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Abstract
Accurate prediction of traffic flow plays an important role in maintaining traffic order and
traffic safety, which is a key task in the application of intelligent transportation systems (ITS).
However, the urban road network has complex dynamic spatial correlation and nonlinear
temporal correlation, and achieving accurate traffic flow prediction is a highly challenging
task. Traditional methods use sensors deployed on roads to construct the spatial structure
of the road network and capture spatial information by graph convolution. However, they
ignore that the spatial correlation between nodes is dynamically changing, and using a fixed
adjacency matrix cannot reflect the real road spatial structure. To overcome these limitations,
this paper proposes a new spatial-temporal deep learning model: gated fusion adaptive graph
neural network (GFAGNN). GFAGNN first extracts long-term dependencies on raw data
through stacking expansion causal convolution, Then the spatial features of the dynamics
are learned by adaptive graph attention network and adaptive graph convolutional network
respectively, Finally the fused information is passed through a lightweight channel attention
to extract temporal features. The experimental results on two public data sets show that
our model can effectively capture the spatiotemporal correlation in traffic flow prediction.
Compared with GWNET-conv model on METR-LA dataset, the three indexes in the 60-
minute task prediction improved by 2.27%,2.06% and 2.13%, respectively.
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1 Introduction

As the number of vehicles on urban roads increases, traffic management and traffic safety
[1] become more and more important. The proposed intelligent transportation system is
beneficial to solve this series of problems, and traffic flow prediction [2, 3] is one of its tasks.
Traffic flow prediction can predict future traffic conditions in urban road networks based
on historical traffic information [4], and timely dispatch vehicles based on the predicted
information to avoid traffic jams and improve the operational efficiency of traffic networks.

In recent years, deep learning models have been widely used in traffic flow prediction.
The initial approaches modeled road networks as uniformly sized grid structures and then
captured spatial correlations using convolutional neural networks (CNN) [5], however, they
ignored the irregularity of roads and inevitably lost the topological information in the traffic
network. To solve this problem, it has been proposed to construct adjacency matrices using
sensors in the road network and assigned weights to the matrices by the distance between
sensors, use the constructed adjacency matrices to model the spatial topology of the road
network, and finally capture the non-Euclidean spatial correlation of traffic flows by graph
neural networks (GNN) [6]. However, these models assumed that the spatial dependence
between roads are fixed and do not consider the dynamically changing traffic states, so some
models used multi-head graph attention (GAT) [7] to model the spatial dependence. Graph
convolution and graph attention are highly dependent on the adjacencymatrix, but sometimes
the fixed adjacency matrix cannot contain the true spatial dependencies, and distant nodes
may reflect similar traffic flows. For temporal dependence,manymodels used recurrent neural
networks (RNN) [8] for temporal modeling, but its limitations were also very obvious, and
its chain structure designed strictly follows temporal development, making it easy to lose
long-term dependence information. The temporal attention-based model [9] provides direct
access to long-term dependent information, it has the problems of slow training and easy to
ignores the spatial correlation of data.

Although the above methods can solve some of the problems in traffic flow prediction,
they fail to fully consider the dynamic spatial and temporal correlations [10]. As Fig. 1a
shows the distribution of sensors in the traffic network. Over time, we can get the change
of traffic flow correlation between sensors 1 to 3. As shown in Fig. 1b, sensor 1 exhibits
different spatial-temporal correlations with other sensors at different times. Sensors 2 and
3 have a high dependency at the initial moment, but as time increases, their dependency
becomes weaker and weaker, and instead the dependency with sensor 1, which is farther
away increases. Therefore capturing these complex spatial-temporal dependencies is often
the key to reducing prediction errors if only the adjacency matrix cannot represent their
spatial correlation.

The majority of urban data is spatio-temporal, representing that it pertains not only to
spatial locations but also changes over time. Firstly, we consider the geographical location
of nodes, taking road intersections as nodes, road connection lines as edges, and the whole
road network as spatial graph structure. Because of the periodicity of traffic information,
the historical traffic flow has a time correlation with the traffic flow in the next time period.
Taking these spatio-temporal features into account will lead to better learning of prediction
tasks.
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Fig. 1 Spatial-temporal correlation is dominated by the road network structure. a Traffic sensors distributed
in the road network. b Dynamic spatial-temporal dependence form time t − T to time t + T ′

Based on the above spatial-temporal dependencies,we propose a newdeep learningmodel,
the gated fusion adaptive graph neural network (GFAGNN) for traffic flow prediction, which
can adaptively capture the dynamic spatial-temporal dependence information of road net-
works and fuse the long-term and short-term spatial-temporal hidden information extracted
by adaptive graph convolution and adaptive graph attention through gated units.We have eval-
uated GFAGNN on two public datasets (METR-LA, PEMS-BAY) and achieved satisfactory
results. In summary, the main contributions of our work are as follows:

• We design a temporal framework based on gated temporal convolution and channel
attention mechanism. The global dependencies are first extracted by gated temporal
convolution, which consists of two parallel dilated causal convolutions, and multiple
temporal convolution layers can be superimposed to process the information of each
sensory field in different layers. Finally the features obtained are fused and adjusted by
the channel attention mechanism.

• We design a GFA block, consisting of adaptive graph attention and adaptive graph convo-
lution. which uses self-learning node embedding to learn potential spatial relationships
instead of relying only on the adjacency matrix to model spatial dependencies. Also, a
gating fusion mechanism is proposed to control the output.

• This paper compares the prediction results of the proposedmodel with the results of some
models proposed in recent years, and the experimental results show that the performance
of our proposed model is improved.

The remainder of this paper is as follows, Sect. 2 presents work related to traffic flow
forecasting, Sect. 3 presents preparatory work and problem definition, Sect. 4 we detail the
gated fusion adaptive graph convolutionmodel framework,we present extensive performance
comparison experiments and visualization of forecast data in Sects. 5 and 6, and perform
ablation experiments to demonstrate the usefulness of each module, and finally, we conclude
our work in Sect. 7.
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2 RelatedWork

2.1 Traffic Flow Forecasting

Traffic flow forecasting has been a popular direction in deep learning, and various emerging
models have been proposed to simulate traffic characteristics in recent decades with many
results. The historical average (HA) and autoregressive integrated moving average model
(ARIMA) [11] are representative statistical models for traffic forecasting. Kumar et al. [12]
proposed a seasonal ARIMA (SARIMA) based traffic flow forecasting model that plots the
autocorrelation function (ACF) and partial autocorrelation function after the model performs
the necessary differentiation to stabilize the input time series. Thesemethods consider tempo-
ral correlation and can only deal with simple linear relationships, lacking nonlinear modeling
capabilities, leading to difficulties in achieving better results. To solve the above problems, a
large number of machine learning methods have been applied to traffic flow prediction.Wang
et al. [13] used artificial neural networks and Kalman filtering to predict short-term passenger
flow in subway stations, and experiments showed that the Kalman filtering approach could
effectively reduce errors. Sun et al. [14] proposed a hybrid model based on wavelet trans-
form and support vector machine(SVM), which combined the advantages of both models to
fit passenger flow information and achieved better results. Guo et al. [15] developed a feature
extraction model and used the K means method to classify stations into different types, and
then a hybrid model based on kernel ridge regression and Gaussian process regression was
used to predict short-term passenger flow in urban transportation and validated on automatic
ticketing system data. However, the above traditional machine learning methods rely heavily
on manual data processing, rely only on historical temporal information, ignore dynamic
spatial relationships [10], and are not suitable for application in complex road network struc-
tures.

2.2 Spatial-Temporal Prediction Based on Deep Learning

With the success of deep learning in directions such as natural language processing and image
processing, more and more deep learning models are being applied in the direction of traffic
flow prediction in road traffic networks. Through a large number of models and experiments,
it is proved that using deep learning to capture the temporal and spatial information hidden
in the road traffic network is both stable and effective.

Correlation time series prediction: Historical traffic flows play an important role in pre-
dicting future traffic flow efforts, and most such studies rely on recurrent neural networks
(RNN). To solve the problems of the inability of long-term memory and gradient disappear-
ance in backpropagation in RNN, Ma et al. [16] proposed to use long short-term memory
(LSTM) neural networks to capture nonlinear dynamic temporal correlations. The gate recur-
rent unit (GRU) [17] and LSTM function similarly, but the GRU has fewer parameters and
converges faster. While previous sequence modeling was mainly related to recurrent neural
network architectures, Yu et al. [18] argue that convolutional networks achieve better results
because they allow parallel computation of outputs, and their inclusion of temporal convo-
lutional networks (TCN) in the model improves experimental efficiency, enabling very long
sequences to be processed in less time. However, these studies did not explicitly consider the
interdependencies between different time series, and recently transformers [19] have been
used for correlated time series prediction, a type of work that usually requires training a large
number of parameters and cannot be effective with insufficient training samples.
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Graph neural networks: Since urban road networks present irregular network structures,
traditional convolutional neural networks cannot accurately capture the spatial-temporal cor-
relation of individual nodes. Therefore, a hybrid model based on graph neural networks
(GNN) and recurrent neural networks (RNN) are proposed in the field of traffic flow pre-
diction. GNN can directly handle more general graphs, including recurrent, directed and
undirected graphs, and play an important role in dealing with spatial structure dependence.
Han et al. [20] proposed a spatial-temporal graph convolutional neural network, instead of
using a grid to represent regions, they converted the urban road network into an adjacency
matrix and used graph convolution networks (GCN) to capture spatial-temporal correla-
tions. T-GCN [21] combines GCN and GRU to aggregate spatial-temporal information,
and AGCRN [22] is stacked multiple times and then used as an encoder to capture the
spatial-temporal dependencies of road nodes. The above methods extract temporal and spa-
tial information step by step without achieving simultaneous capture of spatial-temporal
correlations, so STGCN and STSGCN [23, 24]were proposed for simultaneous capture
of spatial-temporal correlations. To further propose a more suitable graph convolution for
directed graphs, Li et al. [25] proposed the diffusion recurrent neural network (DCRNN),
which uses bidirectional random wandering on the graph to capture spatial correlations,
But these adjacency matrices are static and depend on a predefined graph structure. Graph
WaveNet [26] also employs diffusion convolution in spatial modeling, but it differs from
DCRNN in that it considers connected and unconnected nodes in the modeling process and
uses the adaptive adjacency matrix to reconcile the information between nodes. The attention
mechanism is used in various fields due to its efficiency and flexibility, it can automatically
focus on important information based on historical input data, and GAT is used for traffic
flow prediction to build spatial correlation models. To achieve better results, Van et al. [27]
proposed a talking headmechanism by adding linear projections to themulti-headed attention
mechanism. GMAN [28] is designed to learn attention scores by considering traffic features
and node embeddings from the graph structure for spatial attention mechanism. However,
because these models use too many attention mechanisms, they require high computational
costs.

In recent years, the spatial-temporal graph neural network focuses on spatial learning
methods, temporal learning methods, spatial-temporal fusion methods and other advanced
technologies that can be combined. [29] Most studies are aimed at proposing newmodels for
these problems.Huang et al. [30]Liu et al. [31] proposed a newcomponent of spatial-temporal
adaptive embedding to solve the problem of diminishing performance returns encountered
in spatio-temporal traffic modes. Li et al. [32] believe that the dynamic correlation between
locations in the network is crucial to the prediction task, and in addition, the fair comparison
between different methods is lacking, so he designed a generative method to model the fine
topology of the dynamic graph at each time step. In order to make the effectiveness of the
model not overly dependent on the quality of the structure of the spatial topological graph.
Lin et al. [33] captured the fine spatial-temporal topology of the traffic data by embedding
a time-varying Bayesian network, and then generated a step-by-step dynamic causal graph
through deep learning methods. Shao et al. [34] believed that previous work treated traffic
information roughly as the result of diffusion while ignoring the inherent signal, which would
have a negative impact. To address this problem, they proposed an decoupage spatio-temporal
framework, which separated the inherent traffic information of diffusion in a data-drivenway,
and processed the separated signals separately to capture the spatial-temporal correlation.
Yang et al. [35] proposed the STFAGN model to obtain incomplete spatiotemporal connec-
tion information. They first extracted spatial information by combining fusion convolution
layer with the adaptive dependency matrix, then introduced gated CNN to extract time infor-
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mation, and finally replaced residual connection with ReZero connection to achieve faster
convergence, however, the network model cannot capture the dynamic spatial relationships
hidden in the traffic dataset.

The recent work described above successfully addressed certain issues, but also revealed
some limitations. These models rely on the preparation work and predetermined adjacency
matrix during the construction of spatial topology diagrams, making it challenging to accu-
rately represent complex spatial information in road networks solely through static spatial
matrix data. To overcome this limitation, we propose a network structure that integrates adap-
tive graph convolutionwith adaptive graph attention. By incorporating adaptive nodes into the
graph structure, we can effectively capture hidden spatial structures from historical data. Fur-
thermore, to enhance the model’s long-term prediction capability, we introduce an extended
causal convolution and channel attention mechanism to capture temporal correlations.

3 Preliminary

Traffic flow forecasting is the prediction of traffic information for future periods based on
historical traffic information on the road. In this section, we first give some key definitions
and then formally formulate the forecasting problem.

Definition 1 (traffic network graphG). As shown in Fig. 1a, in a realistic traffic road network,
the closer the road nodes are, the more similar the traffic flow is, so we define a weighted
graph G = (V , E, A). where is a set of N road nodes (representing the sensors in the
traffic road network) and E is a set of edges connecting these road nodes (representing
the connection weights between nodes). The adjacency matrix A ∈ RN×N represents the
connection relationship between road nodes, where N represents the number of road nodes,
Ai j represents the edge weights of node i and node j . For example, for any two nodes vi and
v j , the values of Ai j and A ji set 1 if the two nodes are connected, and the weight of the two
elements is set to 0 if they are not connected.

Definition 2 (Traffic Flow Records X ). We define Xt
i ∈ RC as the traffic flow at the node i at

moment t , where C is the number of traffic conditions of interes(traffic speed). In this work,
we aim to predict only one parameter, the speed of traffic for all vehicles(hence C = 1).
Xt = [

Xt
1, X

t
2, · · · , Xt

N

] ∈ RN×C indicates all node information, The same X ∈ RN×C×T

represents the traffic information of all nodes at any moment.

Definition 3 (Problem Definition). The traffic flow forecasting task learns a function f (·),
which capable of mapping historical T period observations to future T ′ moment traffic
information using a traffic network topology graph G and historical traffic information X . In
this work, we predict information about 15, 30, and 60min into the future. The computational
procedure is as follows:

[Xt−T+1, · · · , Xt ;G] f (·)−→
[
Xt+1, · · · , Xt+T ′] ∈ RN×C×T ′

, (1)

where X (t−T+1:t) represents the historical traffic information and X (t+1:t+T ′) represents the
predicted traffic values at future moments.
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Fig. 2 The general framework of GFAGNN, which consists of an input layer, L layers GFA blocks, and an
output layer

4 Framework of the GFAGNN

The general framework of the proposed GFAGNN is shown in Fig. 2, GFAGNN consists of
three main components: GTCN, Adaptive GCN, and Adaptive GAT. Specifically, we stacked
L layers GFA blocks, first extracted global temporal dependencies using Gate TCN, and then
used Adaptive GCN and Adaptive GAT to model the spatial correlation of the traffic road
network, and self-adaptive fusion of dynamic spatial–temporal correlation information by
the Gate TCN. In addition, residual information is added to avoid network degradation, after
lightweight channel attention to further improve the model performance. Finally, two fully
connected layers is used to predict the final results.

4.1 Gated Temporal Convolution

To solve the problems such as gradient explosion and the inability of parallel computation in
RNN models, we use gated temporal convolution (GTCN) to capture the dynamic temporal
information in the road network. As shown in Fig. 3a, GTCN contains two convolutional
operations, and each selectively retains important information through different activation
functions. The convolution operation has the advantages of simple structure and stable gradi-
ent, while the dilation causal convolution can also obtain an exponential field of view as the
dilation depth increases [26]. To ensure that only historical information is used to predict the
traffic flow at the current moment, the temporal causal order can be maintained by padding
the input sequence with zeros. Figure3b shows an extended causal convolution with expan-
sion factors of 1, 2, 4. Where the filter is applied to a long sequence by skipping the input
value at a certain step size, we set each layer to expand the jump step size exponentially by
2, so we can express the expansion factor d for layer l th as 2(l−1), which can easily capture
the dependencies of long time series as the depth increases. The gated temporal convolution
equation is as follows:

X (l) = tanh
(
W1 ∗ X (l−1) + c1

)
� σ

(
W2 ∗ X (l−1) + c2

)
, (2)

123



9 Page 8 of 23 L. Xiong et al.

Fig. 3 GTCN and some details: a The framework of Gate temporal convolution. b Dilated causal convolution
with kernel size 2

where X (l−1) ∈ RN×Cl−1×Tl−1 represents the output of (l − 1)th as the input of lth ,
X (l) ∈ RN×Cl×T1 represents output of lth , W1,W2, c1, c2 are learnable parameters, which
are assigned by random initialization and constantly updated during model training, tanh
and σ are activation functions, which can determine the output of important information in
the next layer, ∗ represents the convolution operation, and � is the elements-wise product.

4.2 Adaptive Graph Convolution

For irregular topologies, graph convolution networks can act directly on the graph instead
of convolutional neural networks to extract the spatial features of the topological graph. The
graph convolution module aims to fuse a node’s information with its neighbors’ information
to handle spatial dependencies in a graph There are mainly spectral methods and spatial
methods to implement graph convolution [6]. The spectral domain graph convolution has
problems such as large computational effort, the graph structure cannot be changed, and it
is not suitable for extracting spatial features on directed graphs. Therefore, in this paper,
we utilize a diffusion graph convolution base on the spatial domain. First, we simulate the
diffusion process of the graphical signal with K finite steps and use the diffusion convolution
[25] to capture the spatial dependence. From a space-based perspective, it is used to smooth
the signals of nodes by aggregating and transforming their neighborhood information. In
addition, we design an adaptive matrix to model the hidden spatial information in the road
network structure. Combining predefined spatial graph information and adaptive hidden
graph structure, the diffusion adaptive graph convolution is written as:

X (l)
agcn =

K−1∑

k=0

Ak
f X

(l)Wk1 + Ak
bX

(l)Wk2 + Ak
adp X

(l)Wk3, (3)

where X (l)
agcn, X (l) ∈ RN×Cl×Tl is the output and input of the adaptive graph convolution, K is

the number of diffusion steps,Wk1,Wk2 andWk3 are learnable parameters. A f , Ab represent
the forward and backward feature matrices, is a randomly initialized adaptive adjacency
matrix. And they are constructed as follows:

A f = A/rowsum(A), (4)

Ab = AT /rowsum(AT ), (5)

Aadp = Sof tMax
(
ReLU

(
e1e

T
2

))
, (6)
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where e1, e2 ∈ RN×F represents the source node embedding and the target node embedding,
and they are multiplied to obtain an N × N adaptive adjacency matrix, which adaptively
changes the hidden spatial dependence information by stochastic gradient descent for end-
to-end learning [36]. F is the embedding dimension, we set it as a hyperparameter, the details
of which are shown in the experimental section.Where rowsum represents summation by
row, ReLU and Sof tMax represent two different activation functions that mainly serve to
eliminate weak connections and normalize.

4.3 Adaptive Graph Attention

Neighboring roads have similar traffic flow conditions, but different nodes have different
influences on each other. To address the inability of graph convolution to allow assigning
different weights to different nodes in the neighborhood, adaptive graph attention [37, 38]is
used in the graph structure to model dynamic spatial correlation. The advantage of graph
attention is that each node can be assigned different weights to neighboring nodes based on
their characteristics. The adaptive graph attention structure is shown in Fig.4, And so that the
model can better learn the hidden traffic states, we connect the adaptive nodes to the hidden
states and use the scaled dot product method to calculate the attention. The input is a node
feature matrix Xt ∈ RN×Cl (where N nodes in the graph and each node has Cl features),
and the node embedding e ∈ RN×F (F is the embedding dimension) is randomly initialized
and trained step by step. The attention coefficients are calculated as follows:

si j =
ReLU

〈
Wq

(
Xt
i ‖ei

)
,Wk

(
Xt

j‖e j
)〉

√
d

, (7)

αi j = Sof tMax j
(
si j

) = exp
(
si j

)

∑
k∈Ni

exp (sik)
, (8)

In the formula, ‖ represents the concatenation operation, 〈·, ·〉 represents the inner product
operation, si j is the similarity score between node i and node j , Wq and Wk is the query
and key learnable parameter matrix, they are initialized randomly and then updated during
trainingand, d is the dimension of the key and value. After calculating the attention score,
the si j is normalized using the so f tmax function, representing all neighbors of the node i .

X (l)
i = σ

⎛

⎝
∑

j∈Ni

αi j X
(l)
j

⎞

⎠ , (9)

The key idea of attention is to dynamically assign different weights to different nodes.
Where X (l)

i ∈ RCl×Tl is the weight information representation of the node i . The same

X (l)
agat ∈ RN×Cl×Tl represents the output of all nodes. In order to stabilize the learning process

of self-attention, the residual connections are added to each layer of attention. And the non-
linear factors are added through the σ activation function to improve the expressiveness of
the model.

4.4 Gated FusionModule

In order to extract nonlinear dynamic spatial features on road traffic networks, we design two
ways to aggregate the information of proximity neighbors, namely adaptive graph convolu-
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Fig. 4 Adaptive graph attention convolution network

tion and adaptive graph attention, directly splicing these two features will lead to unstable
performance, so this paper combines a gated fusion mechanism [39] to construct learning
gates for selective learning. With X (l)

agcn , X (l)
agat ∈ RN×Cl×Tl representing the output of adap-

tive graph convolution and adaptive graph attention convolution of lth layer, the gate fusion
formula can be expressed as:

Z (l) = σ(Xl
agcnWZ1 + Xl

agatWZ2 + c), (10)

X (l)
Z = Z (L) � X (l)

agcn + (1 − Z (L)) � X (l)
agat + X (l), (11)

where WZ1,WZ2 ∈ RCl×Cl and c ∈ RCl are learnable parameters, they are initialized
randomly and then updated during trainingand, � represents the element-wise product. Z (l)

represents the gate and X (l)
Z ∈ RN×Cl×Xl is the output incorporating spatial-temporal correla-

tion from the adaptive graph neural network, which can satisfy both long-term and short-term
prediction tasks. In addition, to avoid the problem of network performance degradation as
the network depth increases, we add a residual structure that both maintains local states and
explores deep neighborhood information.

4.5 ECA Layer

As attention mechanisms are introduced into traffic flow prediction tasks and show great
potential for performance improvement, the computational effort increaseswith highermodel
accuracy and complexity. Therefore, we introduce a lightweight Efficient Channel Attention
Module (ECA) [40], a local cross-channel interaction strategy without dimensionality reduc-
tion. The input feature map is first compressed with spatial features, and then the compressed
feature map is subjected to channel feature learning, and the learned scores are multiplied
with the input features channel by channel to finally output a feature map with channel atten-
tion. which can significantly improve the model performance although it involves only a few
parameters. Given the output Xt

i = X (l)
Z [Cl : i : t] ∈ RCl of the gated fusion module, as the

input to the ECA layer. The weights of each channel in ECA are calculated as follows:

y = g
(
X (l)
Z

)
= 1

NTl

N∑

i=1

Tl∑

t=1

Xt
i , (12)

ωi = σ

⎛

⎝
k∑

j=1

W j y j
i

⎞

⎠ , y j
i ∈ �k

i , (13)
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Table 1 Details of datasets

Dataset Sensors Loads Samples Unit Input length Output length

METR-LA 207 1515 34272 5min 12 12

PEMS-BAY 325 2369 52116 5min 12 12

X (l)
eca = ωX (l)

Z = ω
(
X1, X2, · · · , XCl

) ∈ RN×Cl×Tl , (14)

where g
(
X (l)
Z

)
∈ RCl represents the global average pool (aggregated feature), y j

i represents

the kth neighbor of the i th channel of the aggregate feature. W j indicates that all channels
share the same weight, ω is the set of channel attention weights, where �k

i indicates the set
of k adjacent channels of yi .

k = ψ(Cl) = log2(Cl)

γ
+ b

γ
, (15)

The size of the convolution kernel in ECA can be adaptively determined based on the
ratio between the number of channels Cl and the kernel size ψ(Cl). When the number
of channels is large, the required convolution kernel will increase. In order to facilitate
subsequent convolution operations, γ and b are set to 2 and 1 respectively. This alteration
adjusts the ratio between channel count Cl and convolution kernel size k, enabling effective
interaction among each channel.

5 Experiment

In this section, we conduct experiments on two large real-world datasets to demonstrate
the effectiveness of GFAGNN in traffic flow prediction. We first introduce the experimental
datasets, parameter settings, and evaluation metrics, and then list some traffic prediction
models in recent years as a baseline against which the results of GFAGNN are compared in
the experiments. In addition, we design some ablation experiments to evaluate the impact of
basic structural components and training strategies on the experiments.

5.1 Datasets

To evaluate the performance of GFAGNN, we conducted comparative experiments on two
real road traffic datasets (METR-LA and PEMS-BAY) published by Li et al. [25] The raw
traffic data were summarized into a 5-minute interval, including two characteristics of vehicle
speed and number of vehicles, and only one feature of traffic speed was considered in this
study. We divide the dataset into training, validation and test sets in the ratio of 7:1:2 in
chronological order, and then process the above segmented data through a sliding window of
length T = 12 to predict the traffic speed at the next T ′ = 12 time step. Besides, the spatial
adjacency graph of each dataset is constructed based on the actual road network. Table 1
shows statistical information about the dataset.
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5.2 Experimental Details

The model was implemented by Pytorch 1.10.0 and all experiments were performed on
an Nvidia GeForce RTX 3080Ti GPU, in addition, we used the same hyperparameters for
METR-LA and PEMS-BAY. To cover the input sequence length, the number of GFA layers is
set to 8, where the sequence of expansion factors for each layer in the gated time convolution
is set to 1, 2, 1, 2, 1, 2, and the diffusion step k = 2. The dimension of the adaptive node
embedding F=16. We set the maximum number of iterations to 100, the batch size to 64,
and the initial learning rate to 0.001, and use the Adam optimizer optimization is performed,
and Dropout of p = 0.3 is applied to the output of adaptive graph convolution and adaptive
graph attention. To test the prediction performance of the model, we evaluated the true value
y and the predicted value y′ using the following three metrics.

• Mean Absolute Error (MAE):

MAE = 1

T

T∑

i=1

|yi − y′
i | (16)

• Root Mean Squared Error (RMSE):

RMSE =
√√√√ 1

T

T∑

i=1

(
yi − y′

i

)2 (17)

• Mean Absolute Percentage Error (MAPE):

MAPE = 1

T

T∑

i

| yi − y′
i

yi
| (18)

where T denotes the total number of observed samples, and yi and y′
i denote the actual

and prediction values of the ith sample. MAE is the average absolute error loss, which can
reflect the actual situation of the predicted value of traffic flow, a higher MAE indicates lower
average prediction accuracy. RMSE is the root mean square error that measures the deviation
between the predicted value and the actual traffic. MAPE, which stands for mean Absolute
percentage error, is a relative error measure that does not change with the global scaling of
the forecast and can be applied to problems with large forecast gaps. The smaller the value
of these three metrics, the better the prediction model performance.

5.3 Baselines

We compared GFAGNN with a number of advanced traffic forecasting models in recent
years, the baseline models of which are described below.

• DCRNN [25]: Diffusion Convolutional Recurrent Neural Network, which modelled traf-
fic network temporal information with bidirectional GCN with GRU.

• STGCN [23]: Spatial-temporal Graph Convolutional Network, this model used graph
convolution to extract spatial correlation and one-dimensional convolution to extract
temporal correlation.

• GMAN [28]: GMAN designed an encoder-decoder architecture with spatial, temporal,
and transformer attention to capture the spatial-temporal information of traffic flows.

123



Gated Fusion Adaptive Graph Neural Network... Page 13 of 23 9

• Graph WaveNet [26]: The model created an adaptive correlation matrix to capture the
hidden spatial correlations in the data and combined diffusion map convolution with
one-dimensional extended convolution.

• FC-GAGA [41]: Fully connected gated graph architecture, a hard graph gating mecha-
nism for traffic flow prediction is proposed.

• MTGNN [42]: A graph learning module is proposed to construct spatial information, and
then the self-learning graph architecture is used for multivariate time series prediction.

• STAWnet [37]: The model captured spatial-temporal correlation by combining temporal
convolution with an attention network.

• GWNET-conv [43]: A new loss function (covariance loss) is introduced and applied to
Graph WaveNet.

5.4 Experiment Results and Analysis

As shown in Tables 2 and 3, we conducted a prediction comparison experiment over 60min
using GFAGNN and the baseline model from recent years. Notably, GFAGNN achieved
advanced performance on all three evaluation metrics in both datasets, in both the long and
short term. Among these compared methods, GFAGNN outperforms the spatial-temporal
methods (including DCRNN, STGCN), explained by our inclusion of adaptive node embed-
ding in the graph model, which can learn hidden spatial correlations from historical traffic
data. The GMAN model is better in long-term prediction due to the enhanced ability to cap-
ture long-term information using a large amount of attention but at the cost of costing a long
time to train the model and poor short-term prediction. We fuse adaptive graph convolution
and adaptive graph attention by gating to improve long-term prediction without degrading
short-term prediction. Compared with the best performance in Graph WaveNet, MTGNN,
and GWNET-conv, GFAGNN reduces MAE by about 2.27%, RMSE by 2.06%, and MAPE
by 2.13% in a 60-minute prediction task on theMETR-LA dataset. FC-GAGA and STAWnet
rely only on self-learning spatial relationships to predict future traffic flow, and ignoring
the information of the neighboring graphs make it difficult for the model to capture local
sequence correlations, which reduces the performance of short-term prediction.

We also use the T-test to test the significance of GFAGNN in 60-minute ahead predictions
compared to GWNET. The p-value is equal to 1.255e−06 and less than 0.05, which demon-
strates that GFAGNN statistically outperformsGWNET. In order to demonstrate the trade-off
between improved performance and computational complexity of the proposed model, we
counted the running time of the model and our model runs faster than DCRNN and GMAN,
which is due to the time-consuming sequence learning and attention mechanism in recurrent
networks, and STGCN runs the fastest but has poorer predictive performance. It is worth not-
ing that our model has similar speed and better predictive performance than Graph WaveNet
and STAWnet.

In summary, the gating unit of GFAGNN fuses both adaptive graph convolution and
adaptive graph attention to compensate for their shortcomings, capturing both long- and
short-term dynamic spatial and temporal correlations, and demonstrating through data that
our proposed model is more effective than these baselines.

5.5 Convergence Analysis

To explore the convergence of themodel, we show the decreasing trend of the training loss and
validation loss over 100 epochs for both datasets. Figure5 show the loss convergence curves
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Fig. 5 Training and validation error convergence curves on two datasets. a Training and validation loss
convergence curves on METR-LA dataset. b Training and validation loss convergence curves on PEMS-BAY
dataset

of the GFAGNN model on the METR-LA dataset and the PEMS-BAY dataset, respectively,
where the x-axis represents the number of training times and the y-axis shows the training
and validation loss values. In Fig. 5, the verification loss is always lower than the training loss
value. We guess this may be due to the small training sample of the dataset and the dropout
operation during the training process. However, the verification loss finally converges at the
80th epoch, while the training loss is still decreasing. It can be seen that the overall trend
of validation loss is similar for both models, with the loss curves first decreasing and then
stabilizing during the training process with less volatility, indicating that our models have
good stability.

5.6 Ablation Study

To analyze the effectiveness of our model components, we designed five variants of the
GFAGNN model and conducted ablation experiments on the METR-LA and PEMS-BAY
datasets.

1. w/o GCN: indicates that the adaptive graph convolution and gated fusion modules are
removed and only the adaptive graph attention is retained retaining the adaptive graph
attention to extract spatial-temporal features.

2. w/o ECA: indicates that the lightweight channel attention module is removed.
3. w/o GAT: indicates that the adaptive graph attention and gated fusion modules are

removed, and this module does not need the adjacency matrix spatial information to
extract the spatial-temporal features directly from the historical traffic flow data.

4. w/o GCN+ECA: indicates that the adaptive graph convolution and channel attention mod-
ules are removed and only the adaptive graph attention is retained.

5. w/o GAT+ECA: indicates that the adaptive graph attention and channel attention modules
are removed and only the adaptive graph convolution is retained.

Table 4 shows our MAE, RMSE, and MAPE metrics on the variants. This finding proves
that several important components of GFAGNNare effective. The adaptive graph convolution
module has the greatest impact, with MAE metrics decreasing by 3.35%, 5.26%, and 3.19%
at 15 min, 30 min, and 60 min, respectively, on the METR-LA dataset. This proves that the
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Fig. 6 Experimental results of GFANN and different variants on the METR-LA dataset

Fig. 7 Experimental results of GFANN and different variants on the PEMS-BAY dataset

hidden spatial features can be effectively mined using the adjacency matrix and adaptive
learning node information. For the adaptive graph attention module, the long-term prediction
has been the advantage of the attention mechanism, which can reduce the error of the long-
time prediction results. ECA is lightweight channel attention, which can adjust the obtained
features during the training process to improve the model performance. We also explored
other combinations of these three modules, such as ignoring the adaptive graph convolution
module and the lightweight channel attentionmodule, or ignoring the adaptive graph attention
module and the lightweight channel attention module. The experimental results show that
these methods are not feasible, and the three modules are helpful to improve the performance
of the model. In addition, to observe and compare the importance of each module more
visually, we show the average values of the two metrics predicted in one hour by histograms
in Figs. 6 and 7. In conclusion, the threemodules used in this paper can help themodel to better
mine different spatial-temporal information and further improve the prediction accuracy of
the model.

5.7 Hyperparametric Studies

To further verify the effectiveness of hyperparameter F in adaptive node embedding, we
use different values in two datasets, such as F=8, F=16, F=24, and F=32. The GFAGNN
is evaluated with the above variables, and the optimal value is selected by a 60-minute
comparison experiment to achieve the best prediction accuracy of the model. Using MAE as
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Fig. 8 Variation of error for different F on two datasets: a the experimental errors corresponding to different
F values on the METR-LA dataset; b the experimental errors corresponding to different F values on the
PEMS-BAY dataset

Fig. 9 Effects of different K values on two datasets: a results of GFAGNN with different values of K on
METR-LA; b results of GFAGNN with different values of K on PEMS-BAY

the evaluation metric, the experimental results are shown in Fig. 8a shows the experimental
results on the METR-LA dataset and Fig. 8b shows the experimental results on the PEMS-
BAY dataset, we observe that the best performance is achieved when F=16. The possible
reason for this result is that graph attention and graph convolution learning are strongest
when F=16. If the embedding dimension is reduced, the model cannot fully extract spatial-
temporal features, and when the embedding dimension is increased, the model may suffer
from overfitting due to too many learning parameters. The above experiments show that
increasing the node embedding with appropriate dimensionality can effectively improve the
model prediction performance.

To illustrate the effect of different diffusion step K values on the accuracy, Fig. 9 plots
the MAE and MAPE values for different k in the range of 1 to 5 on both datasets. It can be
seen that for both the METR-LA and PEMS-BAY datasets, MAE and MAPE usually start
at a high value before minimizing at K = 2 and finally increasing again with increasing k.
The results are shown in Fig. 9. The general trend shown in Figure 9 proves that properly
establishing spatial dependencies between nodes other than neighboring nodes has a positive
impact on the model’s effectiveness, and that too low or too high a value of K can have a
negative effect.
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Fig. 10 Comparison of prediction curves between GFAGNN and GraphWaveNet for 60min ahead prediction
on a snapshot ofthe test data of METR-LA: a prediction curves on METR-LA dataset; b prediction curves on
PEMS-BAY dataset

6 Case Study

To better demonstrate the traffic speed prediction on the road network, we randomly select a
road node (sensor) to compare its detected real speed with the speed predicted by GFAGNN
60min ago and plot the graph with the horizontal coordinate representing the time and the
vertical coordinate representing the speed, in addition, we also put the GraphWaveNet model
predictions into the same graph for comparison.

Figure 9a shows a node speed selected on the METR-LA dataset, and we find that the
real traffic speed on this road changes more frequently. From the highlighted part of the
figure (shown in the dashed box), we can see that our model has a more stable prediction
performance in the face of complex traffic situations compared to GraphWaveNet. Figure9b
shows the traffic situation at a node on the PEMS-BAY dataset. The traffic speed on this road
varies more drastically, and from the highlighted part of the figure, we can see that GFAGNN
fits the real traffic speed better when facing the drastically changing traffic flow.

7 Conclusion

In this paper, we propose a new spatial-temporal network framework for predicting traffic
flow data, namely GFAGNN.We combine extended causal convolution with adaptive spatial
learning networks to capture dynamic spatial-temporal correlations effectively. Firstly, the
adaptive adjacency matrix is added to the graph convolution to learn the hidden spatial
association, and the self-learning node is embedded in the graph attention network to learn the
dynamic spatial association. Finally, the twomodules are fused through the gatingmechanism
to obtain the long-term and short-term spatial-temporal features. We conducted comparative
experiments with other baselines on two real traffic data sets to verify the validity of the
model. In addition, ablation experiments show that the design combining adaptive graph
convolution and adaptive graph attention is reasonable and effective.

Our proposed model can learn spatial-temporal relationships from historical traffic data
without relying on a predetermined adjacency matrix, which reduces the reliance on a priori
information about the road network. We may face limitations on the quantity and quality of
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datasets in future work, so we will focus on how to utilize the limited amount of data for
small-sample learning and improve model prediction performance.
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