 70.4 52.8 49.6

GC-VGE 70.7 53.6 48.2

SDCN 35.6 14.3 7.8

AGC 68.9 53.7 48.6

EGAE 72.4 54.0 47.2

GALA 74.6 57.7 53.2

SSGAE 75.2 56.6 54.8

DSAGC 77.1 58.7 57.2

performance metrics. This implies the feasibility of relying solely on reliable samples to
guide the semi-supervised training of the downstream model. Also, our method can achieve
very competitive results by comparing it with other methods. In particular, the ACC of the
Wiki dataset has increased by nearly 6%, and its ARI index has also increased by 7%, while
the other three datasets have also improved by 1.5% to 2%. At the same time, we also see that
not all performance metrics achieve optimal results on the Pubmed dataset. One of the main
reasons is that spectral clustering can have difficulty guaranteeing its speed and accuracy
when dealing with graph datasets with a very large number of nodes, which is also an aspect
worth studying next.

4.4 Ablation Study

In this section, we test three main aspects: (1) the effect of using activation functions in
different layers on symmetric graph auto-encoder. (2) the effect of different self-optimizing
methods on the performance of symmetric graph auto-encoder. (3) the effect of the selection
of the downstream model on the final accuracy.

We conduct experiments on the use of activation functions in the upstream model and
find that using activation functions only in the first and last layers in the symmetric graph
auto-encoder can achieve better results. The experimental results are shown in Table 6. We
hypothesize that using activation functions in the hidden and embedded layers with lower
dimensionality of the graph symmetric auto-encoder leads to loss of some information, which
affects the results of the feature matrix X reconstruction.

We compare the impact of using the currently popular Student T distribution and our
proposed method as the self-optimizing term on the performance of the upstream symmetric
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Table 3 Experimental results of
node clustering on Citeseer
Dataset

Metric ACC NMI ARI

k-means 54.4 31.2 28.5

Spectral clustering 30.8 9.0 8.2

Graph encoder 29.3 5.7 4.3

DeepWalk 33.7 8.9 9.2

DNGR 32.6 18.0 4.3

DEC 55.9 28.3 28.1

TADW 45.5 29.1 22.8

GAE 45.6 22.1 19.1

VGAE 46.7 26.1 20.6

ARGE 57.3 35.0 34.1

ARVGE 54.4 26.1 24.5

DAEGC 67.2 39.7 41.0

GC-VGE 66.6 40.9 41.5

SDCN 66.0 38.7 40.2

AGC 67.0 41.1 41.9

EGAE 67.4 41.2 43.2

GALA 69.3 44.1 44.6

SSGAE 71.2 45.2 46.9

DSAGC 72.7 44.9 47.3

Table 4 Experimental results of
node clustering on Wiki Dataset

Metric ACC NMI ARI

k-means 40.4 42.9 15.0

Spectral clustering 22.0 18.2 1.5

Graph encoder 20.7 12.1 0.5

DeepWalk 38.5 32.4 17.3

DNGR 37.6 35.9 18.0

DEC 40.0 41.1 25.6

TADW 31.0 27.1 4.5

GAE 37.9 34.5 18.9

VGAE 45.1 46.8 26.3

ARGE 38.1 34.5 26.3

ARVGE 38.7 33.9 10.7

DAEGC 48.2 44.8 33.1

GC-VGE 48.8 47.6 28.4

SDCN 44.3 42.0 28.8

AGC 47.7 45.3 34.3

EGAE 51.5 48.0 33.1

GALA 54.5 50.4 38.9

SSGAE 57.1 52.2 35.3

DSAGC 63.4 55.7 42.5
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Table 5 Experimental results of
node clustering on Pubmed
Dataset

Metric ACC NMI ARI

k-means 59.5 31.5 28.1

Spectral clustering 52.8 9.7 6.2

Graph encoder 53.1 21.0 18.4

DeepWalk 54.3 10.2 8.8

DNGR 46.8 15.3 5.9

DEC 60.1 22.4 19.6

TADW 51.1 24.4 21.7

GAE 63.2 24.9 24.6

VGAE 61.9 21.6 20.1

ARGE 68.1 27.6 29.1

ARVGE 51.3 11.7 7.8

DAEGC 67.1 26.6 27.8

GC-VGE 68.2 29.7 29.8

SDCN 64.2 22.9 22.3

AGC 69.8 31.6 31.9

EGAE 70.6 32.0 33.0

GALA 69.4 32.7 32.1

SSGAE 69.0 28.8 29.5

DSAGC 70.7 31.2 32.6

Table 6 The effect of using activation functions in different layers on symmetric graph auto-encoder

Activation layers Citeseer Cora Pubmed Wiki

L1 + L2 + L3 + L4 66.09 ± 0.85 64.08 ± 3.05 61.23 ± 2.07 52.72 ± 1.00

L1 + L4 67.98 ± 0.71 71.92 ± 1.25 65.55 ± 2.04 55.94 ± 1.05

graph auto-encoder. The former uses a combination of symmetric graph auto-encoder + k-
means + self-optimizing method based on the Student T distribution (collectively referred
to as combination I later). The latter uses a combination of symmetric graph auto-encoder
+ spectral clustering with KNN composition + the proposed method (collectively referred
to as combination II later). The results are shown in Fig. 2, where the cherry red line shows
combination II, the orange line shows combination I, the dashed line shows the result without
adding the self-optimizing term, and the solid line shows the result with adding the self-
optimizing term. We compare the performance of the two combinations with self-optimizing
term coefficients from 1 to 10. Since the gradient of the model under the Pubmed dataset
is smaller for combination I, we use the coefficients with a larger span. From the results in
the figure, it can be seen that Combination II has outperformed Combination I without the
addition of the self-optimizing term. In addition to the Citeseer dataset, the performance of
combination I is sensitive to the coefficients of the self-optimizing terms, which does not
completely ensure that the performance will be improved, especially for the Pubmed dataset,
but the performance will be decreased.We conjecture that the dataset has many data samples,
and it is difficult to obtain effective soft-label information just by using the Euclidean distance
between the embedding points and the clustering centers when the clustering information is
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Fig. 2 The effect of different self-optimization methods on the performance of symmetric graph auto-encoder.
a Cora. b Citeseer. c Wiki. d, e Pubmed

Fig. 3 The overall model accuracy of different downstream models. a ACC. b NMI. c ARI

not particularly reliable. The effectiveness of the method is demonstrated by the effective
performance improvement on the upstream models for all four datasets.

In terms of downstream model selection, we compare two different forms of graph con-
volution schemes: one is a traditional two-layer GCN structure, and the other uses a form of
filter that is separated from the power matrix (i.e., a combined form of α-nd power of the filter
and DNN). The latter uses a general form of Laplacian smoothing filter, which takes into
account the spectral radius of different datasets and is able to achieve better low-pass filtering
results. We control for the same model structure and input samples. As shown in Fig. 3, the
performance of the latter is slightly stronger than that of the former, which also shows to
some extent that the winding of the filter and weight matrix does affect the performance of
the model.
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Fig. 4 The effect of sample selection coefficients k1 and k2 in the downstream model. a Only k1. b Only k2.
c k2 = 0.3. d k1 = 0.3

4.5 Parameters Analysis

In this section, we will mainly analyze the influence of some hyper-parameters in the model.

4.5.1 Sample Selection Coefficients k1 and k2.

In this section, to verify the effectiveness of the reliable sample selection mechanism, we
test the effect of two reliable sample thresholds k1 and k2 on the downstream accuracy of the
model using the Cora dataset as an example. Among them, Fig. 4a shows the effect of the
value of k1 on the downstream model when only k1 is used as the reliable sample selection
mechanism. Figure 4b shows the effect of the value of k2 on the downstream model when
only k2 is used as the reliable sample selection mechanism. The three dashed lines in the
figure indicate the performance of the upstream model under the three metrics as a reference
for comparison. It is clear that both of the reliable sample selection mechanisms we employ
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Fig. 5 2D t-SNE visualization of DSAGC on Cora and Pubmed. Where each column represents original, only
reconstruction, pretext task, and downstream task respectively, i.e., the data distribution of the four phases of
the model training. a–d Cora. e–h Pubmed

can greatly improve the quality of pseudo-labels as supervisory information. When the value
of k1 is small, we obtain samples with higher confidence, but the number of samples is small,
so the overall generalization performance is poor. Since we select the samples according
to percentages, we can ensure that the number of samples selected for each cluster class
is relatively balanced. The overall model performance does not fluctuate significantly with
changes of k1 and k2 values. After that, as the threshold value keeps increasing, the number
of samples and reliability reach a balance point, achieving a better result. At the same time,
we test the combination of two reliable samples. In particular, Fig. 4c shows the effect of
changing the value of k1 on the downstream model when setting k2 = 0.3. Figure 4d shows
the effect of varying the value of k1 on the downstreammodel when setting k1 = 0.3. We can
see that when k1 or k2 is less than or equal to 0.3, the performance of the model is generally
poor and even lower than the accuracy of the upstream model. The main reason for this is
that there are not enough sample points to satisfy both conditions at the same time, so the
performance of themodel is seriously affected. As the reliable sample threshold increases, the
effects of sample size and sample reliability on the model are balanced, and the downstream
model outperforms the upstream model, reaching the goal of using pseudo-labels to guide
the training of the downstream model.

4.5.2 Visualization Analysis

Tomore intuitively reflect the impact of the two self-supervised terms on the data distribution
at each stage of model training, we perform t-SNE visualization on two datasets. As shown
in Fig. 5, it is observed that the model can perform an initial clustering of the samples
when guided only by the reconstruction loss. However, the distances between the different
clusters are still very close together. In contrast, when the clustering information is used to
construct the trustworthy distribution to guide the training, the distance between the clusters is
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progressively expanded, and the same cluster samples move closer to each other. Through the
reliable sample selection mechanism, we can further weaken the negative impact of cluster
boundary samples and improve the performance of the downstream model.

5 Conclusion

In this paper, we propose a new deep self-supervised attributed graph clustering framework
for social network datasets analysis. The model uses the pseudo-label information generated
by clustering to construct a high-confidence distribution based on spectral clustering in the
pretext task, which guides the model to learn embeddings that satisfy the specific clustering
task. We further use the pseudo-label information to select reliable samples to assist in the
training of the downstreammodel. Under the guidance of the pseudo-label, we use the cosine
similarity between embedding to select the samples most similar to the other samples in the
same cluster as the reliable samples. We also add a margin between the similarity of the
same cluster samples and opposite cluster samples to improve its quality. We evaluate the
proposed DSAGC on four popular benchmark datasets. The experimental results show the
effectiveness of the proposed model on the node clustering task.
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