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Abstract
The accuracy of many computer vision tasks is reduced by blurred images, so deblur is
important. More details of the image can be captured by a common multi-stage network,
but the computational complexity of this method is higher compared with a single-stage
network. However, a single-stage network cannot capture multi-scale information well. To
tackle the problem, a novel convolutional encoder–decoder–restorer architecture is proposed.
In this architecture, a multi-scale input structure is used in the encoder. Improved supervised
attention module is inserted into the encoder for enhanced feature acquisition. In decoder,
information supplement block is proposed to fuse multi-scale features. Finally, the fused
features are used for image recovery in the restorer. In order to optimise the model in multiple
domains, the loss function is calculated separately in the spatial and frequency domains. Our
method is compared with existing methods on the GOPRO dataset. In addition, to verify the
applications of our proposed method, we conduct experiments on the Real image dataset, the
VOC2007 dataset and the LFW dataset. Experimental results show that our proposed method
outperforms state-of-the-art deblurringmethods and improves the accuracy of different vision
tasks.
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1 Introduction

A clear image preservesmore information than a blurred image. However, motion blur is very
common in our daily lives. It is often caused by camera shake and the movement of objects.
This causes the edges of the image to become blurred, which greatly reduces the accuracy
of computer vision tasks. Therefore, image deblurring tasks need to be tackled urgently.

In the past decades, a lot of research work has been carried out by many scholars in
order to obtain clear latent image. Traditional image deblurring methods are usually based
on the premise of simplified ideal conditions [1–4]. In recent years, deep learning methods
have been widely used in the field of computer vision, such as image deraining [5, 6], image
denoising [7, 8], image deblurring [9, 10] and recently the particularly popular human activity
recognition [11–13]. Learning-basedmethods have achieved good results in image deblurring
tasks. Most of the existing estimation methods for learning blur kernels use convolutional
neural networks to extract blur kernels [14, 15]. However, such methods rely excessively on
the accuracy of blur kernel estimation. In the case of inaccurate blur kernel estimation, the
quality of recovered image is poor. As a result, more and more scholars have recently been
devoted to the study of end-to-end image deblurring methods [16–19]. To recover a latent
clear image directly from a blurred image, these methods use convolutional neural networks
to learn the mapping relationship between the blurred image and the clear image. Since the
methods do not require the estimation of blur kernels, the errors caused by the estimation of
blur kernels are reduced. However there are problems with existing end-to-end networks.
Single-scale end-to-end networks [16, 17] take less time to recover images, but are unable to
recover images by acquiring multi-scale information. Multi-scale end-to-end networks [18,
19] provide multi-scale acquisition of images by stacking sub-networks, but inevitably with
an increase in computational time.

To tackle the above problem, we propose a new Encoder–Decoder–Restorer network
structure for image deblurring. The single UNET is used as the backbone network and
the multiple input encoder is used [20]. Multi-scale information can be captured by this
structure. For the enhanced feature extraction capability of the network, we improve the
existing supervised attention module and add it to the encoding blocks. We propose that the
information supplement block can effectively help fusion of different scale feature maps. To
make use of themulti-scale information for the restoration ofmulti-scale images, we specially
propose the restorer. Finally, as shown in Fig. 1a, b, the images in the spatial domain can
clearly express the spatial structure of the images, while the images in the frequency domain
can more clearly detect the disparity between the high and low frequencies of the images.
Therefore,we propose themulti-scale content reconstruction loss function and themulti-scale
frequency reconstruction loss function in the spatial and frequency domains respectively.

The contributions of the proposed method can be summarzied as follows:

1. We propose a new network structure for image deblurring. It contains amulti-scale feature
encoder, a multi-scale feature decoder and a multi-scale image restorer.

2. To enhance the feature extraction capability of the multi-scale feature encoder, an
improved supervised attention module is added to the encoding block. In the multi-scale
feature decoder, an information supplement block is proposed for better fusion of feature
information of different scales.

3. Finally, in order to train the model to produce clearer latent images, we use a multi-
scale content reconstruction loss function and a multi-scale frequency reconstruction loss
function in the spatial and frequency domain respectively.
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Fig. 1 Spectrograms after centring of different images

The remainder of our paper is organized below. In Sect. 2, we introduce the existing meth-
ods on image deblurring. In Sect. 3, we outline the proposedmethod first and then introduce it
in detail. After theoretical introduction, in Sect. 4 we perform relevant experiments to demon-
strate the superiority of our method. In Sect. 5, we provide some discussion about the novelty
and improvements of the proposed method. Finally, in Sect. 6, we conclude the paper with a
summary of the method.

2 RelatedWorks

In this section, we briefly introduce existing image deblurring methods, which include tra-
ditional image deblurring methods, learning-based blurring kernel estimation methods and
end-to-end image deblurring methods.

Traditional image deblurring methods. Traditionalimage deblurring methods are
divided into blind and non-blind deblurring. In the non-blind deblurring methods, the blurred
image is recovered by assuming a blurring kernel. Such as the common Lucy-Richardson
algorithm [21] and the Wiener filtering algorithm [20], these algorithms restored a clear
image using deconvolution. The latent image obtained is not clear enough because the
a priori information of the image was not fully utilized. Many later methods [22, 23]
have been based on these two methods with improvements to achieve image deblurring.
However, the real blur kernel is often different from what we expect, so the traditional
non-blind deblurring methods have some limitations in dealing with real blurred images.
The traditional blind deblurring methods are the maximum posterior probability based
deblurring method algorithm [1, 2] and the variable Bayesian framework based deblurring
algorithm [3, 4]. The deblurring algorithm based on the maximum posterior probabil-
ity was more efficient, but it did not take advantage of the inherent distribution of the
data and had some limitations. The variational Bayesian-based image deblurring algo-
rithm was theoretically more robust by considering all possible solutions. However, as all
solutions needed to be considered, the algorithm was too slow to meet the practical require-
ments.

Learning-based kernel estimationmethods.Early learning-based blur kernel estimation
methods [15] were used to deblur images by predicting the probability distribution of patch
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Fig. 2 End-to-end networks architecture for image deblurring: a Single-stage networks,bmulti-stage networks

motion blur. Recently, Kaufman et al. [24] proposed a newmethod for blind image deblurring.
This method consists of an analysis network and a synthesis network. The analysis network
is used to estimate the blur kernel. The synthesis network performs the deblurring based on
the obtained blur kernel to the image. The clarity of the recovered image is influenced by the
accuracy of the blur kernel estimation. If the blur kernel is incorrectly estimated, the image
will be poorly recovered.

End-to-end image deblurring methods. Sincethe estimation of blur kernels is more
difficult, more and more scholars are working on end-to-end image deblurring methods.
The methods have two main network structures. One is a single-stage deblurring network.
In a single-stage network, the original-scale blurred image is used as input, as shown in
Fig. 2a. Yuan et al. [25] proposed a lightweight single-stage network. This network introduces
bi-directional optical flow to guide the learning of deformable convolution and uses the
sampled points of deformable convolution to approximate the blurred kernel. However, this
network does not achieve the best performance. The other is amulti-stage deblurring network.
The structure is shown in Fig. 2b, the image is scaled to different scales and is recovered
starting from the smallest scale. This structure was shown to be effective through experiments
by Nah et al. [18]. However, the computational complexity of this method increases with
it.

In order to tackle these problems, an efficient deblurring network has been proposed. This
network structure enables the acquisition of information from multi-scale images and saves
the time consumed by stacking sub-networks in order to acquire multi-scale information. We
will describe our proposed network in detail in Sect. 3.

3 Methodology

In this paper, we propose restorer and use it together with UNET to form Encoder–Decoder–
Restorer network structure. In order to enhance the feature extraction and fusion capabilities
of the single-stage network, we improve the supervised attention modules and propose the
information supplement block for the encoder and decoder respectively. In addition, we
propose new loss functions in the spatial and frequency domains. In the following,we describe
our approach in detail.
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Fig. 3 The architecture of our proposed network

3.1 Network Architecture

In our network, UNET is used as the backbone network containing a multi-scale feature
encoder, a multi-scale feature decoder and a multi-scale image restorer, as shown in Fig. 3.
We find that blur of larger degree is more easily removed in smaller scale images, while blur
of smaller degree is more easily found in larger scale images. So images of different scales are
fed into the encoder. Due to the weak feature extraction ability of the single-stage network,
it is not able to extract useful information well. So we improve the supervised attention
module(SAM) and add it to the encoder. To enhance the information fusion capability of the
decoding blocks, we use an information supplement block(ISB) and an asymmetric feature
fusion(AFF) [17]. In order to recover images with more detail, the multi-scale image restorer
is proposed and used in the network.

Multi-scale feature encoder. Features of different image scales are extracted in a multi-
scale feature encoder, which consists of three encoding blocks. The input image is adjusted
to different scales and then fed into different encoding blocks. The output of each encoding
block layer is shown below:

EBout
i =

{
EBi (o (Bi )) , i = 1,

EBi
(
SAM

(
o

(
EBout

i−1

) ; SCM (Bi)
out
i

)out
i

)
, i = 2, 3,

(1)

where EBout
i denotes the output of the i-th encoding block. Bi , SAMout

i and SCMout
i denote

the blurred image and the outputs of SAM and SCM at layer i , respectively. o is the mapping
function used to generate the input feature images.

In the first encoding block, a set of feature maps are generated for the input image using a
3× 3 convolutional layer. These feature maps are fed into the encoding block for calculation
and passed to the next layer. In the second and third encoding blocks, the initial features
are extracted from the input blurred image using a shallow convolution module(SCM). The
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features output from the upper layer are fed into the SAM together with the initial features,
which are used to obtain and propagate useful features. Finally, the features are computed
and passed through the encoding block to the next layer.

Multi-scale feature decoder. The obtained feature information is fused in a multi-scale
feature decoder consisting of three decoding blocks. ISB or AFF is used to assist in the fusion
of feature information. The output of each layer of the decoding block can be expressed as:

DBout
i =

⎧⎨
⎩
DB

(
AFFout

i ; DBout
i+1

)
, i = 1,

DB
(
I SBout

i ; DBout
i+1

)
, i = 2,

DB
(
I SBout

i

)
, i = 3,

(2)

where DBout
i denotes the output of the i-th decoding block. AFFout

i and I SBout
i denote the

output of the i-th AFF and I SB respectively.
Multi-scale image restorer. We propose the multi-scale image restorer for recovering

images of different scales. The multi-scale image restorer contains three restoration blocks,
each of which is used to generate a latent image of a different scale and the corresponding
feature information. Decoded features of the same scale are used to recover the image. The
process of image recovery can be expressed as follows:

Ŝouti =
{

σ
(
RB

(
DBout

i

)) + Bi , i = 1,
σ

(
RB

(
DBout

i ; RBout
i−1

)) + Bi , i = 2, 3,
(3)

where Bi and Ŝouti denote the input blurred image and the output latent image at layer i .
RBout

i indicates the output of the layer i image restoration block. σ denotes the mapping
function that maps the feature map into an image.

In order to be able to remove different degrees of blur from the image, the feature infor-
mation extracted from the three restoration blocks is used to generate the final latent image.
The generation process is shown below:

Ŝout = σ
(
RBout

1 ; RBout
2 ; RBout

3

) + B1, (4)

where Ŝout denotes the final output image.

3.2 Information Supplement Block (ISB) and Asymmetric Feature Fusion (AFF)

Toenhance the ability of this network to fuse information at all scales, inspired byAsymmetric
Feature Fusion(AFF) [17], we propose the Information Supplement Block(ISB) and use both
AFF and ISB for the network to perform feature fusion at different scales. The structure is
shown in Fig. 4.

Since more feature information is needed to fuse the largest scale feature maps, the three
scales of encoding information are fused to generate the largest scale feature maps in AFF.
Other scales of images do not require so much feature information. To reduce computational
time, ISB is used to generate feature maps at other scales. Specifically, the formulae for AFF
and ISB are as follows:

I SBout
i = I SBi

((
EBout

1

)↓ ; EBout
i

)
, (5)

AFFout
i = AFFi

(
EBout

1 ; (
EBout

2

)↑ ; (
EBout

3

)↑)
, (6)

where I SBout
i and AFFout

i denote the output of I SB and AFF at layer i , respectively. ↑
and ↓ denote upsampling and downsampling, respectively.
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Fig. 4 The structures of sub-modules: a information supplement block (ISB), b asymmetric feature fusion
(AFF)

Fig. 5 The structures of
sub-modules: supervised
attention module (SAM), b
shallow convolution module
(SCM)

3.3 Supervised AttentionModule (SAM)

Recently, supervised attention modules have achieved good results in multi-stage image
recovery tasks [26, 27]. Therefore, we introduce SAM to our network for obtaining important
feature information. This module was proposed by Zamir et al. [28]. We improve the module
and the improved structure is shown in Fig. 5a.

In thismodule, the featuremaps obtained from the encoding blocks are turned into residual
maps by using convolution. The residual maps are added to the initial features obtained from
the shallow convolution module (structure shown in Fig. 5b). Mask maps are generated using
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a 3 × 3 convolution and a Sigmoid function. The mask maps and the input features are
calibrated. The calibrated information is added to the encoded information. Finally, a set of
features withweights is obtained and passed to the next stage. By introducing thismodule, the
weight of useful information is increased and the weight of useless information is decreased.

3.4 Loss Function

To better recover the images, we propose loss functions in the spatial and frequency domains
respectively. Themulti-scale content reconstruction loss function is used in the spatial domain
in order to reduce the structural differences between the generated image and the real sharp
image. In the frequency domain, the multi-scale frequency reconstruction loss function is
used to reduce the difference between the generated image and the real sharp image in the
high frequency region and the low frequency region. The total loss function of the training
network is expressed as follows:

L = LMSCR + LMSFR . (7)

Since reducing the difference between the multi-scale image and the real sharp image
helps to improve the sharpness of the final latent image, we use both the multi-scale image
and the final latent image for the loss calculation. The specific definition of each loss function
is as follows:

Multi-scale content reconstruction loss function.Themulti-scale content reconstruction
loss function is used to calculate the distance between the generated latent image and the real
sharp image. The loss function is formulated as follows:

LMSCR =
I∑

i=1

∥∥∥Ŝouti − Si
∥∥∥
1

Ni
+ α

∥∥∥Ŝout − S1
∥∥∥
1

N1
, (8)

where I denotes the total number of layers. Si denotes the real sharp image corresponding to
the i-th layer. Ni denotes the total number of elements in the i-th layer. The hyperparameter
α is set to 0.5.

Multi-scale frequency reconstruction loss function. To reduce the difference between
the generated image and the real sharp image in the frequency domain, the image is trans-
formed to the frequency domain to calculate the loss. This loss function is defined as follows:

LMSFR = β

I∑
i=1

∥∥∥F (
Ŝouti

)
− F (Si )

∥∥∥
1

Ni
+ γ

∥∥∥F (
Ŝout

)
− F (S1)

∥∥∥
1

N1
, (9)

where F denotes the fast Fourier transform of the image. The hyperparameters β and γ are
set to 0.3 and 0.1 respectively

4 Experiment

In this section, we conduct several experiments to demonstrate the effectiveness of our net-
work in the image deblurring task. Our method is compared with popular image deblurring
methods in recent years and ablation experiments are performed to verify the effectiveness
of our proposed module. Next, datasets with different resolutions are experimented to ensure
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Fig. 6 PSNR value calculated every 100 epochs (x-axis represents the number of epochs, and y-axis represents
the PSNR values)

that our proposed method has good temporal stability. Finally, in order to verify the applica-
tions of our proposed method, we conduct experiments on the Real image dataset, the LFW
dataset and the VOC2007 dataset.

4.1 Implementation Details

In each iteration of training, we will randomly sample four images and crop them randomly
into images of size 256 × 256. In each patch, we set a probability of 0.5 for horizontal
flipping. Adam optimizer is used to train the model, where parameters β1 = 0.9 and β2 =
0.999. The learning rate is set to 1×10−4 for the first 3000 epochs and is decayed by a factor
of 0.5 every 1000 epochs. The validation curve is shown in Fig. 6. The experiments show that
6000 epochs are sufficient for convergence. All of our experiments are run with an Intel(R)
Xeon(R) CPU E5-2680 v3 CPU and an NVIDIA TITAN X (Pascal)’ GPU.

4.2 Dataset

GoPro dataset [18]. To train the network using more realistic blurred images, the GoPro
dataset proposed by Nah et al. [18] is used to train the network. The blurred images in the
GoPro dataset are obtained using a high-speed camera that acquires a sequence of clear
images. These short intervals of clear images are averaged to obtain blurred images. The
GoPro dataset is one of the most popular datasets in the field of deblurring images, as the
blurred images obtained are particularly realistic. This dataset contains 3214 pairs of sharp
and blurred images with a resolution of 1280 × 720, as shown in Fig. 7, with 2103 pairs in
the training set (we use 1472 pairs for training and 631 pairs for validation) and 1111 pairs in
the test set. This dataset is used to train the model and to conduct qualitative and quantitative
comparisons.

Real image dataset [29]. Real image dataset is used for testing, in order to verify that our
proposed method can remove real-world blur well. As shown in Fig. 8, this dataset consists
of 100 images in different scenes. All these blurred images are captured in the real-world
scenarios from different cameras (e.g., con sumer cameras, DSLR, or cellphone cameras),
different settings (e.g., exposure time, aperture size, ISO), and different users.

LFW dataset [30] and VOC2007 dataset [31]. We conduct experiments on the LFW
dataset and theVOC2007 dataset to verify that our proposedmethod can improve the accuracy
of different vision tasks. A special function is used to generate blur of different sizes and
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Fig. 7 Image pairs in the GoPro dataset

Fig. 8 Images from the real image dataset

Fig. 9 Blurred images generated on different datasets

orientations on the image, as shown in Fig. 9. We use the LFW (Labled Faces in the Wild)
dataset for our experiments on face recognition. This dataset contains the face data of 5,749
people from different countries, ages and genders. 4,952 images from the VOC2007 dataset,
of which this dataset contains 20 species, are selected for object detection.

4.3 Performance Comparison

Quantitative Evaluation. Our proposed method is compared with existing methods on
the GoPro dataset. PSNR (Peak Signal-to-Noise Ratio), SSIM (Structure Similarity Index
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Table 1 Quantitative comparison
with existing methods on the
GoPro test set

Method PSNR SSIM Runtime

Sun et al. [15] 24.64 0.843 20 (min)

Gong et al. [32] 26.06 0.863 25 (min)

Nah et al. [18] 28.49 0.917 15 (s)

Zhang et al. [33] 29.19 0.931 1.4 (s)

Li et al. [34] 29.73 0.902 1.2 (s)

SRN [19] 30.10 0.932 1.6 (s)

DBGAN [35] 30.10 0.942 1.3 (s)

ESTRNN [36] 31.07 0.902 0.206 (s)

Tang et al. [16] 31.13 0.951 0.088 (s)

MT-RNN [37] 31.15 0.945 0.063 (s)

Wan et al. [38] 31.24 0.945 0.42 (s)

MIMO-UNET [17] 31.36 0.947 0.016 (s)

Ours 32.09 0.955 0.023 (s)

Measure) and runtime are selected as evaluation metrics. The experimental results are shown
in Table 1. Our proposed model achieves good performance in all three metrics. Although it
only underperformsMIMO-UNET by 0.007s in terms of runtime, we achieve optimal results
in terms of PSNR and SSIM.

Qualitative Evaluation.We select images from different scenes on the GoPro dataset for
qualitative comparison. As shown in Fig. 10, through qualitative comparison, we can find
that our proposed method outperforms other deblurring methods in different scenes.

4.4 Ablation Study

In order to select the optimal model, we perform an ablation study of the component modules
in the model. In addition to this, we compare the performance of the trained models for
different values of the hyperparameters (α, β and γ ). The GoPro test set is used for this set
of studies and for the metrics we choose PSNR and SSIM.

4.4.1 Ablation Study of Component Modules

We conduct experiments to verify the contribution of our proposed modules to the network,
which include SAM, ISB and multi-scale image restorer. SAM is replaced by element-
wise sum. The image is recovered in the decoder. The results are shown in Table 2. Our
proposed module can steadily improve the quality of image recovery. In particular, the PSNR
is improved by 0.67 when the restorer is used in the network.

4.4.2 Ablation Study of the Hyperparameters of the Loss Function

The loss function consists of a multi-scale content reconstruction loss function and a multi-
scale frequency reconstruction loss function, where three hyperparameters are used to control
the weighting of each component. α is set to 0.4, 0.5 and 0.6, while β and γ are set to 0.1,
0.2 and 0.3. The results of the experiments are shown in the Table 3. The model performs
best when α, β and γ are set to 0.5, 0.3 and 0.1 respectively.
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Fig. 10 Qualitative comparison of different methods in different scenarios on GoPro test sets. For clarity, the
magnified parts of the resultant images are displayed. From left-top to right-bottom: Blurry images, Gong
et al., Nah et al., Zhang et al., DBGAN, MT-RNN, ESTRNN, MIMO-UNET, Ours, Ground-truth images,
respectively

4.5 Computational Time

In current society, there is an increasing demand for higher resolution images, so when
performing deblurring tasks images of different resolutions are encountered. In order to
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Table 2 Ablation study of
component modules

SAM ISB Restorer PSNR SSIM

× × × 30.13 0.931

× √ × 31.34 0.944√ × × 31.22 0.945√ √ × 31.42 0.948√ √ √
32.09 0.955

Validate the effectiveness of our proposed different components on the
GoPro test set

Table 3 Ablation study
α β γ PSNR SSIM

0.4 0.1 0.1 32.062 0.954

0.5 0.1 0.1 32.075 0.954

0.6 0.1 0.1 32.052 0.954

0.5 0.2 0.1 32.075 0.955

0.5 0.3 0.1 32.094 0.955

0.5 0.3 0.2 32.090 0.955

0.5 0.3 0.3 32.037 0.954

Performance of the model on the GoPro test set with different hyperpa-
rameters

Table 4 Computational time
comparisons on datasets of
different resolutions

256 × 256 512 × 512 1024 × 1024

Computational time 0.0226 0.0238 0.0238

verify the impact of different resolutions of images on the computational time, three different
resolutions of datasets are used to compare. The experimental results are shown in Table 4.
We can see that the resolution of the image has very little effect on our model.

4.6 Applications

Our method is applied to the Real image dataset, the LFW dataset and the VOC2007 dataset.
The purpose of this is to verify that our method can remove blur well in the real world, and
to verify the effectiveness of our proposed method in different vision tasks.

Removing blur from the real world. To validate that our proposed method can address
blurred images in the real world, our method is applied to the Real image dataset. The results
are shown in the Fig. 11. Although this dataset contains images of different scenes, at different
scales, the latent clear images can still be recovered well.

Face Recognition. In this experiment, the face recognition algorithm (Facenet) proposed
by Google as is used as the main network [39]. During training, Inception-ResNet-v1 is
used as the feature extraction network and the dataset used is CASIA-WebFace. Blurred
and deblurred datasets are used for the experiments (as shown in Fig. 12). In addition,
three metrics, Accuracy, Validation rate and ROC curve, are selected for comparison. The
performance on different datasets is shown in Table 5 and Fig. 13.
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Fig. 11 Performance of our method on Real image datasets

Fig. 12 Deblurring of face images using our proposed methods

Table 5 Comparison of accuracy
and verification rates on blurred
and deblurred face datasets

Blurred Deblurred

Accuracy 59.45% 80.23%

Validation rate 2.03% 13.97%

Experimental results show that blurred images can severely degrade the performance of
face recognition algorithms. However, the images processed by our method have a significant
improvement in all metrics. Therefore, our method still performs well in removing face blur.
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Fig. 13 Compute ROC curves on the blurred face dataset and the deblurred face dataset using our method

Fig. 14 Deblurring of the object detection dataset using our proposed method

Table 6 Yolo V3 performance on
blurred and deblurred datasets

mAP mP mR mF1

Blurred 32.42% 77.43% 22.24% 0.35

Deblurred 65.16% 82.66% 53.94% 0.65

Object Detection. Our method is applied to object detection and to further validate the
effectiveness of this method in the field of high-level vision. YOLO V3 is used in this
experiment [40]. The training sets of VOC2012 and VOC2007 are used to train the model.
We use the test set of VOC2007 for testing, which contains 20 object classes. Blur is added to
the test set and the images are deblurred using our proposedmethod, as shown inFig. 14.Mean
Average Precision(mAP), mean Precision(mP), mean Recall(mR), mean F1 score(mF1) are
used as evaluation metrics. We set the threshold value to 0.5. The experimental results are
shown in the Table 6.

We can see that the model acquires higher values in the deblurred dataset on all types of
metrics. In addition to this, we calculate the average precision (AP) for each class separately
and the results are shown in Fig. 15. We can find that the precision of detecting each class of
objects has been improved on the deblurred dataset.
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Fig. 15 Average Precision for each category in the dataset

Fig. 16 Performance of blurred and deblurred images on YOLO V3

To further verify the effect of blurred images on object detection, we use the network to
perform object detection on blurred images and deblurred images respectively. The experi-
mental results are shown in Fig. 16.

We can find that in Fig. 16a the blurred image is detected for just two objects, while the
deblurred image is able to be detected for six objects in the image. In Fig. 16b the blurred
image is identified correctly for only one object, however the deblurred image is identified
correctly for five objects. In Fig. 16c, the person and motorbike are not recognised in the
blurred image. Finally, the threshold is changed to testwhether our processed images still have
good accuracy and recall. We set the threshold values to 0.3, 0.4, 0.5, and 0.6 respectively.
The experimental results are shown in Table 7.

With different thresholds, the processed images can still achieve better results. Through
the above experiments, we can see that our proposed deblurring method still works well even
in the field of object detection.
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Table 7 Performance of Yolo V3
on the deblurred dataset under
different thresholds

mP mR mF1

0.3 74.03% 59.51% 0.66

0.4 78.85% 56.72% 0.66

0.5 82.66% 53.94% 0.65

0.6 85.68% 50.59% 0.64

5 Discussion

According to the above experiments and the improvement in performance, the novelty and
contribution of our method can be shown.

First, the method tries to tackle the issue of image deblurring.We construct a new network
by proposing the multi-scale image restorer. Based on the existing multiple input encoder, we
improve and add the supervised attention module, this module can acquire effective informa-
tion for image deblurring, thus enhancing the feature extraction capability of the model. In
the decoder, the information supplement block is designed. This block combines information
from different scales and helps to fuse features from different scales. Our proposed restorer
can recover images at multiple scales and use them all in the calculation of losses. Since
generating latent images at different scales can help remove different degrees of blur, these
latent images are used in the calculation of the loss. Finally, we propose Multi-scale content
reconstruction loss function and multi-scale frequency reconstruction loss function in the
spatial and frequency domains for reducing the gap between latent images and true sharp
images in terms of spatial structure and image edges, respectively.

Second, a large number of experiments has been conducted. The experimental results
according to 4.3 show that our proposed model outperforms existing methods. The effective-
ness of the proposed module and the optimality of the loss function parameters are verified
by 4.4. The stability of the computational time on different resolution datasets is verified in
4.5, where the experimental results show that the image resolution has little influence on our
method. In addition, in 4.6 we apply the method to two high-level computer vision tasks,
namely face recognition and object detection, and we find that the method can effectively
help improve the accuracy of high-level computer vision tasks.

In the future, we will focus on researching more lightweight and efficient networks and
applying them to real-life scenarios.

6 Conclusion

In this paper, a novel network is proposed for removing motion blur from images. Although
only a single-stage network is used, it is able to fuse multi-scale image features well for
images recovery. In the input stage, different encoding blocks are fed with images of different
scales. An improved supervised attention module is added to enhance the feature extraction
capability of the encoder. In the decoding blocks, to enhance the feature fusion, we add
an information supplement block. Finally, a restorer is proposed for the recovery of multi-
scale images. In addition to this, we compute losses in the spatial and frequency domains.
Experiments show that our method has good performance and can improve the accuracy of
different vision tasks.
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