
Neural Processing Letters (2024) 56:140
https://doi.org/10.1007/s11063-024-11593-1

Efficient Bayesian CNNModel Compression using Bayes
by Backprop and L1-Norm Regularization

Ali Muhammad Shaikh1 · Yun-bo Zhao1 · Aakash Kumar2 ·Munawar Ali1 · Yu Kang1

Accepted: 12 March 2024 / Published online: 4 April 2024
© The Author(s) 2024

Abstract
The swift advancement of convolutional neural networks (CNNs) in numerous real-world
utilizations urges an elevation in computational cost along with the size of the model. In this
context, many researchers steered their focus to eradicate these specific issues by compress-
ing the original CNN models by pruning weights and filters, respectively. As filter pruning
has an upper hand over the weight pruning method because filter pruning methods don’t
impact sparse connectivity patterns. In this work, we suggested a Bayesian Convolutional
Neural Network (BayesCNN) with Variational Inference, which prefaces probability distri-
bution over weights. For the pruning task of Bayesian CNN, we utilized a combined version
of L1-norm with capped L1-norm to help epitomize the amount of information that can
be extracted through filter and control regularization. In this formation, we pruned unim-
portant filters directly without any test accuracy loss and achieved a slimmer model with
comparative accuracy. The whole process of pruning is iterative and to validate the perfor-
mance of our proposed work, we utilized several different CNN architectures on the standard
classification dataset available. We have compared our results with non-Bayesian CNNmod-
els particularly, datasets such as CIFAR-10 on VGG-16, and pruned 75.8% parameters with
float-point-operations (FLOPs) reduction of 51.3%without loss of accuracy and has achieved
advancement in state-of-art.

Keywords Bayesian CNNs · Bayes by backprop · Capped L1-norm · L1-norm
regularization · Model compression · Uncertainty estimation

B Yun-bo Zhao
ybzhao@ustc.edu.cn

Ali Muhammad Shaikh
alims@mail.ustc.edu.cn

Aakash Kumar
aakash@cust.edu.cn

Munawar Ali
alimunawar@mail.ustc.edu.cn

Yu Kang
kangduyu@ustc.edu.cn

1 University of Science and Technology of China, Hefei, China

2 Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-024-11593-1&domain=pdf

140 Page 2 of 19 A. M. Shaikh et al.

1 Introduction

To achieve more efficient Convolutional Neural Networks (CNNs), researchers have utilized
numerous state-of-the-art methods in a diverse range of machine learning practices, namely
object detection [1, 2], image recognition [3, 4], and web search [5]. However, achieving
outstanding outcomes also add up immense challenges to cope with, such as cumbrous
architectures that are not quite efficient in terms of memory and have heavy computational
requirements, specifically for mobile and embedded devices. Additionally, they incur signifi-
cant inference costs. Hence, model compression acquired noteworthy consideration amongst
researchers to decrease the size issue of CNN architecture. Even so, by nature, CNNs are
computationally intensive, alongwithmemory footprint, the inevitability of the floating-point
operations (FLOPS) dramatically increased [6]. The overall growth is because of trainable
parameters quantity is in millions along with convolution operations.

Besides, the increase in parameter count, the runtime memory also plays a crucial role
because even with a single image, the activation layer of CNN possibly uses up additional
memory footprint rather than saving parameters throughout the inference period. To contend
with this sort of challenge more robust Graphical Processing Units GPUs are presented as
the solution which is not so affordable for numerous implementations. Thus, to alleviate
the incompatibility of elevated resource necessity of CNNs numerous approaches have been
offered in terms of compressingCNNs in a diverse range ofmodelswithout taking any evident
accuracy loss. Network pruning is quite a prevailing technique amongst researchers for the
compression of networks. Pruning can help to lower computation costs through dropping the
number of feature maps. The earlier pruning approaches are merely utilized for networks that
are fully connected namely second-order derivatives [7] and optimal brain damage [8]. The
obvious drawback of these approaches is that parameter pruning does not offer a substantial
reduction in computation time since eliminated parameters are mostly from fully connected
layers.

There has been considerable research available in the area of compressing CNN networks
instead of taking rather efficient CNN models directly. To alleviate the conflict of the high
resource necessity of the CNNs, the literature comprises a variety of approaches to aid in
compressing along with accelerating CNNs in a diverse range of models with no notice-
able accuracy loss. For instance, approaches based on quantization have been suggested to
make CNNs more appropriate for devices with limited resources [9, 10]. However, these
approaches have a common issue of reduced accuracy. However, there are multiple ways to
address the accuracy reduction issue. For instance, performonly parameter quantization rather
on activations, by increasing the size of network, and performing fine-tuning. Conversely, the
extensively utilized approach amongst researchers to compress networks is pruning. How-
ever, there are two subclasses of pruning namely filter pruning [11–13] and weight pruning
[14–16]. In weight pruning parameters are eliminated directly in the filter and that produces
unstructured sparsity causes an impact on efficiency of the network. Recently, inspiring out-
comes attained through Bayesian-based techniques that utilize weight pruning [17–19]. This
class of pruning scheme is still not quite impactful to ease up computational power along
with memory footprint, and in the meantime dedicated Basic Linear Algebra Subprograms
(BLAS) libraries are also compulsory. Also, there has been a noteworthy amount of research
available for filter-level pruning [20–22]. This class of pruning does not take in additional
hardware and allows a structured model. Filter pruning has the upper hand regarding elim-
inating redundant filters along with reducing model size without harming the structure of
model.

123

Efficient Bayesian CNN Model Compression using Bayes by Backprop … Page 3 of 19 140

Fig. 1 Structure of iterative algorithm

As another option, a Bayesian perception channel pruning alongside minimizing the
bit precision for weights is associated with accomplishing higher-level accuracy, since the
Bayesian approaches pursue the optimum structure of model. In this study, we have managed
to create a Bayesian-based filter level pruning. In this work, Bayesianmethods are applied for
CNNs to evaluate uncertainty along with regularization within their predictions concerning
their training. With the help of this scheme, the network can determine uncertainty through
parameters as probability distributions. This provides the benefit of the regularization effect
for the network that results in avoiding overfitting.

Further, In this work, we proposed a process of network compression by utilizing Bayes by
Backprop [23] with approximate intractable true posterior probability distributions p(w | D)

along with variational probability distributions qθ (w | D). This however has the properties
of the Gaussian distribution denoted as μ ∈ R

d and σ ∈ R
d , represented as N (

θ | μ, σ 2
)
,

here number of parameters are denoted as d which define probability distribution. Besides,
varianceσ 2 defines the formofGaussian variational posterior probability distributions.More-
over, to prune the networkwe utilizedL1 and cappedL1 norm to regulate the tradeoff amongst
regularization and selection of filter. The filters of nearly all layers with small L1-norm are
picked and set to zero. This arrangement helps channel level pruning in the subsequent step
and the overall performancewill barely be affected by the parameter regularization. However,
pruning redundant channels might degrade the performance momentarily but it can be eased
through fine-tuning the pruned network. This proposition offers a slimmer network along
with a compact structure regarding model size, runtime memory, and computational cost
when compared to other techniques. The proposed pruning approach is iterative as demon-
strated in Fig. 1. We evaluate our proposed method on prevailing CNN architecture through
several standard datasets.

2 LiteratureWork

UsingCNNon embedded devices is amodern trend that has a strong influence onmobile com-
puting applications.However, utilization ofCNNs in numerous applications added impressive
computational costs increase along with immense size, and because of advancements CNNs
transformed into a wider architecture. Hence, gradually increased parameter size and there-
fore greatly affects the applicability ofmodels on embedded devices. However, the substantial
redundancy in parameterization turns out to be an extensively recognized quality [24]. The
redundant nature and over-parameterization of neural networks attract an increase in memory
requirements and computational costs. For instance, VGG-16 [25] needs almost 30 billion
float point operations (FLOPs) along with 138 million parameters and with 500MB required
storage. This incurs a substantial problem and also confines several CNN applications.

Moreover, the Bayesian comparable neural networks are termed as Bayesian neural net-
works (BNNs), where values of parameters of a particular network are generally represented

123

140 Page 4 of 19 A. M. Shaikh et al.

via probability distributions. The BNN models have a handful of perks as compared to the
non-Bayesian neural networks for instance BNN models not only acknowledge for integrat-
ing prior knowledge but offer robustness to overfitting along with simple continual learning
[26]. There is not much research available regarding Bayesian networks [27], the authors in
[28] presented a variational Bayes (VB) deterministic approximation for moments of acti-
vations of neural networks along with a straightforward empirical Bayes hyper-parameter
update. Thus, their work achieved robust and efficient results through a combination of these
two approaches. Besides, in another work [29] ReLU nonlinearities are decomposed into a
product of an identity along with a Heaviside step function. Further, they familiarized another
path that helps in decomposing neural network expectations from variance. Their method-
ology contains distinct latent binary variables for activations which causes neural network
likelihood to behave as a chain of linear operations. This formulation is more robust than the
Monte Carlo [30] sampling approaches because it allows computation that is sampling free
of evidence lower bound.

Recently, considerable advancement in devices with limited power resources have crafted
outstanding prospects for researchers to cope with issues of deploying deep learning systems
on mobile devices with inadequate resources namely memory [31]. Accomplishing these
objectives necessitates the computational costs reduction and memory requirements which
aids in broadening the deep learning models applicability and being able to employ in a wide
variety of applications namely embedded systems, real-time applications, andmobile devices.
Although, several approaches available in the literature regarding coping with compressing
CNNs have been introduced recently [32, 33], pruning in this field emerges as a famous
solution which is eliminating redundant weights out of initial networks. While techniques
related to pruningwere conceived in early era of the 1980s-1990s, andwere able to be utilized
in deep learning networks [32]. However, [7, 8] are pioneers of technique of channel pruning,
they demonstrated that by eliminating redundant weights from a trained network along with
negligible loss in accuracy. Subsequently, in [14, 34] they presented that weights with small
magnitude have less information and can be pruned. But then these sophisticated approaches
are unconstructed along with hold format weight matrix. This will restrain the acceleration
effect except by adopting the Compressed Sparse Column (CSC).

On the assumption that [35] presented that before the step of retraining, there is a possi-
bility to override the retraining phase by a random initialization. Further, in [35] presented,
swapped fully connected layers with sparsely connected layers through utilizing initial topol-
ogy based upon Erd ős–Rényi random graph. Through the training of the network, portions of
the smallest weights are discarded iteratively and then swappedwith new randomweights. To
find a sparse architecture prior training step is accomplished by employing initial topology.
Nonetheless, the disadvantage also lies in the random iterative initialization because these
all steps are quite expensive. This approach also causes jumping memory access along with
poor cache locality, which tremendously impacts and confines practical acceleration [36].

Subsequently, [37] suggested that for the deeper architectures pruning networks with
initialization values fail to perform better. Their solution was to set up weights for those
that are acquired at early epochs of training the network. In [38] sparsity is adapted in the
model parameters alongside they necessitate the aid of sparse libraries as well to accom-
plish intended results. Likewise, the mentioned approach gives a deficient compression rate
on total run memory (TRM) along with FLOPs. Nonetheless, these specific methods pro-
vide a finer compression rate concerning weight storage, along with insubstantial FLOPs.
However, in [39] proposed filter importance holds particular limits as required that are not
usually accumulated. They proposed a methodology based upon meta-attribute-based filter
pruning (MFP). They have broadened the current magnitude information which is based on

123

Efficient Bayesian CNN Model Compression using Bayes by Backprop … Page 5 of 19 140

pruning criterion and they also familiarized a new standard to contemplate the geometric dis-
tance of filters. Consequently, models endure redundancy because of these methodologies.
In the meantime, these methodologies cease to anticipate filter redundancy during pruning.
To remove the redundant feature maps in [33] proposed an approach based on the correlation
between feature maps that are generated out of corresponding filter. This technique elimi-
nates the redundant feature maps to aid in reducing the size of a model along with reduced
computational cost plus being able to save many FLOPs too.

Likewise, in [40] presented Distinguishing Layer Pruning based on RFC (DLRFC). They
presented a novel filter criterion that employs network interpretability to aid in constructing
a filter peak feedback set, subsequently estimating redundancy based upon the uniformity of
the filter’s feedback toward the class. In this approach, they pruned filters in dissimilar layers
discriminately. This helps in avoiding measuring filters amongst individual layers directly
contrary to the filter criteria. Additionally, we have suggested how Bayes by Backprop can
be applied to different CNNModels without trimming the network to half to make it similar
to non-Bayesian CNN models because in this work we have utilized two convolutional
operations for mean and variance which make the model double in the size as compare
to non-Bayesian. We also inspected the aleatoric and epistemic uncertainties and made the
network to become more deterministic. Further, we have applied L1-norm with capped L1-
norm to help train the parameters of the model, prune the unimportant filters, and further
fine-tune the model to reduce the accuracy loss that occurred during the pruning process.

In this work, we perform proposed approach on different datasets alongwith CNNmodels.
For VGG16 on CIFAR100, the approach obtained 59.6% of parameter pruning along with
46.4% in FLOPs reduction and 0.17% accuracy loss. For VGG16 on CIFAR10, we achieved
44.6% parameter pruning without loss of accuracy. Further details of our proposed approach
are briefly detailed in the coming sections of the article.

3 ProposedMethodology

3.1 Variational Inference

As we state function y = f (x) which approximates the inputs {x1, . . . , xN } with relative
outputs {y1, . . . , yN }, which generates an estimated output, respectively. A prior distribution
is applied through a span of functions p(f) with utilization of Bayesian Inference. So, the
distribution implies our prior beliefs regarding which exact functions are created in our data.
Further, a likelihood can be stated as p(Y | f , X) to obtain the procedure where a function
observation is formed. In that case, theBayes rule is utilized to locate the posterior distribution
considering our dataset p(f |X , Y).

So, through incorporating overall probable functions f a new output can be estimated for
a new input point x∗,

p
(
y∗ | x∗, X , Y

) =
∫

p
(
y∗ | f ∗)p

(
f ∗ | x∗, X , Y

)
d f ∗ (1)

However, because of the integration symbol, Eq. 1 is intractable.But it canbe approximated
through utilizing a finite set of random variables such asw then condition model over it. This
howevermakes themodel dependent upon variables alonewhich results in sufficient statistics
in our model. Hence, the distribution for a new input point x∗ can be written as follows

p
(
y∗ | x∗, X , Y

) =
¨

p
(
y∗ | f ∗)p

(
f ∗ | x∗, w

)
p(w|X , Y)d f ∗dw (2)

123

140 Page 6 of 19 A. M. Shaikh et al.

Nonetheless, p(w|X , Y) distribution still be intractable. A variational distribution q(w)

is required to approximate it, though is computable. The approximating distribution should
be closer to posterior distribution that is acquired from original model. We then have to
minimalize Kullback–Leibler (KL) divergence, intuitively a similarity measure amongst two
diverse distributions; K L(q(w)‖p(w | X , Y)). This formation leads to approximate predic-
tive distribution and becomes

q
(
y∗ | x∗) =

¨
p
(
y∗ | f ∗)p

(
f ∗ | x∗, w

)
q(w)d f ∗dw (3)

The process of minimizing KL divergence is similar to maximizing log-evidence lower
bound

K LV I :=
∫

q(w)p(F | X,w)logp(Y | F)dFdw − K L(q(w)‖p(w))

referring to variational parameters determining q(w), which is fundamentally a variational
inference. Further, maximizing Kullback–Leibler (KL) divergence amongst both posterior
and prior withw might provide a variational distribution which exactly learns a finer descrip-
tion out of data, i.e., achieved from log-likelihood, this makes it near to prior distribution.

3.2 Bayes by backprop utilization

With the aim of computing intractable true posterior probability distribution, we utilized
variational inference such as Bayes by Backprop in our case. In order to build a CNN along
with probability distributions above its weights in every filter. Besides, it is not possible to
achieve a fully Bayesian perspective on a CNN through placing probability distributions over
weights in convolutional layers, but also needs probability distributions over weights [41].

For a Bayesian neural network to learn the posterior distribution over weightsw ∼ qθ (w |
D) where weights w is sampled in backpropagation. Bayes by backprop familiarized by [23]
(basically implies a more empirical solution for the challenge of intractability can be solved
sufficiently. Additionally, this particular distribution through minimizing the compression
cost can be able to regularize weights. This termed as variational free energy. However, true
posterior is intractable which leads to approximate distribution qθ (w | D) which is then
intended to mimic true posterior p(w | D) and this calculated through the KL-divergence
[42]. Thus, this formation determines optimal parameters θopt as follows:

θopt = argmin
θ

K L[qθ (w | D)‖p(w | D)]

= argmin
θ

K L[qθ (w | D)‖p(w)]

−Eq(w|θ)[logp(D | w)] + logp(D)

(4)

now KL-divergence is defined as

KL[qθ (w | D)‖p(w)] =
∫

qθ (w | D)log
qθ (w | D)

p(w)
dw. (5)

The outcome of the above derivation is an optimization issue including a resulting cost
function termed as “variational free energy” [43, 44]. This cost function carried out by two
terms i.e. former, KL[qθ (w | D)‖p(w | D)] which basically rely on prior p(w), termed as
complexity cost, while the later term,Eq(w|θ)[logp(D | w)] rely on data p(D | w), termed as
likelihood cost. However, in the optimization, we can exclude logp(D) since it is constant.
Furthermore, we cannot exactly compute KL-divergence due to its intractable nature so

123

Efficient Bayesian CNN Model Compression using Bayes by Backprop … Page 7 of 19 140

we have to utilize another term such as stochastic variational scheme [23]. The weights
w sampled from qθ (w | D) variational distribution, considering the much easier approach
to extract the samples that are relevant to numerical approaches from variational posterior
qθ (w | D) comparedwith true posterior p(D | w) in this case. Hence a tractable cost function
is formulated in Eq. 6 which is intended to be minimized along with optimized regarding θ ,
throughout training session.

F(D, θ) ≈
n∑

i=1

logqθ

(
w(i) | D

)
− logp

(
w(i)

)
− logp

(
D | w(i)

)
(6)

In the above equation, n represents the number of extractions performed. Moreover, w(i)

is sampled out of qθ (w | D).

3.3 Local Reparameterization Trick

In this work, local reparameterization trick [45] is utilized for CNNs. Further, in our work
layer activation b is sampled instead of weights w because of resulting computational accel-

eration of layer activation b. Moreover, qθ

(
wi jhwD

) = N
(
μi jhw, αi jhwμ2

i jhw

)
represents

variational posterior probability distribution and for any layer, i and j are input alongwith out-
put layers, where h and w denoted as height and width, respectively. This formation within
convolutional layer can permit to apply local reparameterization trick. The convolutional
layer activation b can be written as follows:

b j = Ai ∗ μi + ε j �
√
A2
i ∗ (

αi � μ2
i

)
(7)

here receptive field is represented as ε jN (0, 1),Ai along with � which is component-wise
multiplication, and signalizes convolutional operation denoted as ∗.

We deployed a different estimator for which Cov
[
Li , L j

] = 0, so the variance of the
stochastic gradients scales as 1/M . After that new estimator is constructed computationally
efficient through sampling intermediate variables along with not directly sampling ε though
f (ε) with which ε impacts LSGV B

D (∅). With this source of global noise can interpreted into
local noise (ε → f (ε)). Hence, to achieve an effective gradient estimator local reparame-
terization is applied. For instance, an input (X) is stated as a random uniform function with
values between (-1 to + 1) with an output of (Y) denoted as a random normal distribution
over mean X along with standard deviation δ, and (Y − X)2 stated as Mean Squared Loss.
During backpropagation from random normal distribution leads to this issue and due to the
reason of propagating over a stochastic node, then we reparametrize it with adding X in order
to random normal distribution output and then multiply it with standard deviation.

3.4 Utilizing Sequential Convolutional Operations

The crucial point of CNN which has probability distributions over weights rather than single
point estimates which is also capable of updating variational posterior probability distribution
qθ (w | D) through backpropagation exists in utilizing more than one convolutional operation
but filterswith a single point estimates utilize only one operation.Moreover, thiswork utilized
local parameterization trick along with sample out of output b. Given that b is considered
as a function of mean μi jwh and variance αi jhwμ2

i jhw , this help to separately calculate two

123

140 Page 8 of 19 A. M. Shaikh et al.

variables defining a Gaussian probability distribution such as of mean μi jwh and variance
αi jhwμ2

i jhw . The detailed explanation is defined as follows:

• Output b is treated as an output of CNN which is updated through frequent inference.
Adam optimizer [46] is utilized in order to obtain a single-point estimate. This single
point-estimate is interpreted as mean μi jwh .

• In the second convolutional operation, we familiarize variance αi jhwμ2
i jhw , here variance

comprises meanμi jwh so requires to learn αi jhw section in second convolutional operation
[18]. This formulation ascertains that one parameter is updated for every convolutional
operation.

3.5 Predictive Uncertainty for Convolutional Neural Networks (CNNs)

To estimate the uncertainties, we modeled Epistemic uncertainty through putting prior distri-
butions over weights of the model and attempting to apprehend how often the weights deviate
provided with some data. Besides, we modelled Aleatoric uncertainty though placing distri-
bution over the model output.

The predictive distribution pD(y∗ | x∗), is the main concern in classification tasks, where
y∗ is considered a predictive class and x∗ represents unseen data example. As for Bayesian
neural network concern, predictive distribution can be written as:

pD
(
y∗ | x∗) =

∫
pw

(
y∗ | x∗)pD(w)dw (8)

The finite and discrete characteristics of majority of classification tasks lead to assuming
predictive distribution to be categorical which results in;

pD(y∗ | x∗) = C
∫
(y∗ | fw(x∗))N (

w | μ, σ 2
)
dw

= ∫ ∏C
c=1 f

(
x∗
c | w

)y∗
c 1√

2πσ 2
e− (w−μ)2

2σ2 dw
(9)

In Eq. 9 C represents an overall number of classes along with
∑

c f
(
x∗
c | w

) = 1. More-
over, an unbiased estimator of expectation can be created via sampling from qθ (w | D). This
is a must because of insufficient conjugacy amongst Gaussian distribution and categorical.
Now we can formulate as follows:

Eq
[
pD(y∗ | x∗)

] = ∫
qθ (w | D)pw(y | x)dw

≈ 1
T

∑T
t=1 pwt (y

∗ | x∗)
(10)

In above equation T represents pre-defined samples. Now this estimator is helpful to mea-
sure our uncertainty through definition of variance. This formation is termed as “predictive
variance” represented as Varq and defined as follows:

Varq
(
p
(
y∗ | x∗)) = Eq

(
yyT

)
− Eq [y]Eq [y]

T (11)

Now we can fetch the epistemic uncertainty and aleatoric uncertainty from Eq. 11 and
given as follows:

Varq
(
p
(
y∗|x∗)) = 1

T

T∑

t=1

diag
(
p̂t

) − p̂t p̂
T
t

︸ ︷︷ ︸
aleatoric

+ 1

T

T∑

t=1

(
p̂t − p

)(
p̂t − p

)T

︸ ︷︷ ︸
epistemic

(12)

123

Efficient Bayesian CNN Model Compression using Bayes by Backprop … Page 9 of 19 140

where p = 1

T

T∑

t=1

p̂t and p̂t = Softmax
(
fwt

(
x∗))

Moreover, to weigh how much a model can be improved, it is necessary to discriminate
between two types of uncertainty: aleatoric and epistemic. Aleatoric uncertainty (or statistical
uncertainty) reveals the variability of the data, which might be incomplete or noisy. while
Epistemic uncertainty arises from the model, which might be incomplete or inaccurate. As a
result of separating these two causes of uncertainty, a modeler can detect whether the quality
of data is poor (high aleatoric uncertainty) or the quality of the model is poor (high epistemic
uncertainty).

3.6 Model Pruning

3.6.1 Filter Pruning

The CNN is parametrized as
{
W (i) ∈ R

Mi×Ni×K×K , 1 ≤ i ≤ L
}
. The matrix of connection

weights within the i-th layer is represented as W (i) whereas L in denotes the total number of
layers. Further, a number of input channels are represented byMi within the i-th convolutional
layer, and output channels are represented as Ni along with height x and K × K denoted
as width. While wi × hi is input feature map size and output feature map size is denoted as
wi+1×hi+1. Furthermore, the i-th layer comprises Mi , Ni kernel, and regarding k×k kernel
the convolutional layer computations are represented as Mi × Ni × k2 ×wi+1 ×hi+1. As we
can see in Fig. 2 which shows the step of pruning filter parameter, where its correlated feature
map is also eliminated, which then shrinks Mi × k2 × wi+1 × hi+1 within the i-th layer.
Hence, in the subsequent convolutional layer filters are also removed considering kernels
have been applied in the eliminated feature maps in preceding layer. This formation saves
further Ni × k2 × wi+2 × hi+2 processes within (i + 1)th layer, respectively. Moreover, the
filters are pruned according to the importance valuations at each end of an epoch. In Fig. 2
the filters are in blue and orange horizontal bars, the importance measured through their L1
norm along with ones that contain smaller values are then chosen to be pruned.

Moreover,N indicates the images that are randomly selected which are input to the model,
the greater value of N leads to more consumption of memory of the system. However, value
of N is the same for each considered dataset. The minimum achieved scores of final accuracy
are out ofN of 16, 32, 50, and 64. Conversely, themaximum achieved scores of final accuracy
are shown by N of 256 and 512 occurrences. Further, the N of 100, 128, 150, and 200 cases
display the average results of the final accuracy. Consequently, the higher the value of N ,
the better final accuracy is achieved, also copious values can further affect the final accuracy
as shown in Fig. 3. (Fig. 3 only emphasizes CIFAR-10 dataset for the VGG16 model). For
instance: in Fig. 3 we can see that the loss in accuracy is higher if the N value is 216 and
at 214 we have gained accuracy and as the value of N changes the accuracy can be gained
accordingly. Thus, the Value of N highly affects the model accuracy.

3.6.2 Relevance of Weights of Filters

Fusing the lasso with L1-regularization and linear classification in Eq. 13 [47] we get:

V = min
W

∑

(xi ,yi)

l(xi , yi ,W) + λ|W |1 (13)

123

140 Page 10 of 19 A. M. Shaikh et al.

Fig. 2 Filter pruning process

Fig. 3 Impact of N on VGG16 accuracy with CIFAR-10 dataset

123

Efficient Bayesian CNN Model Compression using Bayes by Backprop … Page 11 of 19 140

where the square loss is denoted as l(•), l(xi , yi ,W) = (
WT xi − yi

)2
. However, there is a

possibility of other sort of loss function owing to feature selection. In this work, to accurately
determine the significance of convolutional kernels we fused both L1-norm and capped L1-
norm. The Capped L1-norm has an upper hand over L1-norm given that further penalizing
cannot be utilized after a feature is extracted. Because definitively not going to provide small
weights further.

qε(wi) = min(|wi |, ε) (14)

Equation 14, the Capped L1-norm is indicated as an element-wise function, where wi is
stated as weights of filters, and ε stated as a constant. The more accurate approximation of
the L1-norm is that it just penalizes a feature when utilized without any interference, scaling
the magnitude of weights. Once ε is substantially small as an instance, ε ≤ min

i
|wi |, then we

might be able to calculate an exact number of features extracted through qε(w)/ε. Simply put,
penalizing qε(w) is a very close proxy to penalizing number of extracted features. However,
the capped L1-norm is not convex which makes it quite bothersome to optimize. So, to ease
up the complexity by fusing the norms such as L1-norm or L2-norm with capped L1-norm to
help in controlling the trade-off among filter selection and regularization through adjusting
the desired parameters, μ, λ ≥ 0,

V = min
W

∑

(xi ,yi)

l(xi , yi ,W) + λ|W |1 + μqε, (w) (15)

HereW is training weights, (xi), (yi) are train input and output. The first section of Eq. 15
corresponds to normal training loss. The second section is a non-structured regularization
which is applied to each filter qε(w) that denotes capped L1-norm that is applied to each
layer. Further, in Eq. 15 there are two penalty terms namely ordinary L1- norm and capped
L1-norm. The standard L1-norm drops the overfitting while second penalty which is capped
L1-norm selects filters. However, the contemporary form of capped L1-norm selects features
rather than selecting filters. Hence, above equation needs modification so that it directly
penalizes feature extraction. To model a total number of features that are extracted through a
set of filters we state a binary matrix F ∈ {0, 1} which has the dimension of ×T , whereas an
entry Ff t = 1, assuming the filter ht utilizes feature f . Now we can determine total weight
assigned for filter extracted with feature f :

W =
T∑

t=1

∣∣Ff tβt
∣∣ (16)

where β represents the sparse linear vector, by modifying qε(w) to make it penalize actual
weights allocated to features. Equation 17 shows the final optimization;

L = &min
W

∑

(xi ,yi)

l(xi , yi ,W) + λ|W |1 + μ

d∑

f =1

qε

(
T∑

t=1

∣∣Ff tβt
∣∣
)

(17)

Furthermore, if ε is quite small previously

(
ε ≤ min

f

∣∣∣
∑T

t=1 Fftβt

∣∣∣
)
, then μ = 1/ε can

be set along with choosing the feature penalty relates accurately with utilized features. The
capped L1-norm in Eq. 17 is for estimating the relevance of every filter. Generally, convolu-
tional result of a filter having a smaller L1-norm value leans reasonably small compared to
activation values; which results in inconsiderable numerical impact over final estimation of
deep CNN-based models. We prune filters throughout several layers of CNNwith the help of

123

140 Page 12 of 19 A. M. Shaikh et al.

adjusting the pruning rate. For instance, prune 70% of the entire CNNs. However, network
defined the number of filters needed to prune in every layer. This formation avoids hurdle of
adjusting the pruning rate layer by layer. We used values of L1-norm and capped-L1 norm
as a criterion for setting the filter choice for pruning. At this time, pruning might be able to
direct towards some loss in accuracy but it occurs only when the percentage of pruning is high
enough. Although, through fine-tuning this issue can be rectified. Our testing suggests that
the fine-tuning procedure on pruned network might achieve better accuracy as compared to
original unpruned network. The scheme is also capable of saving the training time efficiently.
Algorithm 1 shows the steps based on our introduced method.

Algorithm 1 Prunning algorithm illustration

The proposed technique can perform smoothly on different architectures namely AlexNet,
and VGGNet, respectively.Moreover, in this work, a Bayesian Convolutional Network learns
two weights, for instance, the mean and the variance both are compared to point estimate
learning one singleweight. Thus, the parameters of a BayesianNetwork doubled as compared
to the parameters of a point estimate similar architecture. Further, we take the weights of
all the layers, apply the L1 norm, and capped L1 norm over it, and for weights values with
zero or below with a defined threshold are removed and the model is pruned. After that to
compensate for the accuracy loss of the model due to pruning we fine-tune the model. Since
Bayesian CNNs have twice the parameters we did not trim the network to half to make it
similar to non-Bayesian models.

123

Efficient Bayesian CNN Model Compression using Bayes by Backprop … Page 13 of 19 140

4 Experimental Framework

4.1 Experiment Settings

We evaluated our proposed framework on a few of the most extensively utilized networks
and datasets. The LeNet-5 architecture utilized on MNIST, AlexNet architecture utilized on
the ImageNet dataset, and VGG-16 architecture was utilized for CIFAR-10 and CIFAR-100
datasets, respectively. During training sessions, data augmentation is applied which helps in
cropping images into 32 × 32 with padding of four along with a horizontal flip is performed
also. Further, the mini-batch size for training is set to 100 and for the test images, the mini-
batch size is set to 1000. During the process of fine-tuning and training, initial learning rate
is set to 0.1 and separated through 10 at 50% and 75% of the total 150 epochs. Furthermore,
while training with L1- norm and capped L1 norm, we also adjust the hyper-parameter λ.
This helps tomanage the trade-off between empirical loss and sparsity. This is picked through
a grid search over 10−3, 10−4, and 10−5 over CIFAR-10 test set. However, we go for λ =
10−4 and λ = 10−5 for VGGNet. Lastly, all further settings are kept same as in standard
training. Furthermore, The NVIDIA GTX TITAN Xp GPU is used for experiments with a
Python framework known as Pytroch.

4.2 Learning the Objective Function

Bayes by Backprop is utilized for learning objective functions. This framework regularizes
weights w through minimizing a compression cost which is another term for variational free
energy. The intractability issue is explained in the previous section which concluded the
tractable cost function as follows:

F(D, θ) ≈
n∑

i=1

logqθ

(
w(i) | D

)
− logp

(
w(i)

)
− logp

(
D | w(i)

)
(18)

In Eq. 18 n is the number of draws. Moreover, in Eq. 18 the left side term is variational
posterior qθ

(
w(i) | D) = ∏

i N
(
wi | μ, σ 2

)
, where variational posterior taken in a form of

Gaussian distribution which is centered around mean μ and variance σ 2, respectively. Now
log and log posterior are outlined as follows:

log
(
qθ

(
w(i)| D

))
=

∑

i

logN (
wi |μ, σ 2) (19)

Furthermore, in Eq. 18 the other term on is prior over the weights which stated as a product
of individual Gaussians and defined as follows:

p
(
w(i)

)
=

∏
N

(
wi | 0, σ 2

p

)
(20)

whereas log and the log prior are outlined as:

log
(
p
(
w(i)

))
=

∑

i

logN
(
wi | 0, σ 2

p

)
(21)

The last section of Eq. 18 logp
(D | w(i)

)
is likelihood.

123

140 Page 14 of 19 A. M. Shaikh et al.

4.3 Model Pruning Results

For the compression work, we took all the weights of every layer of the network then L1 and
capped L1 norm applied along with value of every weight set to zero or under a determined
threshold are pruned.

As for the Bayesian-AlexNet on ImageNet dataset, λ = 5 × 10−6 and λ = 10−4 and
then trained the model for 100 iterations. Our proposed method pruned 65.9% of parameters
along with achieving the model accuracy of 51.33% and a 39.6% reduction in FLOP. While,
for LeNet-5 architecture on MNIST dataset, where 5 represents the number of layers in the
network, which have an input layer containing two convolutional layers along with two fully
connected (FC) layers and 431 K parameters in total. Furthermore, initial learning rate is
set to 0.001–0.1 for an entire number of iterations. Our proposed method pruned 75.9% of
parameters without losing much of the actuary in the process.

For VGG-16model, we analyzed it with CIFAR-10 and CIFAR-100 datasets, respectively.
Considering the VGGNet convolutional layers are diverse in robustness and information
concentration [12]. As for CIFAR-10, during pruning of channels that are trained with L1-
norm and capped L1-norm, a threshold of pruning is required to be calculated on filters.
Further, in our method after pruning 50% of the parameters the accuracy of model gets some
improvements in accuracy. The parameters pruning was able to reach 75.8% after the fourth
iteration along with a 51.3% reduction in FLOP and having 0.01% enhancement in accuracy.
The results are tabulated in Table 1a. Nonetheless, the process of pruning is accomplished
through creating a slimmer model along with parallel weights are then copied from a model
that is trained with L1-norm and capped L1-norm.

For the CIFAR-100 dataset on VGG-16, we used similar settings. As shown in Table 1b,
the proposedmethod saved 35.6% of FLOPs right after the second iteration. In this formation,
we choose a less pruning ratio contrary to CIFAR-10 since CIFAR-100 contains more classes
and requires extra information to classify the images. Moreover, Note, that in general, we can
maintain the original accuracy on VGG without sampling by simply fine-tuning with a small
learning rate, as done at [50]. This will still induce (less) sparsity but unfortunately, it does
not lead to good compression as the bit precision remains very high due to not appropriately
increasing the marginal variances of the weights. We compared outcomes of CIFAR-10 and

Table 1 Pruning filters for our proposed Bayesian model compared with non-Bayesian models

Approach Baseline accuracy (%) Parameters pruned (%) FLOPs saved (%) Accuracy (%)

(a)VGG-16 on CIFAR-10 datasets (Prune results)

[33] 93.73 89.7 52.4 93.82

[48] 93.75 90.5 65.56 93.80

[49] 99.47 62.38 42.56 99.25

Ours 89.35 75.8 51.3 90.33

(b) VGG-16 on CIFAR-100 datasets (Prune results)

[33] 73.72% 59.6% 46.4% 73.55%

[22] 73.44% 56.54% 44.2% 73.61%

[49] 90.38% 35.62% 33.38% 90.30%

Ours 70.23% 40.4% 35.6% 70.33%

123

Efficient Bayesian CNN Model Compression using Bayes by Backprop … Page 15 of 19 140

Fig. 4 Pruning results of VGG-16 on CIFAR-10(L) and on CIFAR-10(W) regarding pruning ratio

Table 2 MNIST and CIFAR-10
uncertainties comparison based
on the proposed method by [50]

Datasets Epistemic uncertainty Aleatoric uncertainty

CIFAR-10 0.0402 0.1918

MNIST 0.0024 0.0094

CIFAR-100 dataset on VGG-16 pruning filters with baseline accuracy of the Bayesian CNN
model with the proposed technique Fig. 4 displays the prune ratio results.

Furthermore, Table 1 displays the comparison between frequent networks with our pro-
posed Bayesian CNNs network. In our proposed work, a Bayesian Convolutional Network
acquires two weights, such as the mean and the variance. If we compare it to point estimate
learning one single weight is there to learn. This formation makes the overall number of
parameters of a Bayesian Network twice in contrast to the parameters of a non-Bayesian
architecture.

For every parameter for a frequentist inference network, Bayesian CNNs have two param-
eters (μ, σ). Instead of trimming the parameters in half to ensure the number of parameters
is comparable to non-Bayesian models. Thus, having double the amount of parameters, the
proposed model has achieved considerable accuracy in the process.

Thus, our proposed method has combined both L1-norm and capped L1-norm provid-
ing control over trade-offs amongst filter selection and regularization. With the help of the
threshold make the weights to be zero if the value falls below the threshold and only keep the
non-zero weights. Besides, we also highlighted the filter importance in every convolutional
layer of the neural network along with results implying that within many layers’ maximum
number of filters possesses a minor effect on architectures’ performance in general.

4.4 Uncertainty Estimation

We utilized two small datasets such as CIFAR-10 and MNIST to compare both aleatoric and
epistemic uncertainties for the Bayesian LeNet-5 having variational inference. For CIFAR-10
dataset the aleatoric uncertainty is twenty times greater than the MNIST dataset. This is due
to aleatoric uncertainty calculates irreducible variability besides this it relies upon predictive
values. In contrast for CIFAR-10 dataset, epistemic uncertainty is approximately fifteen times

123

140 Page 16 of 19 A. M. Shaikh et al.

greater than the MNIST dataset. As this likely happens because epistemic uncertainty most
likely shrinks the proportionally to validation accuracy. Table 2 shows the comparison of
both uncertainties for CIFAR-10 and MNIST datasets, respectively.

5 Conclusion

In this work, we suggestedBayesianCNNswith Bayes byBackprop as a variational inference
approach for the CNN. We then estimated the model’s uncertainties such as aleatoric and
epistemic and at the end we utilized a capped L1-norm combined with a regular L1-norm
to observe the filter importance that measures the effectiveness of filter weights. We inspect
uncertainties both aleatoric and epistemic and suggest that both be able to compute for
the proposed work along with how epistemic uncertainties possibly compact through more
training data. we applied channel pruning on Bayesian CNN which performs better and is
equally decent comparable to a frequentist method.

The combinedutilization ofL1-normand cappedL1-normprovided control over trade-offs
amongst filter selection and regularization. Besides, we also emphasized the filter impor-
tance in each convolutional layer of neural networks along with results implying that within
many layers’ maximum number of filters possesses an inconsiderable impact on the archi-
tecture’ performance in general. Moreover, Considerable research illustrates the benefit of
our proposed approach with a comparison of the non-Bayesian approaches. Particularly,
in the VGG-16 model on CIFAR-10 datasets, our presented approach can prune 75.8% of
parameters along with yield 51.3% FLOPs drop with slight accuracy improvement.

Besides, normal distribution utilization as prior for the purpose of estimating uncertainty
was similarly done in [51] which showed that standard normal prior drives function posterior
to simplify in unanticipated means on inputs outside of training distribution. Hence, adding
noise into a normal distribution as prior is fruitful for superior uncertainty estimation. But in
our experiments, we did not encounter such which can be explored in future work. Further,
current work can be extended by utilizing models of Super Resolution (SR) which is the
recovery of a High-Resolution (HR) image from a certain Low-Resolution (LR) image.
Besides SR, another extension of the proposed work is Generative Adversarial Networks
[52]. Also, a possible improvement can be made in future work to utilize trimmed versions of
models such as halving the parameters in Bayesian CNNs because of two parameters instead
of one similar to non-Bayesian networks to build a custom network to improve the overall
accuracy.

Author contributions AMS conceptualized the research, collected the data, and performed data analysis. Y-Z
assisted with formal analysis and investigation and also served as the corresponding author. AKB and MA
reviewed and edited the draft. YK and Y-Z supervised the entire research during various phases of the research
and provided meaningful guidelines. AMS wrote the first draft of the manuscript and all authors commented
on previous versions of the manuscript. All authors read and approved the final manuscript.

Data availability The datasets generated during and/or analyzed during the current study are available from
the corresponding author upon reasonable request.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of this
article.

123

Efficient Bayesian CNN Model Compression using Bayes by Backprop … Page 17 of 19 140

Ethical approval I certify that there is no actual or potential conflict of interest about this article. This research
does not involve human participants and/or animals and also does not require informed consent.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Zhang L, Sheng Z, Li Y, Sun Q, Zhao Y, FengD (2020) Image object detection and semantic segmentation
based on convolutional neural network. Neural Comput Appl 32(7):1949–1958. https://doi.org/10.1007/
s00521-019-04491-4

2. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection
and semantic segmentation. In: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, pp 580–587,
https://doi.org/10.1109/CVPR.2014.81

3. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proc IEEE Comput
Soc Conf Comput Vis Pattern Recognit vol 2016, pp 770–778, https://doi.org/10.1109/CVPR.2016.90

4. Fang W, Zhang F, Sheng VS, Ding Y (2018) A method for improving CNN-based image recognition
using DCGAN. Comput Mater Contin 57(1):167–178. https://doi.org/10.32604/cmc.2018.02356

5. Nguyen PQ, Do T, Nguyen-Thi AT, Ngo TD, Le DD, Nguyen TAH (2016) Clustering web video search
results with convolutional neural networks. In: NICS 2016—Proc 2016 3rd Natl Found Sci Technol Dev
Conf Inf Comput Sci pp 135–140, https://doi.org/10.1109/NICS.2016.7725638

6. Kumar A et al (2022) Structure level pruning of efficient convolutional neural networks with sparse group
LASSO. Int J Mach Learn Comput. https://doi.org/10.18178/ijmlc.2022.12.5.1111

7. Babak Hassibi DGS (2014) Second order derivatives for network pruning: optimal brain surgeon. pp 1–8,
2014, [Online]. Available: https://authors.library.caltech.edu/54983/3/647-second-order-derivatives-for-
network-pruning-optimal-brain-surgeon(1).pdf

8. Le Cun Y, Denker JS, Solla S (1990) Optimal brain damage. Adv Neural Inf Process Syst 2(1):598–605
9. Goncharenko A, Denisov A, Alyamkin S (2022) Fast adjustable threshold for uniform neural network

quantization. Low-Power Comput Vis. https://doi.org/10.1201/9781003162810-6
10. Choukroun Y, Kravchik E, Yang F, Kisilev P (2019) Low-bit quantization of neural networks for efficient

inference. In: Proceedings—2019 international conference on computer vision workshop, ICCVW 2019,
https://doi.org/10.1109/ICCVW.2019.00363

11. Yu R et al (2018) NISP: pruning networks using neuron importance score propagation. In: Proc IEEE
Comput Soc Conf Comput Vis Pattern Recognit, pp 9194–9203, https://doi.org/10.1109/CVPR.2018.
00958

12. Li H, Samet H, Kadav A, Durdanovic I, Graf HP (2016) Pruning filters for efficient convnets. In: 5th Int
Conf Learn Represent ICLR 2017—Conf Track Proc, pp 1–13

13. HeY,DingY, Liu P, Zhu L, ZhangH,YangY (2020) Learning filter pruning criteria for deep convolutional
neural networks acceleration. In: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit vol 2, pp
2006–2015, https://doi.org/10.1109/CVPR42600.2020.00208

14. Han S, Pool J, Tran J, DallyWJ (2015) Learning both weights and connections for efficient. Neural Netw,
pp 1–9, https://doi.org/10.1016/S0140-6736(95)92525-2

15. Carreira-Perpiñán MA, Idelbayev Y (2018) Learning-compression’ algorithms for neural net pruning.
In: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, pp 8532–8541, https://doi.org/10.1109/
CVPR.2018.00890

16. Liu B, Wang M, Foroosh H, Tappen M, Penksy M (2015) Sparse convolutional neural networks. In: Proc
IEEE Comput Soc Conf Comput Vis Pattern Recognit, vol 07–12-June, pp 806–814, 2015, https://doi.
org/10.1109/CVPR.2015.7298681

17. Guo Y, Yao A, Chen Y (2016) Dynamic network surgery for efficient DNNs. [Online]. Available: http://
arxiv.org/abs/1608.04493

18. Molchanov D, Ashukha A, Vetrov D (2017) Variational dropout sparsifies deep neural networks. 2017,
[Online]. Available: http://arxiv.org/abs/1701.05369

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00521-019-04491-4
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.32604/cmc.2018.02356
https://doi.org/10.1109/NICS.2016.7725638
https://doi.org/10.18178/ijmlc.2022.12.5.1111
https://authors.library.caltech.edu/54983/3/647-second-order-derivatives-for-network-pruning-optimal-brain-surgeon(1).pdf
https://doi.org/10.1201/9781003162810-6
https://doi.org/10.1109/ICCVW.2019.00363
https://doi.org/10.1109/CVPR.2018.00958
https://doi.org/10.1109/CVPR42600.2020.00208
https://doi.org/10.1016/S0140-6736(95)92525-2
https://doi.org/10.1109/CVPR.2018.00890
https://doi.org/10.1109/CVPR.2015.7298681
http://arxiv.org/abs/1608.04493
http://arxiv.org/abs/1701.05369

140 Page 18 of 19 A. M. Shaikh et al.

19. van BaalenM et al (2020) Bayesian bits: unifying quantization and pruning. Adv Neural Inf Process Syst,
vol 2020, no. NeurIPS

20. Wang W, Fu C, Guo J, Cai D, He X (2019) COP: customized deep model compression via regularized
correlation-based filter-level pruning. In: IJCAI Int Jt Conf Artif Intell, vol 2019, pp 3785–3791, https://
doi.org/10.24963/ijcai.2019/525

21. He Y, Kang G, Dong X, Fu Y, Yang Y (2018) Soft filter pruning for accelerating deep convolutional
neural networks. In: IJCAI Int Jt Conf Artif Intell vol 2018, pp 2234–2240, https://doi.org/10.24963/ijcai.
2018/309

22. Kumar A, Shaikh AM, Li Y, Bilal H, Yin B (2021) Pruning filters with L1-norm and capped L1-norm for
CNN compression. Appl Intell. https://doi.org/10.1007/s10489-020-01894-y

23. Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D (2015) Weight uncertainty in neural networks. In:
32nd International conference on machine learning, ICML 2015

24. DentonE, ZarembaW,Bruna J, LeCunY, FergusR (2014) Exploiting linear structurewithin convolutional
networks for efficient evaluation. Adv Neural Inf Process Syst 2(January):1269–1277

25. Guerra E, de Lara J, Malizia A, Díaz P (2009) Supporting user-oriented analysis for multi-view domain-
specific visual languages. Inf Softw Technol 51(4):769–784. https://doi.org/10.1016/j.infsof.2008.09.005

26. Jospin LV, BuntineW, Boussaid F, LagaH, BennamounM (2020) Hands-on Bayesian neural networks—a
tutorial for deep learning users. IEEEComput IntellMag 17(2):29–48. https://doi.org/10.1109/MCI.2022.
3155327

27. Beckers J, Van Erp B, Zhao Z, Kondrashov K, De Vries B (2023) Principled pruning of bayesian neural
networks through variational free energy minimization. IEEE Open J Signal Process. https://doi.org/10.
1109/OJSP.2023.3337718

28. WuA,Nowozin S,Meeds E, Turner RE,MiguelHernández-Lobato J, GauntAL,Deterministic variational
inference for robust Bayesian neural networks

29. Haußmann M, Hamprecht FA, Kandemir M, Sampling-free variational inference of bayesian neural
networks by variance backpropagation

30. Neal RM (1996) Bayesian learning for neural networks. Springer, New York, NY
31. Wu J, Leng C, Wang Y, Hu Q, Cheng J (2016) Quantized convolutional neural networks for mobile

devices. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2016:4820–4828. https://doi.org/10.
1109/CVPR.2016.521

32. Alqahtani A, Xie X, Jones MW (2021) Literature review of deep network compression. Informatics
8(4):1–12. https://doi.org/10.3390/informatics8040077

33. Kumar A, Yin B, Shaikh AM, Ali M, Wei W (2022) CorrNet: pearson correlation based pruning for
efficient convolutional neural networks. Int J Mach Learn Cybern 13(12):3773–3783. https://doi.org/10.
1007/s13042-022-01624-5

34. Han S, Mao H, Dally WJ (2015) Deep compression: compressing deep neural networks with pruning,
trained quantization and Huffman coding. pp 1–14, 2015, abs/1510.00149/1510.00149

35. Liu Z, Sun M, Zhou T, Huang G, Darrell T (2019) Rethinking the value of network pruning. In: 7th Int
Conf Learn Represent ICLR 2019, pp 1–21, 2019

36. WenW,Wu C, Wang Y, Chen Y, Li H (2016) Learning structured sparsity in deep neural networks. 2016,
[Online]. Available: http://arxiv.org/abs/1608.03665

37. Frankle J, Dziugaite GK, Roy DM, Carbin M (2019) Stabilizing the lottery ticket hypothesis. [Online].
Available: http://arxiv.org/abs/1903.01611

38. Chen W, Wilson JT, Tyree S, Weinberger KQ, Chen Y (2015) Compressing neural networks with the
hashing trick. [Online]. Available: http://arxiv.org/abs/1504.04788

39. He Y, Liu P, Wang Z, Hu Z, Yang Y (2019) Filter pruning via geometric median for deep convolutional
neural networks acceleration. Proc IEEE Comput Soc Conf Comput Vis Pattern Recogn. https://doi.org/
10.1109/CVPR.2019.00447

40. He Z, Qian Y, Wang Y, Wang B., Guan X, Gu Z, ZhouW (2022) Filter pruning via feature discrimination
in deep neural networks. In: European conference on computer vision (pp 245–261). Cham: Springer
Nature Switzerland

41. Shridhar K, Laumann F, Maurin AL, OlsenM, Liwicki M (2018) Bayesian convolutional neural networks
with variational inference. arXiv:1806.05978 [cs.LG]

42. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat. https://doi.org/10.1214/
aoms/1177729694

43. Yedidia JS, FreemanWT,WeissY (2005) Constructing free-energy approximations and generalized belief
propagation algorithms. IEEE Trans Inf Theory. https://doi.org/10.1109/TIT.2005.850085

44. Neal RM, Hinton GE (1998) A view of the Em algorithm that justifies incremental, sparse, and other
variants. Learn Graph Models. https://doi.org/10.1007/978-94-011-5014-9_12

123

https://doi.org/10.24963/ijcai.2019/525
https://doi.org/10.24963/ijcai.2018/309
https://doi.org/10.1007/s10489-020-01894-y
https://doi.org/10.1016/j.infsof.2008.09.005
https://doi.org/10.1109/MCI.2022.3155327
https://doi.org/10.1109/OJSP.2023.3337718
https://doi.org/10.1109/CVPR.2016.521
https://doi.org/10.3390/informatics8040077
https://doi.org/10.1007/s13042-022-01624-5
http://arxiv.org/abs/1608.03665
http://arxiv.org/abs/1903.01611
http://arxiv.org/abs/1504.04788
https://doi.org/10.1109/CVPR.2019.00447
http://arxiv.org/abs/hep-th/1806.05978
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1109/TIT.2005.850085
https://doi.org/10.1007/978-94-011-5014-9_12

Efficient Bayesian CNN Model Compression using Bayes by Backprop … Page 19 of 19 140

45. Kingma DP, Salimans T, Welling M (2015) Variational dropout and the local reparameterization trick. In:
Advances in neural information processing systems

46. Kingma DP, Ba JL (2015) Adam: a method for stochastic optimization. In: 3rd international conference
on learning representations, ICLR 2015—conference track proceedings

47. Tuv E, Borisov A, Runger G, Torkkola K (2009) Feature selection with ensembles, artificial variables,
and redundancy elimination. J Mach Learn Res

48. Aketi SA, Roy S, Raghunathan A, Roy K (2020) Gradual channel pruning while training using feature
relevance scores for convolutional neural networks. IEEE Access 8:171924–171932. https://doi.org/10.
1109/ACCESS.2020.3024992

49. Yan Z, Xing P, Wang Y, Tian Y (2020) Prune it yourself: automated pruning by multiple level sensitivity.
In: 2020 IEEE Conference Multimedia Information Processing Retrievel pp 73–78, 2020

50. Kwon Y, Won JH, Kim BJ, Paik MC (2020) Uncertainty quantification using Bayesian neural networks
in classification: application to biomedical image segmentation. Comput Stat Data Anal 142:106816.
https://doi.org/10.1016/j.csda.2019.106816

51. Hafner D, Tran D, Lillicrap T, Irpan A, Davidson J (2018) Noise contrastive priors for functional uncer-
tainty. 2018, [Online]. Available: http://arxiv.org/abs/1807.09289

52. Goodfellow IJ et al (2024) Generative adversarial networks. Sci Robot 3:2672–2680

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1109/ACCESS.2020.3024992
https://doi.org/10.1016/j.csda.2019.106816
http://arxiv.org/abs/1807.09289

	Efficient Bayesian CNN Model Compression using Bayes by Backprop and L1-Norm Regularization
	Abstract
	1 Introduction
	2 Literature Work
	3 Proposed Methodology
	3.1 Variational Inference
	3.2 Bayes by backprop utilization
	3.3 Local Reparameterization Trick
	3.4 Utilizing Sequential Convolutional Operations
	3.5 Predictive Uncertainty for Convolutional Neural Networks (CNNs)
	3.6 Model Pruning
	3.6.1 Filter Pruning
	3.6.2 Relevance of Weights of Filters

	4 Experimental Framework
	4.1 Experiment Settings
	4.2 Learning the Objective Function
	4.3 Model Pruning Results
	4.4 Uncertainty Estimation

	5 Conclusion
	References

