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Abstract
In this study, bidirectional fractional-order BAM neural networks with time-varying delays
are examined. Time delay is an important phenomenon in the implementation of a signal or
effect passing through neural network. Signal transmission in neural networks can generally
be described as an anti-periodic process. Our aim is to show global asymptotic stability
and the uniqueness of the equilibrium point for such neural networks in the problem with
antiperiodic solution.For this purpose, the proofwasmade using differential inequality theory,
basic analysis information, and the Lyapunov functional method. In addition, a numerical
example is presented to verify the theoretical results.

Keywords Fractional differential equation · Anti-periodic · Time delay · Asymptotic
stability · Neural network

1 Introduction

As time goes by, technological innovations have become indispensable in our lives. In this
case, people constantly make new discoveries or achieve better results by improving what
others have done. These types of technological experiments are generally aimed at making
human life easier, both in education and our daily lives. The concept of neural networks
is included in this category. Many of these problems have become complex and cannot be
solved using conventional algorithms. Neural networks, which can provide solutions to com-
plex problems and are used in many multidisciplinary fields, have becoming increasingly
common. Features that distinguish neural networks from classical problem solving methods
include parallel (simultaneous) operations and nonlinearity. This makes solving complex
problems easier. Generally, meaningful responses can be attributed to similar events. Fault
tolerance was also available. Unlike calculation or programming methods used in traditional
computers, neural networks have a training (learning) mechanism based on examples. In the
model, the existence-unity status and stability analysis of the balance point vary depending
on the field and application. For example, if an artificial neural networks (ANNs) is to be
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used to solve optimization problems, it must have a single equilibrium point that is globally
asymptotically stable. Stability is an important factor in network model. The stability fea-
tures ANNs vary depending on their application type. According to its meaning and general
definition in ANNs, it is "a stable system that tends to go into equilibrium or is in a state of
equilibrium." Although external factors do not affect the stability of the system, they may
cause it to take longer to reach equilibrium. Theoretically, a system that has become stable
will not become unstable. For a system to be stable, it must have at least one equilibrium
point. The number of balance points and the type of stability may vary depending on the
characteristics of the system or application used. Stability can be expressed as the fact that a
certain equilibrium point of a dynamic system is stable and other orbits remain in a certain
neighborhood of this point. Asymptotic stability can be expressed as a situation in which, in
addition to stability, the equilibriumpoint has a gravitational effect on other orbits in its neigh-
borhood over a long time limit. If the equilibrium point of the system is locally or globally
asymptotically stable, it is the only equilibrium point of the system. Therefore, systems with
more than one equilibrium point do not satisfy the asymptotically stable condition. The most
important factor affecting the existence-unity status and stability analysis of the balance point
of ANNs is system delay. Contrary to real-world applications, in theory, it is assumed that
the signal transmission between the neurons forming the ANNs is flawless. In the application
of ANNs, there appear to be various delays in signal transmission between neurons. While
examining the stability of ANNs, analysis by considering delay situations allows obtain-
ing results closer to reality. Signal transmission in neural networks is the counterpart of the
anti-periodic problem in the applied sciences. The existence and stability of anti-periodic
solutions play an important role in characterizing the behavior of nonlinear differential equa-
tions. The importance of a stability analysis becomes evident when there is a delay in these
problems. Recently, anti-periodic problems of neural networks have been addressed and dis-
cussed by many researchers. The negative feedback form of a neural network system can be
defined as the forgetting delay. Neutral-type time delays and elastic rods are always present
in automatic control operations. Dependent population dynamics and vibrating masses have
recently become very effective. Very few studies have focused on the stability and exis-
tence of an antiperiodic solution for neutral bidirectional associative memory (BAM) neural
networks with time-varying delays. Therefore, the existence and stability of the solution in
antiperiodic problems should be emphasized. The first study on the generalized single-layer
case of BAM neural networks was conducted by Koska [1]. Chen and Huang [2] investigated
the interaction between two neural networks. Models using periodic and related concepts,
as found in Ammar et al. and Ch’erif [3], are interesting. Repeating complex states has been
represented using periodicity, and the dynamics and biological mechanisms of time-delayed
periodic systems have been discussed byYang [4].Wang et al. [5] studied the one-way neutral
type. It has been observed that the existence and stability of periodic and almost periodic
solutions play a crucial role in the characterization [6–9]. Models based on global and expo-
nential stability situations [10–12]. Recently, studies investigating the complex conditions of
fractional neural networks with the development of theory and applications of fractional dif-
ferential equations have intensified. It has been observed that the fractional model has more
accurate data than the classical integer order whenmodeling nonlinear dynamic systems. The
advantages of the fractional model have been observed, especially in defining memory and
hereditary features, and fractional computation has been integrated into neural networks to
accurately reveal the dynamic properties of ANNs. In real-world processes, viscoelastic sys-
tems, quantitative finance, diffusion waves, acoustics, mechanics, and electromagnetism are
fractional order systems. Recently, studies on fractional-order neural networks have gained
importance [13–17]. Kaslik and Sivasundaram [18] also obtained interesting results in their
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studies in this field. Alofi et al. [19] studied the finite-time stability of fractional-order net-
works with distributed delay. Hopfield’s [20] integer, bilateral associative memory model
was developed by Liu and colleagues [21]. This neural network is of great importance for
applications in pattern recognition and automatic control. There are also recent studies on
these networks [22–26]. In this study, the asymptotic behavior of time-delayed BAM neural
networks was investigated. The stability of delayed BAM neural networks has many appli-
cations in many fields and has become an important topic in scientific studies. Applications
in the scientific field include image and signal processing, pattern recognition, optimization,
and automatic control. It is in the form,

x ′
i (t) � − ai xi (t) +
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+
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+
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In the first model both lags in the equation are treated as two-dimensional (τi j ,ζi j ). This
means that the delay between each pair of neurons may have different values. The delay here
can be expressed as an n×n matrix. Models in which the delay is accepted in this manner are
the models closest to reality because in real ANNs applications, the delay value between each
neuron pair is probably different. However, at the same time, this delay has made the stability
analysis of the system very difficult, because it causes problems that are very difficult to
solve mathematically. In the second model, there is again a double-dimensional delay (τi j ).
Although one of the system delays is one-dimensional, mathematical analysis of this model
is still quite difficult. It is known in the literature that the mathematical analysis of even
models with double-dimensional delay, even if they are not of the neutral type, involves
difficult and complex operations. The delays in the third model are one-dimensional (τi j ,ζi j )
delays that are added to the model considering that the delay between any neuron and all
other neurons is constant. The delay in this model is not a single number but a vector with
n elements, one number for each neuron. The delays in the final model are fixed numbers
(τ, ζ) addetensuringng that the delay between all neurons is equal. It is easier to analyze
mathematically than other models, is one of the most discussed models in the literature,
and has been examined in many studies [27–32]. The model considered in this study is a
neutral system whose delay varies with time. In the model, both delays in the equation are
double-dimensional and different from each other. Therefore, its mathematical analysis is
more difficult and more complex than other delay situations. However, it creates the closest
model type to reality. Its advantage and importance, if its stability is demonstrated, is that the
processing unit weights an input with a set of weights, transforms it non-linearly and creates
an output value. In traditional processors, a single central processing unit performs each action
sequentially, whereas ANNs consist of many simple processing units, each dealing with a
part of a larger problem. The power of neural computing comes from the dense connection
structure between processing units that share the total processing load. In these systems,
healthier learning is provided by the backpropagation method. In general, these systems,
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which belong to the delayed neural network class, have different characteristics from other
delayed systems. The fact that neutral-typeANNs have delays on both sides of the differential
equation complicates the analysis of these models, and advanced mathematical knowledge
must be used to perform stability analyses. Although this may seem like a disadvantage,
neutral-type ANNs can be used to solve more complex problems than classic model ANNs.
To the best of our knowledge, there are no published papers on fractional delay. This article
addresses this interesting, important, and unresolved problem. The main contributions of this
article are as follows:

(1) The first attempt is made to deal with stability and global asymptotic stability in time-
delayed fractional BAM neural networks.

(2) The conditions for the existence of the antiperiodic solution have been established for
the proposed model.

(3) The effect of delay on such neural networks has been revealed in depth, and stability
performance has been demonstrated.

The remainder of this article is organized as follows; Sect. 2 provides preliminary infor-
mation about the fractional derivative, including Caputo, the equilibrium of the fractional
system, and the stability analysis method for linearized lag. In Sect. 3, the main conclu-
sions are established regarding the existence and global stability of the anti-periodic solution
of delayed BAM neural networks. During the proof process, the Lyapunov function and
basic fThe signal transmission process of neural networks can generally be described as an
anti-periodic process.unction sequences based on the solution of networks were used. An
example and numerical simulations are provided to illustrate the theoretical results. In this
study, the global stability and effects of an antiperiodic solution for bidirectional fractional
order BAM neural networks with time-varying delays are investigated. Fractional calculus
has been shown to be a more effective tool than integer calculus in expressing the objective
world. Time delay is an important phenomenon in the implementation of a signal or effect
passing through a neural network. According to the area to be used and the application, the
entity uniqueness and stability analyses of the equilibrium point differ in the neural network
model. If this network is used to solve optimization problems; must have a single equilibrium
point that is globally asymptotically stable. If the neural network has more than one balance
point in an associative memory design, more information storage is possible by ensuring its
full stability. Although the results obtained cannot be directly applied to many applications,
they extend neural networks to some extent and some previously known networks. Therefore,
the results are important in terms of being complementary to previous studies. In the work
we initially describe sufficient conditions for existence and stability, with some demonstra-
tions and preliminary results. In Sect. 3, we show the stability and global stability of the
anti-periodic solution for fractional-order BAM neural networks.

2 Preliminaries

In the first section we give some basic definitions of fractional calculus. We will use these
to prove our main results. Let us first define the properties of the anti-periodic problem of a
neutral BAM neural network. Let’s give the system of equations we will discuss in this study
as follows,

Dαxi (t) � −ai xi (t) +
m∑

j�1

bi j (t) f j
(
x j (t)

)
+

m∑

j�1

ci j (t)v j
(
y j

(
t − τi j (t)

))
+ Ii (t),
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Dαy j (t) � −d j y j (t) +
n∑

i�1

ei j (t)gi (yi (t)) −
n∑

i�1

κi j (t)si
(
yi

(
t − ξi j (t)

))
+ J j (t), (2.1)

where i � 1, 2, . . . , n, j � 1, 2, . . . , m, and study the anti-periodic problems of the delayed
neural networks,xi (t), y j (t), denotes the potential of time t ; α, 0 < α < 1. The constants
ai , d j bi j , ci j , ei j , κi j are the connection weight parameters of the neural networks, gi , f j
denote the activation functions of the i th neurons and the j th neurons, respectively; Ii , J j
are the i th and the j th components of an external inputs source introduced from outside the
networks to the cell i and j , ξ > 0 and τ > 0 correspond to leakage and transmission delay
respectively.

The f initial conditions with system (2.1) are of the following form:

xi (k) � δi (k), k ∈ [−τ , 0]. i � 1, 2, . . . , n,

y j (k) � φ j (k), k ∈ [−ξ , 0]. j � 1, 2, . . . , m, (2.2)

where ζ� max{τi j , ξ i j}, δi and φ j are continuous and real valued functions.
Let xi (t) : R → R be continuous in t , xi (t) is said to be T− anti-periodic on R if,
xi (t + T ) � −xi (t) for allt ∈ R, i � 1, 2, . . . , n.

(H1)ai , d j , Ii , J j , bi j , ci j , ei j , κi j : R → R and ϒi j : [0, ∞) → R and

fi (t + T ) �ai (t), d j (t + T ) � d j (t)

bi j (t + T ) fi (x) � − bi j (t) fi (−x), ∀t , x ∈ R,

ei j (t + T )ki (y) � − ei j (t)ki (−y), ∀t , y ∈ R,

ci j (t + T )gi (x) � − ci j (t)gi (−x), ∀t , x ∈ R,

κi j (t + T )gi (x) � − κi j (t)gi (−x), ∀t , x ∈ R,

Ii (t + T ) � − Ii (t), ∀t ∈ R,

J j (t + T ) � − J j (t), ∀t ∈ R,

(H2) f j , v j , gi , si are locally Lipscitz continuos and there existence constants f j > 0,
v j > 0, gi > 0, si > 0 such that

| fi (x) − fi (y)| ≤ fi |x − y|,
|vi (x) − vi (y)| ≤ vi |x − y|,
∣∣g j (x) − g j (y)

∣∣ ≤ g j |x − y|,
∣∣s j (x) − s j (y)

∣∣ ≤ s j |x − y|,
where y ∈ R, i � 1, 2, . . . , n, j � 1, 2, . . . , m.

Definition 2.1 [15] The fractional integral of order α > 0 of a function is given.

I α
a+ y(t) � 1


(α)

t∫

a

(t − τ)α−1y(τ )dτ , t ∈ (a, b]

Definition 2.2 [14] The Riemann–Liouville fractional derivative of order α > 0 of a contin-
uous function y : (a, b] → R is defined by.

Dα
a+ y(t) � 1


(n − α)

(
d

dt

)n t∫

a

y(τ )

(t − τ)α−n+1 dτ , n � [α] + 1.
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Definition 2.3 [14] The Caputo fractional of order α > 0 of function y on (a, b] is explained
by the Riemann–Liouville derivatives described above as follows.

(cDα
a+ y

)
(t) �

(
Dα

a+

[
y(t) −

n−1∑

k�0

(y(k)(a)

k!
: (t − a)k

])
t , t ∈ (a, b].

Definition 2.4 The solution of system (2.1) for any two solutions ((t), (t)), (x(t), y(t)), of
system (2.1) with initial functions (δ(t), (t)), (δ(t), φ(t)), respectively, it holds that.

‖x(t) − x(t) < ε‖, ‖y(t) − y(t)‖ < ε,
for t ≥ 0,∥∥δ(k) − δ(k)

∥∥ < ε,
∥∥φ(k) − φ(k)

∥∥ < ε,
where

∥∥δ(k) − δ(k)
∥∥ �

n∑

i�1

sup
{
e−k

∣∣δi (k) − δi (k)
∣∣
}
,

∥∥φ(k) − φ(k)
∥∥ �

m∑

j�1

sup
{
e−k

∣∣φ j (k) − φ j (k)
∣∣
}
,

‖x(t) − x(t)‖ �
n∑

i�1

sup
{
e−t |x(t) − xi (t)|

}
,

‖y(t) − y(t)‖ �
m∑

j�1

sup
{
e−t

∣∣y j (t) − y j (t)
∣∣}.

Lemma 2.5 Let n be a positive integer satisfying the inequality n − 1 < α < n if
y(t)∈ Cn−1[a, b], then

I αDαy(t) � y(t) −
n−1∑

k�0

y(k)(a)

k!
(t − a)k ,

if 0 < α ≤ 1, then

I αDαy(t) � y(t) − y(a).

The fractional-order BAM neural networks of the delayed system (2.1) are defined as

Dαxi (t) � − ai xi (t) +
m∑

j�1

bi j (t) f j
(
x j (t)

)
+

m∑

j�1

ci j (t)v j
(
y j

(
t − τi j (t)

))
+ Ii (t),

Dαy j (t) � − d j y j (t) +
n∑

i�1

ei j (t)gi (yi (t)) −
n∑

i�1

κi j (t)si
(
yi

(
t − ξi j (t)

))
+ J j (t),

The initial conditions are

xi (k) �δi (k), k ∈ [−τ , 0] i � 1, 2, . . . , n,

y j (k) �φ j (k), k ∈ [−ξ , 0] j � 1, 2, . . . , m.

Lemma2.6 [27] Suppose that�1,�2: R → R are nondecreasing functions,�1(θ) and�2(θ)
are all positive whenθ > 0.Then F : R × Rn → R is a continuously differentiable function,
such that �1 (‖y‖) ≤ F (θ,y) ≤ �2(‖y‖), y ∈Rn . The solution y(θ) of Caputo system is
satisfied by DαF(θ , y(θ )) ≤ 0, whenever supF(t , y(t)) � F(θ , y(θ )). Then Caputo system
is uniformly stable.
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Lemma 2.7 [27] If all of the conditions of Lemma 2.6 are hold. If two constants ω, ω̇ > 0 (ω
< ω̇) are existed, so DαF(θ , y(θ )) ≤ − ω̇F(θ , y(θ ))+ ω sup F(θ + t , y(θ + t). Then Caputo
system is globally uniformly asymptotically stable.

Lemma 2.8 Let 0 < α< 1, if y(t) ∈ C1[t, ∞), then.

Dα|y(t)| ≤ sgn(y(t))Da+ y(t), where

Dα
a+ y(t) � 1


(1 − α)

t∫

a

d
dt y(t)

(t − τ)n
dτ .

3 Main Results

In this section, we shall investigate the existence and global uniformly asimptotically stable
of the anti-periodic solution of system (2.1).

Theorem 3.1 Provided that assumptions (H1)–(H2) conditions are met, system (2.1) is uni-
formly stable. If L1 > 0, C1 > 0, and L1C1 > L2C2 hold, where.

L1 � 1 − max
1≤i≤n

{ai }, C1 � 1 − max
1≤j≤m

{
d j

}
,

L2 �
n∑

i�1

max
1≤i≤n

{∣∣bi j
∣∣ f j

}
+

n∑

i�1

max
1≤i≤n

{∣∣ci j
∣∣v j

}
e−τ

C2 �
m∑

j�1

max
1≤j≤m

{∣∣ei j
∣∣g j

}
+

m∑

j�1

max
1≤j≤m

{∣∣κi j
∣∣s j

}
e−ξ .

Proof Assume that (x(t), y(t))T � (x1(t),..., xn(t), y1(t), …,ym(t))T and (x(t), y(t))T �
(x1(t),..., x n(t), y 1(t), …,y m(t))T . They are a solution of system (2.1) and satisfy con-
dition (2.2), then.

Dα(xi (t) − xi (t)) � − ai (xi (t) − xi (t)) +
m∑

j�1

bi j
(
f j

(
y j (t) − f (y j (t)

))

+
m∑

j�1

ci j
(
v j

(
y j

(
t − τi j

)) − (
v j y j

(
t − τi j

)))
,

Dα
(
y j (t) − y j (t)

) � − di
(
y j (t) − y j (t)

)
+

m∑

i�1

ei j (gi (xi (t) − gi (xi (t)))

+
m∑

i�1

κi j
(
si

(
xi

(
t − ξi j

))

−(
si xi

(
t − ξi j

)))
, i � 1, 2, . . . , n, j � 1, 2, . . . , m.

From Lemma 2.5, we can getfrom here,

xi (t) − xi (t) �δi (0) − δi (0)
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+ Iα(−ai (xi (t) − xi (t))) +
m∑

j�1

bi j
(
f j

(
y j (t) − f (y j (t)

))

+
m∑

j�1

ci j
(
v j

(
y j

(
t − τi j

)) − (
v j y j

(
t − τi j

)))
,

y j (t) − y j (t) �φi (0) − φi (0)

+ Iα
(−di

(
y j (t) − y j (t)

))
+

m∑

i�1

ei j (gi (xi (t) − gi (xi (t)))

+
m∑

i�1

κi j
(
si

(
xi

(
t − ξi j

)) − (
si xi

(
t − ξi j

)))

e−t |x(t) − xi (t)| ≤e−k
∣∣δi (0) − δi (0)

∣∣ +
1


(α)
e−t

t∫

0

(t − k)α−1

(−ai (xi (t) − xi (t))) +
m∑

j�1

bi j
(
f j

(
y j (t) − f (y j (t)

))

+
m∑

j�1

ci j
(
v j

(
y j

(
t − τi j

)) − (
v j y j

(
t − τi j

)))
,

y j (t) − y j (t) �e−t
∣∣φ j (0) − φ j (0)

∣∣ +
1


(α)
e−t

t∫

a

(t − k)α−1

(−di
(
y j (t) − y j (t)

))
+

m∑

i�1

ei j (gi (xi (t) − gi (xi (t)))

+
m∑

i�1

κi j
(
si

(
xi

(
t − ξi j

)) − (
si xi

(
t − ξi j

)))
(3.1)

From the assumption (H2) and the inequality (3.1) it follows,

e−t |x̄(t) − xi (t)| ≤ e−k
∣∣δ̄i (0) − δi (0)

∣∣ + ai
1


 (α)

t∫
0
(t − k) α−1e−(t−k)e−k + |x̄i (k) − xi (k)|dk

m∑

j�1

∣∣bi j
∣∣ 1


 (α)

t∫
0
(t − k) α−1e−(t−k)e−k

∣∣ f j (ȳ j (k) − f j
(
y j (k)

)∣∣

+
m∑

j�1

∣∣ci j
∣∣ 1


 (α)

t∫
0
(t − k) α−1e−(t−k+τ)e−(k−τ)

∣∣v j (ȳ j
(
k − τi j

) − v j (y j
(
k − τi j

)∣∣dk

≤ e−k
∣∣δ̄i (0) − δi (0)

∣∣ + ai
1


 (α)

t∫
0
(t − k) α−1e−(t−k)e−k · |x̄i (k) − xi (k)|dk

+
m∑

j�1

∣∣bi j
∣∣ f j

1


 (α)

t∫
0
(t − k) α−1e−(t−k)e−k

∣∣ (ȳ j (k) − (
y j (k)

)∣∣ dk

+
m∑

j�1

∣∣ci j
∣∣v j

1


 (α)

t∫
0
(t − k) α−1e−(t−k+τ)e−(k−τ)

∣∣ (ȳ j
(
k − τi j

) − (y j
(
k − τi j

)∣∣ dk
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�e−k
∣∣δi (0) − δi (0)

∣∣ + ai
1


(α)

t∫

0

(t − k)α−1e−(t−k)e−k · ∣∣δi (k) − δi (k)
∣∣dk

+ ai
1


(α)

t∫

0

(t − k)α−1e−(t−k)e−k |xi (k) − xi (k)|dk

+
m∑

j�1

∣∣bi j
∣∣ f j

1


(α)

t∫

0

(t − k)α−1e−(t−k)e−k
∣∣(y j (k) − (

y j (k)
)∣∣dk

+
m∑

j�1

∣∣ci j
∣∣v j

1


(α)

t∫

0

(t − k)α−1e−(t−k+τ)e−(k−τ)
∣∣(φ j

(
k − τi j

) − (φ j
(
k − τi j

)∣∣dk

�e−k
∣∣δ̄i (0) − δi (0)

∣∣ + ai
1


 (α)

0∫
−t

(t − λ ) α−1e−(t−λ)e−λ
∣∣δ̄i (λ) − δi (λ)

∣∣ dλ

+ ai
1


 (α)

t∫
0
(t − λ )α−1e−(t−λ)e−λ |x̄i (λ) − xi (λ)|dλ

+
m∑

j�1

∣∣bi j
∣∣ f j

1


 (α)

0∫
−τ

(
t − ζ − τi j

)
α−1e−(t−ζ )e−ζ

∣∣ φ̄ j (ζ ) − φ j (ζ )
∣∣dζ

+
m∑

j�1

∣∣ci j
∣∣v j

1


 (α)

t−ζ

∫
0

(
t − ζ − τi j

)α−1
e−(t−ζ )e−ζ

∣∣ ȳ j (ζ ) − y j (ζ )
∣∣ dζ

≤ sup
{
e−t

∣∣δ̄i (t) − δi (t)
∣∣} + ai sup

{
e−t

∣∣δ̄i (t) − δi (t)
∣∣}

1


 (α)

t∫
0
ψ α−1e−ψdψ + ai sup e−t |x̄i (t) − xi (t)| 1


 (α)

t∫
0
ψ α−1e−ψdψ

+ max
1≤ j≤m

∣∣bi j
∣∣ f j

m∑

j�1

sup
{
e−t

∣∣ȳ j (t) − y j (t)
∣∣} 1


 (α)

t∫
0
sα−1e−sds

+ max
1≤ j≤m

∣∣ci j
∣∣v j

m∑

j�1

sup
{
e−t

∣∣φ̄ j (t) − φ j (t)
∣∣} 1


 (α)

t∫
0
p α−1e−pdp

+ max
1≤ j≤m

∣∣ci j
∣∣v j

m∑

j�1

sup
{
e−t

∣∣ȳ j (t) − y j (t)
∣∣} 1


 (α)

t∫
0
p α−1e−pdp

≤ sup
{
e−t

∣∣δ̄i (t) − δi (t)
∣∣} + ai sup

{
e−t

∣∣δ̄i (t) − δi (t)
∣∣} + ai sup e

−t |x̄(t) − xi (t)|

+ max
1≤ j≤m

∣∣bi j
∣∣ f j

m∑

j�1

sup
{
e−t

∣∣ȳ j (t) − y j (t)
∣∣}

+ max
1≤ j≤m

∣∣ci j
∣∣v j

m∑

j�1

sup
{
e−t

∣∣φ̄ j (t) − φ j (t)
∣∣}e−σ

+ max
1≤ j≤m

∣∣ci j
∣∣v j

m∑

j�1

sup
{
e−t

∣∣ȳ j (t) − y j (t)
∣∣}

≤ sup
{
e−t

∣∣δ̄i (t) − δi (t)
∣∣} + ai e

−t sup
{∣∣δ̄i (t) − δi (t)

∣∣}
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+ ai sup e−t |x̄(t) − xi (t)| + ai + max
1≤ j≤m

∣∣bi j
∣∣ f j

{∣∣ȳ j (t) − y j (t)
∣∣}

+ max
1≤ j≤m

∣∣ci j
∣∣v j

{
e−t

∣∣φ̄ j (t) − φ j (t)
∣∣} + max

1≤ j≤m

∣∣ci j
∣∣v j

{
e−t

∣∣ȳ j (t) − y j (t)
∣∣},

‖x(t) − x(t)‖ �
n∑

i�1

sup
{
e−t |x(t) − xi (t)|

} ≤ sup
{
e−t |xi (t) − xi (t)|

}

≤ ∥∥δi (t) − δ(t)
∥∥ + max ai + max ai ‖x(t) − x(t)‖

+
n∑

i�1

max
1≤j≤m

∣∣bi j
∣∣ f j‖y(t) − y(t)‖ +

n∑

i�1

max
1≤j≤m

∣∣ci j
∣∣v j

∥∥φ(t) − φ(t)
∥∥

+
n∑

i�1

max
1≤j≤m

∣∣ci j
∣∣v j‖y(t) − y(t)‖.

In addition to,

‖x̄(t) − x(t)‖ ≤
∑n

i�1 max
1≤j≤m

∣∣bi j
∣∣ f j +

∑n
i�1 max

1≤j≤m

∣∣ci j
∣∣v j

1 − max ai

‖ȳ(t) − y(t)‖ +
1 + maxai
1 − max ai

∥∥δ̄i (t) − δ(t)
∥∥ +

∑n
i�1 max

1≤j≤m

∣∣ci j
∣∣v j

1 − max ai

∥∥φ̄(t) − φ(t)
∥∥

� S2
S1

‖ȳ(t) − y(t)‖ +
S3
S1

∥∥δ̄(t) − δ(t)
∥∥ +

S4
S1

∥∥φ̄(t) − φ(t)
∥∥

‖x(t) − x(t)‖ ≤ ε1. (3.2)

By performing the operations similar to the above, the following result is obtained

‖y(t) − y(t)‖ ≤ ε2. (3.3)

From (3.2) and (3.3), we say that, for any ε � max {ε1, ε2} > 0, such that.
‖x (t) – x (t)‖ < ε, ‖y (t)− y(t)‖ < ε, when ‖δ (t)− δ (t)‖ < δ, ‖φ (t)− φ(t)‖ < δ, this result

indicates that system (2.1) has a solution is uniformly stable. So the proof of the theorem is
seen.

Theorem 3.2 If all conditions in Lemma 2 and Theorem 3.1 are satisfied, such that.

min
1≤i≤n

⎛

⎝di −
m∑

j�1

∣∣bi j
∣∣Ii

⎞

⎠ > max
1≤j≤m

(
n∑

i�1

∣∣bi j
∣∣Ii

)
> 0 (3.4)

then system (2.1) can be achieved uniformly asimptotically stable.

Proof. Let’s take it as,

� �
n∑

i�1

|xi (t)| +
m∑

j�1

∣∣y j (t)
∣∣.
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To simplify our proof, using translation Xi (t) � xi (t)−xi ∗ and � j (t) � y j (t)−y j ∗ trans-
forming system

DαXi (t) � −aiXi (t) +
m∑

j�1

bi j (t) f j (Xi (t)) +
m∑

j�1

ci j (t)v j
(
� j

(
t − τi j (t)

))
+ Ii (t),

Dα� j (t) � −d j� j (t) +
n∑

i�1

ei j (t)gi
(
� j (t)

) −
n∑

i�1

κi j (t)si
(
�i

(
t − ξi j (t)

))
+ J j (t),

(3.5)

Lemma (2.7) we have

D α �(t) ≤
n∑

i�1

sgn( Xi (t)) D
α Xi (t) +

m∑

j�1

sgn( � j (t)) D
α � j (t).

D α �(t) ≤
n∑

i�1

(−ai |Xi (t)| +
n∑

i�1

∣∣bi j
∣∣ ∣∣ f j (Xi (t))

∣∣ +
m∑

j�1

∣∣ci j
∣∣∣∣v j

(
� j

(
t − τi j (t)

))∣∣

(−d j
)∣∣� j (t)

∣∣ +
m∑

j�1

∣∣ei j
∣∣∣∣gi

(
� j (t)

)∣∣ +
n∑

i�1

∣∣κi j
∣∣∣∣si

(
� j

(
t − τi j (t)

))∣∣

�
n∑

i�1

|Xi (t)|(−ai ) +
m∑

j�1

∣∣� j (t)
∣∣(−d j

)
+

m∑

j�1

n∑

i�1

∣∣bi j
∣∣∣∣ f j (Xi (t))

∣∣

+
m∑

j�1

n∑

j�1

∣∣ci j
∣∣∣∣v j

(
� j

(
t − τi j (t)

))∣∣ +
m∑

j�1

n∑

j�1

∣∣ei j
∣∣∣∣gi

(
� j (t)

)∣∣

+
m∑

j�1

n∑

i�1

∣∣κi j
∣∣∣∣si

(
� j

(
t − τi j (t)

))∣∣

Under Assumption (H2) we get

≤
n∑

i�1

|Xi (t)|(−ai )+
m∑

j�1

∣∣� j (t)
∣∣(−d j

)
+

m∑

j�1

n∑

i�1

∣∣bi j
∣∣|Ii ||(Xi (t))|

+
m∑

j�1

n∑

�1

∣∣ci j
∣∣∣∣(� j

(
t − τi j (t)

))∣∣ +
m∑

j�1

n∑

�1

∣∣∣∣ei j
∣∣∣∣J j

∣∣(� j (t)
)∣∣

+
m∑

j�1

n∑

i�1

∣∣κi j
∣∣∣∣J j

(
� j

(
t − τi j (t)

))∣∣

≤
n∑

i�1

⎛

⎝−ai+
m∑

j�1

∣∣bi j
∣∣|Ii |

⎞

⎠|Xi (t)| +
m∑

j�1

(
−d j +

n∑

i�1

∣∣ei j
∣∣∣∣J j

∣∣
)

∣∣� j (t)
∣∣

+ Amax

m∑

j�1

n∑

j�1

(∣∣ci j
∣∣ +

∣∣κi j
∣∣∣∣J j

∣∣)∣∣(� j
(
t − τi j (t)

))∣∣

≤ − B
n∑

i�1

|Xi (t)| − Ḃ
m∑

j�1

∣∣� j (t)
∣∣ + Amax

m∑

j�1

∣∣(� j
(
t − τi j (t)

))∣∣

123



129 Page 12 of 16 M. Tuz

≤ − �(t) + ω�
(
t − τi j

)

≤ − �(t) + ω sup
−τ≤θ≤0

�(t + θ),

where B= min
1≤i≤n

(ai − ∑m
j�1

∣∣bi j
∣∣|Ii |),Ḃ � min

1≤j≤m
(d j − ∑n

i�1

∣∣ei j
∣∣∣∣J j

∣∣),

Amax= max
1≤i≤n, , 1≤j≤m

(∣∣ci j
∣∣ +

∣∣κi j
∣∣∣∣J j

∣∣) and.

ω̇ � min{B, Ḃ} > 0, ω � max A > 0.
With the inequality (3.4), we get that

ω̇ > ω > 0, (3.6)

and

Dα�(t) ≤ ω̇�(t) + ω�(t + θ). (3.7)

According to Lemma (2.6), (3.6) and (3.7) the solution for system (3.5) is globally uni-
formly asymptotically stable. Therefore, the equilibrium (x∗, y∗) for the system (2.1) is
globally uniformly asymptotically stable.

Finally, under assumption (H2) and the conditions of Theorem (3.1), the system (2.1)
appears to have unique equilibrium point that is equally stable if whereas G1< min1≤ j≤m{
b j

}
and G2< min1≤i≤n{ai } hald where

G1 �
n∑

i�1

max
1≤j≤m

{∣∣bi j
∣∣ f j

}
+

n∑

i�1

max
1≤j≤m

{∣∣ci j
∣∣v j

}

G2 �
m∑

j�1

max
1≤i≤n

{∣∣ei j
∣∣g j

}
+

m∑

j�1

max
1≤i≤n

{∣∣κi j
∣∣s j

}
.

Thus, we obtain that the model given by (2.1) is globally asymptotically stable and has a
unique equilibrium point.

4 An Example

Consider the following system,

Dα
t x1(t) � − a1x1(t) + b11 f (x1(t)) + b12 f (x1(t)) + c11v1(y1(t − τ11)) + c12v2(y1(t − τ12)) + I1

Dα
t x2(t) � − a2x2(t) + b21 f (x2(t)) + b22 f (x2(t)) + c21v1(y2(t − τ21)) + c22v2(y2(t − τ22)) + I2

Dα
t y1(t) � − d1y1(t) + e11g(y1(t)) + e12g(y1(t)) + κ11s1(y1(t − ξ11)) + κ12s1(y1(t − ξ12)) + J1

Dα
t y2(t) � − d2y2(t) + e21g(y2(t)) + e22g(y2(t)) + κ21s2(y2(t − ξ21)) + κ22s2(y2(t − ξ22)) + J2

where

fi j (x) �gi j (x) � ki j (x) � |x + 1| − |x − 1|
2

, i , j � 1, 2.

a1x1(t) �2 + sin(x1(t)), a2x2(t) � 2 + cos(x2(t)), d1y1(t) � 1 + cos(y1(t)),

d2y2(t) �1 + sin(y2(t)), c11 � c12 � 1, c21 � c22 � 1, κ11 � κ12 � 1, κ21 � κ22 � 2,

b11 �e11 � 1

4
, b12 � e21 � 1

8
, b21 � e12 � 1

2
, b22 � e22 � 1

4
,
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Fig. 1 Solutions (x1,y1) of system in Eq. (2.1)

Fig. 2 Solutions (x2,y2) of system in Eq. (2.1)

s1y1(t) �1

4
, s2y2(t) � 1

2
.

τ � 0, 2ξ � 0, 3α � 0, 50 and

I1 �5

8
cos t +

11

8
sin t, I2 � 1

4
cos t +

2

5
sin t.

J1 �3

4
cos t +

7

4
sin t, J2 � 1

2
cos t +

3

5
sin t.

We have Ai j � Ci j � Bi j � Li j � 1. It follows that system (2.1) satisfies all the
conditions in Theorem (3.1). Hence system (2.1) exists a T -anti-periodic solution. Thus, the
fractional order of the anti-periodic solution globally exponentially stable. The graphs of the
results can be seen in the following figures: Fig. 1, shows the (x1,y1) graph for the system in
Eq. (2.1), Fig. 2 shows the (x2,y2) graph for the system in Eq. (2.1).

5 Conclusion

This study investigated the existence, global stability, and effects of an antiperiodic solution
for bidirectional fractional order BAM neural networks with time-varying delays. The study
initially defined sufficient conditions for existence and stability, along with some demonstra-
tions and preliminary results. The stability and overall stability of the anti-periodic solution
for fractional-order BAM neural networks are demonstrated using the Lyapunov functional
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method. Due to the finite speed of neurons, chaos, oscillation, and instability may occur
in the signal transmission between neurons. Time-varying delays in network activation are
possible. This situation, which occurs mostly when the system is stable, manifests itself in
some dynamics with behaviors that affect the stability of the system. It is very important to
determine the stability of ANNs designed for such applications. In this type of ANNs, a single
global asymptotic stable equilibrium of the ANNs is created for each input vector externally
given to the system. Time delay is decisive in the implementation of a signal or effect pass-
ing through neural networks. The signal transmission process of neural networks generally
corresponds to an anti-periodic problem. According to the field and application to be used
in the neural network model, the existence uniqueness and stability analysis of the balance
point should be particularly examined. If it is used to solve network optimization problems,
it must have a single equilibrium point that is globally asymptotically stable. In relational
memory design, if the network has more than one balance point, it may be possible to ensure
full stability and store more information. Otherwise, determining too many balance points
to solve such a problem will cause the system to produce incorrect results. By showing that
the network is globally asymptotic stable in the model we are considering, if an associative
memory design is to be made, we provide the opportunity to store more information for such
a pattern. In addition, although the use of the symmetric connection matrix when proving
full-order equations ensures the global stability of the system, it cannot be commented on
whether the balance point is single or multiple. Tomake this interpretation, the characteristics
of the activation functions and the values of the connection coefficients between neurons are
important. The fact that the model is fractional and delayed leads to significant changes in
its dynamic behavior. Because of this delayed model, neurons represent a circuit formed by
an operational amplifier and its connected resistance and capacitance elements, eliminating
ambiguity. Our study shows that fractional calculus is a more effective tool for expressing
the objective world than integer calculus because it is capable of expressing the objective
world with its memory and inheritance aspects for various types of dynamical processes.
The model and method used, how to control the stability zone, and how to set the time?
It answers the questions and has a significant impact on the design of neural networks. In
addition, the delay of the system under negative feedback conditions has a significant impact
on the performance of the system. Although the results obtained cannot be directly applied
to many applications, they extend some previously known neural networks to some extent.
Therefore, these results are important because they complement previous studies. Dynamic
neural network models can be successfully applied in applications such as the classification
of examples, optimization, and associative memory.

Examining the global asymptotic stability analysis of the equation can have important
implications in different fields, such as neural networks and synchronization in secure com-
munications. It serves as a reference for new studies because it elucidates networks with
real virtual-type activation functions and distributed delays using an optical circuit for the
proposed system.
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