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Abstract
The Echo state network (ESN) is an efficient recurrent neural network that has achieved good
results in time series prediction tasks. Still, its application in time series classification tasks
has yet to develop fully. In this study, we work on the time series classification problem based
on echo state networks.We propose a new framework called forward echo state convolutional
network (FESCN). It consists of two parts, the encoder and the decoder, where the encoder
part is composed of a forward topology echo state network (FT-ESN), and the decoder part
mainly consists of a convolutional layer and a max-pooling layer. We apply the proposed
network framework to the univariate time series dataset UCR and compare it with six tradi-
tional methods and four neural network models. The experimental findings demonstrate that
FESCN outperforms other methods in terms of overall classification accuracy. Additionally,
we investigated the impact of reservoir size on network performance and observed that the
optimal classification results were obtained when the reservoir size was set to 32. Finally,
we investigated the performance of the network under noise interference, and the results
show that FESCN has a more stable network performance compared to EMN (echo memory
network).
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1 Introduction

In order to solve the problem of high computational cost and low training efficiency of
recurrent neural networks (RNN), several RNN variants have emerged, and ESN is one of
them. ESN is a new type of neural network proposed by Jaeger [1] in 2001. It not only
overcomes the computational complexity, training inefficiency, and difficulty of the practical
application of RNN but also avoids the problem of locally optimal solutions. ESN mimics
the structure of recursively connected neuron circuits in the brain and consists of an input
layer, an implicit layer (or called reservoir), and an output layer. Among them, the hidden
layer is a reservoir composed of large-scale random, sparsely connected neurons, whichmaps
the low-dimensional input signals to the high-dimensional state space and has the ability to
memorize and store the dynamic performance of the system through the weights between
the neurons in the reservoir. Generating the reservoir and training the ESN are independent
processes. As a result, only theweights from the reservoir to the output layer need to be trained
using a linear method, which simplifies the training process of the network and avoids the
complex training algorithms and the tendency to fall into local minima [2] that are common
in traditional neural networks. Traditional ESNs use sparse connections between neurons
in the reservoir, which gives them excellent short-term memory [3]. By fully utilizing this
short-term memory capability as well as its high-dimensional nonlinear mapping ability,
traditional ESNs exhibit very impressive performance in time series prediction tasks.

Due to the remarkable results achieved by ESNs in time series forecasting, researchers
began to apply them to time series classification problems. In early research, there existed
two main basic approaches to the problem. The first approach was to create a separate model
for each category, which was trained and parameterized to enable it to accurately predict the
data in the corresponding category. New data is then categorized into the category represented
by the best matching model by predicting it and comparing the predictions to the individual
models. For example, Skowronski and Harris proposed a predictive ESN classifier [4] for
speech classification.The secondmethod classifies the data fromeach time step independently
to obtain a series of predictions. Then, by averaging these predictions, a composite prediction
of the entire time series is obtained. For example, inVerstraeten et al. [5], the authors classified
10-digit speech signals by constructing ten one-to-many classifiers. It is easy to realize that
both types of methods have some drawbacks. The first class of methods essentially utilizes
a predictive model to deal with the problem, and it is unable to map the temporal signals to
the class labels directly. The second class of methods does not take into account information
about the entire time series and gives more weight to the end series with continued training.
Tanisaro and Heidemann [6] proposed a method called Time-Warped Invariant Echo State
Network (TWIESN). Themethod predicts the category of each time series element by training
a Ridge classifier [7]. In the testing phase, the trained Ridge classifier outputs probability
distributions for all categories in the dataset. The posterior probabilities of each category
are then averaged to assign labels with the highest average probability to the input test time
series. Until 2019,Ma’s team combined traditional ESNs with convolutional neural networks
(CNNs) to propose a network framework called EMN [8]. This framework fully utilizes the
advantages of ESNs and CNNs and achieves excellent results in time series classification
tasks.

In traditional ESNs, the neurons within the reservoir are randomly connected to each
other, and the connection weights are also randomly generated. It is this randomness that can
have some negative impact on the performance of the network. In order to tackle the issue
of network instability arising from randomness and enhance classification performance, we
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present a novel variant of ESN known as the Forward Topology Echo State Network. This
new topology aims to provide improved stability and superior classification capabilities.
By combining the FT-ESN with CNN, we have developed a cutting-edge network frame-
work known as the Forward Echo State convolution Network. This innovative architecture
leverages the strengths of both models to enhance memory retention and improve overall
performance in various tasks. The network framework is divided into two parts: encoding
and decoding. In the encoding stage, we use FT-ESN to model the time series and output rich
echo states, then collect all the states in a matrix. In the decoding phase, we extract features
using convolution and max-pooling operations, which are fully connected and then fed into
softmax for classification. Our specific contributions are as follows:

(1) To address the randomness problem of traditional ESNs, we propose a network with a
fixed topology, i.e., a forward topology echo state network (FT-ESN).

(2) The readout layer of a traditional ESN is a simple linear readout layer. Instead of a linear
readout layer, we utilize a CNN and a maximal pooling layer as the main structure, i.e.,
we combine the FT-ESN with the CNN and propose a new network framework, i.e., the
forward echo state convolutional network (FESCN).

(3) The FESCNmodel achieves good results in the time series classification task on the UCR
dataset and outperforms EMN in noise experiments.

The remaining sections of the paper are structured as follows: Sect. 2 provides a compre-
hensive introduction to the ESN, explaining its principles and functioning in detail. Section3
delves into the related work conducted in this field, highlighting the existing research and
approaches that have influenced our work. Section4 outlines our proposed network archi-
tecture, known as the FESCN. This section provides an in-depth description of FESCN’s
design, components, and mechanisms. Moving on to Sect. 4, we present three experiments
directly associated with FESCN. Finally, in Sect. 5, we conclude the paper by summarizing
the essential findings and contributions discussed throughout the entire study.

2 RelatedWork

2.1 Improvement of ESN’s Output Layer

ESNs have proven to be effective in various dynamic tasks due to their ability to effectively
model temporal data. They offer several advantages, such as high training efficiency and low
training cost, making them a preferred choice for many applications. However, the output
of traditional ESNs is a simple linear output, and the network decoding ability is weak [9–
11] when performing classification tasks, which limits the classification performance of the
network. In recent years, improving the output of ESNs has become the focus of research in
related directions.

Research over the years has been conducted based on two approaches. Oneway to improve
the decoding capability [11, 12] is by replacing the linear output layer with a multilayer
perceptron trained using backpropagation. Another approach is to use a random nonlinear
projection from input to output, followed by a single-layer perceptron. Thiswas first proposed
for application by Rosenblatt [13] in 1958. This random projection idea [14] is also known as
the Extreme Learning Machine (ELMS) [15] later. This nonlinear projection layer is added
between the input and reservoir as a way to improve the nonlinear separation capability of
the echo state network. The R2SP model [16] proposed by Butcher et al. in 2010 and the
ϕ −ESN [17] proposed by Gallicchio andMicheli in 2011 both exploit this idea of stochastic
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nonlinear projection. In 2012, Boccato et al. [18] proposed replacing the readout layer with
a Volterra filter. In recent years, with the rapid development of deep learning. Several teams
have utilized structures such as convolution instead of linear readout layers. In 2019, Ma’s
team proposed using multi-scale convolution and maxi-pooling to improve the decoding
ability of the network. In 2021, Ma’s team [19] introduced an attention mechanism on top
of their work, adding an attention mechanism between the reservoir and the convolution to
strengthen the effect.

2.2 Optimization of the Internal Connection Topology of the Reservoir

The randomness of traditional ESNs can negatively affect network performance. Researchers
have begun to optimize the connections between neurons and have launched a series of
studies on ESN topologies. Fette et al.’s improved network structure [20] has little effect
on the performance of traditional ESNs, but its idea of improving the structure is worthy
of reference. Rodan et al. [21] proposed a simple ring topology that achieved comparable
results to traditional ESNs while reducing the complexity of the network.Some studies also
utilize the idea of complex networks to reconstruct the structure of the reservoir. Xue et
al. [22] proposed a new structure called a decoupled echo state network (DESN) with better
prediction performance and robustness than traditional ESN. Song et al. [23–25] introduced
small-world networks and scale-free properties into the reservoir structure of echo state
networks to form a new kind of reservoir. Cui et al. [26] came out with three new dynamic
reservoir topologies based on complex network theory for echo state networks, specifically
better network performance than traditional ESNs. The new topology of ESN proposed by
Boccato et al. [27] has a higher information processing capability. A new reservoir structure
[28] is created by incorporating algorithms such as K-means into the reservoir of echo state
networks. It is empirically verified that this reservoir structure can achieve higher prediction
accuracy than the traditional echo state network. Li et al. [29] proposed a new topology,
IESN, and achieved good results on the prediction task.

The basic presentation of the above-related work reveals that these works are either
improvements to the linear readout layer or modifications to the reservoir structure. And
our work improves both parts. Regarding the reservoir structure, we propose FT-ESN. In the
linear readout layer, we utilize two-time scale convolutions for max-pooling, respectively,
and then classify them through fully connected and softmax layers.

3 Methodology

3.1 Echo State Networks

A conventional ESN typically comprises three fundamental components: an input layer, a
hidden layer (reservoir layer), and an output layer. The hidden layer, which acts as a reservoir,
consists of many randomly connected neurons with sparse connections. Its primary function
is to map input signals from a lower-dimensional input space to a higher-dimensional state
space. Additionally, the reservoir layer possesses memory capabilities, enabling it to store
the system’s dynamic behavior through weights between neurons. Consequently, only the
weights of the output layer require training. This decoupling of the reservoir layer generation
and ESN training dramatically simplifies the network training process. Figure1 illustrates
the structure of a traditional ESN.
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Fig. 1 The structure of traditional ESN

When the given time step is t, K-input neurons u(t) = (u1(t), . . . , uK (t))T , N-reservoir
neurons x(t) = (x1(t), . . . , xN (t))T and L-output neurons y(t) = (y1(t), . . . , yL(t))T . The
input signal first enters the input layer neuron and is transmitted to the hidden layer neuron.
The calculation process is generally as follows:

x(t + 1) = f (Wresx(t) + Winu(t + 1)) (1)

y(t + 1) = f out(Woutx(t + 1)) (2)

Here,Win,Wres and Wout respectively represent the connection weight values input to the
reservoir, inside the reservoir, and between the reservoir and the output layer. In the whole
network training process,Win and Wres are predefined and remain unchanged throughout the
training process. OnlyWout needs to be trained. f and f out represent the activation functions
in the reservoir and output layer, respectively. It is generally tanh().

The description of each weight connection matrix is as follows:

(1) Win: In any case, the connectionmatrixWin of the input layermay be composed of random
numbers uniformly distributed from −a to a. The greater the value of a, the greater the
nonlinearity of the input data-driven nonlinear unit. That is, the state of neurons in the
reservoir is more relevant to the input data. On the contrary, the system is close to zero
state. That is, there is no input.

(2) Wres: In the standard ESN, Wres is calculated from a sparse matrix W0. The calculation
formula is: Wres = α · W0∣

∣
∣λmax

∣
∣
∣

,Where, λmax is the maximum eigenvalue of W0, and in

general, the spectral radius α < 1, which can be manually adjusted as required. For ESN,
it is essential to determine whether the reservoir has echo state characteristics. According
to the research, when the spectral radius α of the internal connection matrix Wres of the
reservoir is less than 1, it can ensure that the reservoir has the echo state attribute.

(3) Wout: Thisweightmatrix is the only one that ESNwill train.When thematrix is initialized,
it can be any value and is usually set to a matrix of all zeros.

3.2 The ProposedModel

The whole network structure (named FESCN) is shown in Fig. 2 and is divided into two
parts: encoder and decoder. In the encoder, a new topology of ESN is proposed, here called
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Fig. 2 Overall network framework diagram

FT-ESN, as shown in Fig. 2. The echo states obtained by FT-ESN for all time steps are
collected into a matrix, here called Echo state matrix (ESM). Moving on to the decoder, it
involves a series of operations such as multiple time scale convolutions and max-pooling.
These operations extract relevant features, which are then fed into a fully connected layer.
The final step involves classifying the extracted features using softmax layer computation.

3.2.1 Encoder

In the decoder, a new topology of ESN, Forward topology echo state network (FT-ESN), is
proposed in this paper, as shown in Fig. 3. It is known from the above introduction about
the traditional ESN that the input weight Win and the internal connection weight Wres of the
storage layer are randomly generated, but both Win and Wres are fixed in the FT-ESN. Win

and Wres are processed using the method proposed by Rodan et al. [21]. All elements of Win

andWres are assigned values v and r, respectively, where the input symbols are determined by
the irrational decimal expansion d1, d2, d3, . . . , dn (here we choose pi). For example, given
a threshold of 5 (which is set in this paper), if 0 � dn < 5, then the nth input connection
symbol (connecting the input to the nth reservoir unit) will be −, and vice versa +. The
internal connection of the reservoir in Fig. 3 is implemented for a circular nesting operation.
Each neuron is to be connected to the following neurons in turn, and the connecting arrows
are carried backward.

Here the input is assumed to be a one-dimensional time series u = (u(0), u(1), . . . , u(T −
1))T , each time step is T. The calculation of x(t)(0 � t � T − 1) is performed by
Eq. (1) and the states of all time steps within T are collected into the echo state matrix
X = (x1, x2, . . . , xN ), where xn = (xn(0), xn(1), . . . , xn(T − 1))T (1 � n � N ). This part
can be understood as mapping the time series to a high-dimensional space, obtaining the
enriched states, and finally collecting them in the ESM.

3.2.2 Decoder

In the previous coding process, we know that the ESM collects states at time step 0 ∼ T −1.
So we can select any number of states under 0 ∼ T −1 time steps to perform the convolution
operation, but there are specific parameter settings for each dataset. As shown in Fig. 2, we are
performing the convolution at two-time scales. Take the ECG200 dataset as an example, and
its sequence length is 96, i.e., T = 96. In the code, we convolve from two-time scales, 57 and
67, so the filter dimensions here are 57× 32 and 67× 32, respectively. Max-pooling is then
performed to calculate the maximum value of each feature mapping separately, and then they
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Input Reservoir Output

Win Wres Wout

Fig. 3 The structure of forward topology echo state network

are stitched together. For ECG200, we set the number of filters to 120, so we get 240 outputs
after splicing. This gives us feature information for both time scales. The processed data is
then sent to the fully connected layer for computation. This ultimately leads to the estimation
of conditional probability distributions, which is crucial for accurate categorization. Note
that we are selective about the use of the fully connected layer and Dropout. The purpose is
to mitigate overfitting and improve network generalization.

4 Experiments

We have selected 55 datasets on 85 UCR time series datasets for our experiments. The
performance of our proposed network model is evaluated by comparing it with traditional
time series classificationmethods and severalmainstream deep learningmodels, respectively.
The experiments are implemented in tensorflow framework, two models are implemented in
Python 3.9.12 and tensorflow 2.6.0, and all the experiments are run with CPU AMD Ryzen
R7-5800K @ 3.20GHz, GPU NVIDIA GeForce RTX3050Ti, 16GB of RAM and equipped
with windows 11 operating system were run.

4.1 Classification of Univariate Time Datasets

4.1.1 Dataset Introduction

The UCR Time Series Classification Archive [30] contains 85 publicly available time series
datasets. These datasets are differentiated according to the number of categories, dataset
type, number of samples, and time series length. The datasets are categorized into seven
categories, namely, device, ECG, image, motion, sensor, analog, and spectrum. Hence, they
prove valuable in evaluating the classifier’s overall performance across different scenarios.
Table 1 shows the specific parameters of the 55 datasets fromwhichwe have selected. Figure4
visualizes the training sets for the two datasets, Gun-Point and ECGFiveDays. It is clear to
see that the curves corresponding to all the time steps under different labels are different, and
the job we have to do is to extract the feature information and then distinguish them correctly.
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Table 1 Parameter details for 55 UCR time series classification datasets

Dataset Train Test Length Classes Type

Adiac 390 391 176 37 Image

CBF 30 900 128 3 Simulated

Cricket-X 390 390 300 12 Motion

Cricket-Y 390 390 300 12 Motion

Cricket-Z 390 390 300 12 Motion

Coffee 28 28 286 2 Spectro

DistPhxAgeGp 139 400 80 3 Image

DistPhxCorr 276 600 80 2 Image

DistPhxTW 139 400 80 6 Image

ECG200 100 100 96 2 ECG

ECG5000 500 4500 140 5 ECG

ECGFiveDays 23 861 136 2 ECG

Earthquakes 139 322 512 2 Sensor

ElectricDevices 8926 7711 96 7 Device

FacesUCR 200 2050 131 14 Image

50words 450 455 270 50 Image

FISH 175 175 463 7 Image

FordA 1320 3601 500 2 Sensor

FordB 810 3636 500 2 Sensor

Gun-Point 50 150 150 2 Motion

Ham 109 105 431 2 Spectro

HandOutlines 370 1000 2709 2 Image

Haptics 155 308 1092 5 Motion

InlineSkate 100 550 1882 7 Motion

InsectWingbeatSound 220 1980 256 11 Sensor

LargeKitchenAppliances 375 375 720 3 Device

MedicalImages 381 760 99 10 Image

MidPhxAgeGp 154 400 80 3 Image

MidPhxTW 154 399 80 6 Image

NonInv-Thor1 1800 1965 750 42 ECG

NonInv-Thor2 1800 1965 750 42 ECG

OSULeaf 200 242 427 6 Image

PhalCorr 1800 858 80 2 Image

Phoneme 214 1896 1024 39 Sensor

Plane 105 105 144 7 Sensor

ProxPhxAgeGp 400 205 80 3 Image

ProxPhxCorr 600 291 80 2 Image

ProxPhxTW 205 400 80 6 Image

RefrigerationDevices 375 375 720 3 Device

ScreenType 375 375 720 3 Device

ShapesAll 600 600 512 60 Image
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Table 1 continued

Dataset Train Test Length Classes Type

SmallKitchenAppliances 375 375 720 3 Device

StarLightCurves 1000 8236 1024 3 Sensor

Strawberry 370 613 235 2 Spectro

Swedish Leaf 500 625 128 15 Image

Synthetic Control 300 300 60 6 Simulated

Trace 100 100 275 4 Sensor

Two Patterns 1000 4000 128 4 Simulated

uWaveGest-X 896 3582 945 8 Motion

uWaveGest-Y 896 3582 945 8 Motion

uWaveGest-Z 896 3582 945 8 Motion

UWaveGestAll 896 3582 945 8 Motion

Wafer 1000 6164 152 2 Sensor

WordSynonyms 267 638 270 25 Image

Yoga 300 3000 426 2 Image

(a) (b)

(c) (d)

Fig. 4 Visualization of temporal data in the training set. a, b Show the data visualization of the dataset Gun-
point corresponding to different labels, respectively. c, d are data visualizations corresponding to different
labels for ECGFiveDays, respectively. Here, the horizontal axis is the time step, and the vertical axis is the
corresponding value
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Table 2 Critical values for Nemenyi test

Classifiers (k) 2 3 4 5 6 7 8 9 10

q0.05 1.960 2.344 2.569 2.728 2.850 2.949 3.031 3.102 3.164

q0.1 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920

4.1.2 Evaluation Criteria

There are more datasets in the UCR classification archive, and we cannot achieve the best
results on every dataset. So, we use a metric on 55 datasets to evaluate the combined effect
of the network. Here we use the mean per class error (MPCE) proposed by Wang et al. [31]
to obtain the overall error rate. The following is the specific formula for calculating MPCE:

PCE = 1 − Accuracy

classes
(3)

MPCE = 1

k

∑

PCE (4)

Here,Eq. (3) corresponds to eachdataset; the denominator is the categoryof the corresponding
dataset, and the numerator is the error rate. The k in Eq. (4) is the number of datasets. By
normalizing the number of classes on the dataset, an overall error rate per class can be
obtained. In addition toMPCE,we also introduceGMR(GeometricMeanRanking) andAMR
(Arithmetic Mean Ranking) to evaluate the performance of network models. By AMR, we
then introduce the Nemenyi test [32] to compare the performance of models with each other.
Here, we give a parameter called critical difference (CD), which is calculated as follows:

CD = qα

√

n(n + 1)

6k
(5)

where n is the number of network models participating in the comparison, k is the number
of datasets, and the q-value of Eq. (5) is specified in Table 2.

4.1.3 Parameter Settings

In the UCR dataset classification experiment, we have several parameters that need to be
fixed. The number of reservoir neurons N is set to 32, the leakage rate is 0.3, the input unit
scale IS is 0.1, and the assignment elements v and r are 2.1 and 0.1, respectively. We utilize
two different time scales for the multi-scale convolution piece. Here, assuming a time series
of length T, we can choose a time scale such as {mT , nT }(0 < m, n < 1) for the experiment.
Here, m and n are generally taken as neighboring values. During the experiment, different
datasets take different values for m and n. The same values can achieve good classification
for some datasets, but other datasets will show overfitting. Therefore, we need to manually
adjust the time scale until each dataset achieves its best results. Each dataset experiment will
be adjusted from m = n = 0.1. The number of filters is selected from 30, 60, 90, 120, 150.
Here, the fully connected layer size is selected among two values, 64 and 128. For some of
the datasets, we use Dropout to improve the generalization ability, and the Dropout rate size
is a fixed value of 0.25.
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4.1.4 Comparison Methods

Both traditional machine learning methods and deep learning models have achieved good
results on time series classification. We will compare several traditional machine learning
methods with deep learning models.

Traditional machine learning methods can be divided into three primary categories:
distance-based methods, feature-based methods, and integration-based methods. Here, we
directly used the experimental results collected byBagnall et al. [33].Wewill briefly introduce
these methods and select a representative one for comparison. Distance-based methods use
various distance metrics to categorize data. Here, we select two classical methods: 1-Nearest
Neighbor with Euclidean distance (ED) and 1-Nearest Neighbor with Dynamic Time warp
(DTW) [34]. Feature-based methods are methods that extract relevant features through some
metric relationship. Here, we select twomethods, Learned shapelet (LS) [35] and Time series
bag of features (TSF) [36] for comparison. Integration-based methods are combining differ-
ent classifiers to achieve better classification. Here, we have selected two methods, Elastic
ensemble (EE) and collection of transformation ensembles (COTE) [37] for comparison.

For deep learning methods, in 2017,Wang et al. [31] applied three neural network models,
namely multilayer perceptron (MLP), residual network (ResNet), and fully convolutional
network (FCN), to the UCR dataset and achieved good results. Specific parameter settings
are given in the paper. We include their obtained classification results for comparison. In
2019, Ma’s team proposed a network framework called EMN [8], which was applied to the
UCR dataset and achieved good results. Specific parameter settings are also given in the
paper, which we include in our comparison method as well.

4.1.5 Results

In the following, we give a comparison of the effectiveness of six traditional machine learning
methods and three deep learning models with our proposed network model on the UCR
dataset, respectively.

The specific comparison between ED, DTW, LS, TSF, EE, COTE, and FESCN on the
UCR dataset is given in Table 3. It can be seen that FESCN has the highest number of
best-performing datasets at 26. Here, the COTE method also achieves good results, with the
best-performing dataset reaching 24. However, the COTE method utilizes 35 classifiers for
weighted voting, and its network size and computation are relatively large. Our proposed
FESCN achieves better results on the UCR dataset with a simpler network structure and
smaller computation. With the data in the table, we know that FESCN does not perform
well on all datasets. So, here we introduce MPCE as an evaluation index to evaluate the
comprehensive performance of the network on the dataset more scientifically. As can be
seen from the data in Table 2, FESCN has the lowest MPCE value of 0.0343. That is to say,
the combined performance of FESCN on 55 datasets is better than the other six traditional
methods.

The accuracy of MLP, FCN, ResNet, EMN, and FESCN on the 55 UCR datasets is given
in Table 4. We analyze the data in Table 4, summarized in Table 5, using the three evaluation
metrics AMR, GMR, andMPCE. Through Table 5, we can see that FESCN achieves the best
results with the highest number of datasets of 28. The values of AMR and GMR are also
the smallest, with 1.680 and 1.982, respectively. By calculating the values of MPCE for the
other four network models, we also find that the MPCE value of FESCN is also the lowest at
0.0343, and only theMPCE value of FESCN at 0.0349 is the closest. Here, we also performed
the Nemenyi test on the AMR of the five network models. We choose the value at α = 0.1,
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Table 3 Accuracy of FESCN and six traditional machine learning classification methods on 55-time series
classification datasets

Dataset ED DTW LS TSF EE COTE FESCN

Adiac 0.611 0.604 0.522 0.731 0.665 0.790 0.810

CBF 0.852 0.997 0.991 0.994 0.998 0.996 1.000

Cricket-X 0.577 0.754 0.741 0.664 0.813 0.808 0.802

Cricket-Y 0.567 0.744 0.718 0.672 0.805 0.825 0.792

Cricket-Z 0.587 0.754 0.741 0.672 0.782 0.815 0.821

Coffee 1.000 1.000 1.000 0.964 1.000 1.000 1.000

DistPhxAgeGp 0.626 0.770 0.719 0.748 0.691 0.748 0.863

DistPhxCorr 0.717 0.717 0.779 0.772 0.728 0.761 0.825

DistPhxTW 0.633 0.590 0.626 0.669 0.647 0.698 0.805

ECG200 0.880 0.770 0.880 0.870 0.880 0.880 0.940

ECG5000 0.925 0.924 0.932 0.939 0.939 0.946 0.946

ECGFiveDays 0.797 0.768 1.000 0.956 0.820 0.999 1.000

Earthquakes 0.712 0.719 0.741 0.748 0.741 0.748 0.813

ElectricDevices 0.552 0.602 0.587 0.693 0.663 0.713 0.747

FacesUCR 0.769 0.905 0.939 0.883 0.945 0.942 0.946

50words 0.631 0.690 0.730 0.741 0.820 0.798 0.749

FISH 0.783 0.823 0.960 0.794 0.966 0.983 0.954

FordA 0.665 0.555 0.958 0.815 0.738 0.957 0.935

FordB 0.606 0.620 0.917 0.688 0.662 0.804 0.907

Gun-Point 0.913 0.907 1.000 0.973 0.993 1.000 0.993

Ham 0.600 0.467 0.667 0.743 0.571 0.648 0.790

HandOutlines 0.862 0.881 0.481 0.919 0.889 0.919 0.887

Haptics 0.370 0.377 0.468 0.445 0.393 0.523 0.510

InlineSkate 0.342 0.384 0.438 0.376 0.460 0.495 0.465

InsectWingbeatSound 0.562 0.355 0.606 0.633 0.595 0.653 0.638

LargeKitchenAppliances 0.493 0.795 0.701 0.571 0.811 0.845 0.904

MedicalImages 0.684 0.737 0.664 0.755 0.742 0.758 0.792

MidPhxAgeGp 0.519 0.500 0.571 0.578 0.558 0.636 0.803

MidPhxTW 0.513 0.506 0.506 0.565 0.513 0.571 0.654

NonInv-Thor1 0.829 0.790 0.259 0.876 0.846 0.931 0.936

NonInv-Thor2 0.880 0.865 0.770 0.910 0.913 0.946 0.939

OSULeaf 0.521 0.591 0.777 0.583 0.806 0.967 0.906

PhalCorr 0.761 0.728 0.765 0.803 0.773 0.770 0.829

Phoneme 0.109 0.228 0.218 0.212 0.305 0.349 0.248

Plane 0.962 1.000 1.000 1.000 1.000 1.000 1.000

ProxPhxAgeGp 0.785 0.805 0.834 0.849 0.805 0.854 0.868

ProxPhxCorr 0.808 0.784 0.849 0.828 0.808 0.869 0.883

ProxPhxTW 0.707 0.761 0.776 0.815 0.766 0.780 0.833

RefrigerationDevices 0.395 0.464 0.515 0.589 0.437 0.547 0.565

ScreenType 0.360 0.397 0.429 0.456 0.445 0.547 0.533

ShapesAll 0.752 0.768 0.768 0.792 0.867 0.892 0.870
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Table 3 continued

Dataset ED DTW LS TSF EE COTE FESCN

SmallKitchenAppliances 0.344 0.643 0.664 0.811 0.696 0.776 0.707

StarLightCurves 0.849 0.907 0.947 0.969 0.926 0.980 0.970

Strawberry 0.946 0.941 0.911 0.965 0.946 0.951 0.974

Swedish leaf 0.789 0.792 0.907 0.914 0.915 0.955 0.942

Synthetic control 0.880 0.993 0.997 0.987 0.990 1.000 0.997

Trace 0.760 1.000 1.000 0.990 0.990 1.000 1.000

Two Patterns 0.907 1.000 0.993 0.991 1.000 1.000 0.999

uWaveGest-X 0.739 0.728 0.791 0.804 0.805 0.822 0.811

uWaveGest-Y 0.662 0.634 0.703 0.727 0.726 0.759 0.731

uWaveGest-Z 0.650 0.658 0.747 0.743 0.724 0.750 0.746

UWaveGestAll 0.948 0.892 0.953 0.957 0.968 0.964 0.961

Wafer 0.995 0.980 0.996 0.996 0.997 1.000 0.998

WordSynonyms 0.618 0.649 0.607 0.647 0.779 0.757 0.674

Yoga 0.830 0.837 0.834 0.859 0.879 0.877 0.871

Best 1 4 7 4 8 24 26

MPCE 0.0677 0.0639 0.0510 0.0489 0.0530 0.0384 0.0343

Bold is the maximum value in the corresponding data in each row, which can be used to visualize which
method corresponds to the best assessment indicator

Fig. 5 Critical difference diagram over the average arithmetic rank of FESCN and five deep learning models

and according to Eq. (5) and the data in Table 2, we can get the CD value of about 0.741. this
way we can get a Nemenyi test plot as shown in Fig. 5. Through Fig. 5, we can know that our
proposed FESCN is much better than MLP (3.927 − 1.982 = 1.945 > 0.741) and ResNet
(2.855 − 1.982 = 0.873 > 0.741), comparing with FCN (2.509 − 1.982 = 0.527 < 0.741)
and EMN (2.091 − 1.982 = 0.109 < 0.741) achieved better performance.

By comparing the parameter settings of the different methods, we can learn that, except
for EMN, the other three network models have relatively complex structures containing
multiple convolutional or fully connected layers. In contrast, our proposed FESCN mainly
consists of a simple recurrent layer FT-ESN and CNN with higher training efficiency. The
fundamental difference compared to EMN is the recurrent layer. By looking at Figs. 1 and
3, we can clearly see the difference in the recurrent layer. We propose the new topology FT-
ESN aiming to achieve better classification performance, and the results on 55 UCR datasets
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Table 4 Accuracy of FESCN and four deep learning classification methods

Dataset MLP FCN ResNet EMN FESCN

Adiac 0.752 0.857 0.826 0.829 0.810

CBF 0.860 1.000 0.994 1.000 1.000

Cricket-X 0.569 0.815 0.821 0.782 0.802

Cricket-Y 0.595 0.792 0.805 0.787 0.792

Cricket-Z 0.592 0.813 0.813 0.808 0.821

Coffee 1.000 1.000 1.000 1.000 1.000

DistPhxAgeGp 0.827 0.835 0.798 0.843 0.863

DistPhxCorr 0.810 0.812 0.820 0.822 0.825

DistPhxTW 0.747 0.790 0.740 0.795 0.805

ECG200 0.920 0.900 0.870 0.920 0.940

ECG5000 0.935 0.941 0.931 0.944 0.946

ECGFiveDays 0.970 0.985 0.955 1.000 1.000

Earthquakes 0.792 0.801 0.786 0.811 0.813

ElectricDevices 0.580 0.723 0.728 0.716 0.747

FacesUCR 0.815 0.948 0.958 0.947 0.946

50words 0.712 0.679 0.727 0.758 0.749

FISH 0.874 0.971 0.989 0.960 0.954

FordA 0.769 0.906 0.928 0.932 0.935

FordB 0.629 0.883 0.900 0.908 0.907

Gun-Point 0.933 1.000 0.993 0.993 0.993

Ham 0.714 0.762 0.781 0.781 0.790

HandOutlines 0.807 0.776 0.861 0.891 0.887

Haptics 0.461 0.551 0.506 0.519 0.510

InlineSkate 0.351 0.411 0.365 0.460 0.465

InsectWingbeatSound 0.631 0.402 0.531 0.641 0.638

LargeKitchenAppliances 0.480 0.896 0.893 0.901 0.904

MedicalImages 0.729 0.792 0.772 0.775 0.792

MidPhxAgeGp 0.735 0.768 0.760 0.800 0.803

MidPhxTW 0.609 0.612 0.607 0.639 0.654

NonInv-Thor1 0.942 0.961 0.948 0.933 0.936

NonInv-Thor2 0.943 0.955 0.951 0.939 0.939

OSULeaf 0.570 0.988 0.979 0.897 0.906

PhalCorr 0.830 0.826 0.825 0.832 0.829

Phoneme 0.098 0.345 0.324 0.239 0.248

Plane 0.981 1.000 1.000 1.000 1.000

ProxPhxAgeGp 0.824 0.849 0.849 0.854 0.868

ProxPhxCorr 0.887 0.900 0.918 0.890 0.883

ProxPhxTW 0.797 0.810 0.807 0.830 0.833

RefrigerationDevices 0.371 0.533 0.528 0.560 0.565

ScreenType 0.408 0.667 0.707 0.555 0.533

ShapesAll 0.775 0.898 0.912 0.873 0.870
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Table 4 continued

Dataset MLP FCN ResNet EMN FESCN

SmallKitchenAppliances 0.389 0.803 0.797 0.699 0.707

StarLightCurves 0.957 0.967 0.975 0.978 0.970

Strawberry 0.967 0.969 0.958 0.971 0.974

Swedish Leaf 0.893 0.966 0.958 0.941 0.942

Synthetic Control 0.950 0.990 1.000 0.997 0.997

Trace 0.820 1.000 1.000 1.000 1.000

Two Patterns 0.853 1.000 1.000 0.999 0.999

uWaveGest-X 0.768 0.754 0.787 0.813 0.811

uWaveGest-Y 0.703 0.725 0.668 0.736 0.731

uWaveGest-Z 0.705 0.729 0.755 0.755 0.746

UWaveGestAll 0.954 0.826 0.868 0.958 0.961

Wafer 0.996 0.997 0.997 0.998 0.998

WordSynonyms 0.594 0.580 0.632 0.663 0.674

Yoga 0.855 0.845 0.858 0.866 0.871

Bold is the maximum value in the corresponding data in each row, which can be used to visualize which
method corresponds to the best assessment indicator

Table 5 Summary of
performance evaluation of five
network models

Dataset MLP FCN ResNet EMN FESCN

BEST 1 15 13 16 28

AMR 3.927 2.509 2.855 2.091 1.982

GMR 4.236 2.345 2.449 1.985 1.680

MPCE 0.0553 0.0365 0.0365 0.0349 0.0343

Bold is the maximum value in the corresponding data in each row, which
can be used to visualizewhichmethod corresponds to the best assessment
indicator

have fully verified this. We have plotted six scatter comparison plots, as shown in Fig. 6, in
order to better observe directly the performance of FESCN with other methods on 55 UCR
datasets. The red points in Fig. 5 correspond to the 55 datasets; the horizontal coordinate is
the accuracy of FESCN on the dataset, and the vertical coordinate is the accuracy of the other
six models on the dataset. The more points below the diagonal line represent more datasets
where FESCN performs well. The farther the red dots are from the diagonal line, the greater
the gap between the accuracy of the two networks on that dataset. Through Fig. 6b–f, it is
obvious that FESCN has better classification performance compared to the other five models.
Looking closely at Fig. 6a, there are a large number of red dots distributed near the diagonal,
but it is not difficult to find more red dots distributed below the diagonal; nonetheless, we
can intuitively see that FESCN outperforms EMN on the dataset.

We visualize the classification results obtained frompart of the dataset through the network
with a confusion matrix as in Fig. 7. The labels obtained from the classification are consistent
with the true labels, i.e., correctly classified. With the confusion matrix, we can clearly see
the specific classification of the corresponding dataset for the full number of samples under
the network test. The test accuracy of the corresponding dataset can also be calculated in
Fig. 7. Utilizing it can help us to better understand the performance of FESCN.
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Fig. 6 Scatter plots of pairwise comparison of six models against FESCN

4.2 Network Performance Testing with Different Reservoir Sizes

The number of neurons in the reservoir, N, affects the ability of the FT-ESN to process data
and, thus, the classification performance of the FESCN. The more the number of neurons,
the more complex the dynamic properties that FT-ESN can exhibit, and the size of N directly
affects the generalization ability of FT-ESN. To explore the network performance under
different reservoir sizes, we performed FT-ESNs on ECG200, DistPhxAgeGp, Synthetic,
Earthquakes, LargeKitchenAppliances, Strawberry, Gun-point, ProxPhxAgeGp, MidPhx-
AgeGp Experimental tests were conducted on these nine datasets. We set up six reservoir
sizes, 8, 16, 32, 64, 128, and 256, conducted experiments on nine datasets, and plotted the
obtained data as line graphs, as shown in Fig. 8.

For these nine datasets, we observe that they vary by small and large amounts, but all
show an overall trend. As the value of N increases, the accuracy of FESCN improves at
first, but when the value of N increases to a certain level, the accuracy decreases. Upon
closer inspection, all nine datasets show good results at N = 32. However, the accuracy will
gradually decrease if the reservoir size continues to increase. This is because the increase
in size leads to a rise in the number of model parameters, which triggers the overfitting
phenomenon. Therefore, in the UCR dataset classification experiments, we set the N value
to 32.

4.3 Network Performance Testing Under Noise Interference

Typical time series data is easily disturbed by environmental background noise, which can
lead to some degradation in the algorithm’s effectiveness. To test the performance of our
proposed FESCNmodel under noise interference, we addGaussianwhite noise to the original
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(a) ECG200 (b) Gun-Point

(c) ECGFiveDays (d) Cricket-X

Fig. 7 The confusion matrix is used to show the classification effect of the model on the four datasets

dataset for experiments. We obtain the noise signal function using the following equation:

Pn = Ps

10
SNR
10

(6)

n = √

Pn · len(x) (7)

where Ps and Pn denote the effective power of the signal and noise, respectively, and SNR
represents the signal-to-noise ratio (in dB).

We read the original dataset, add noise to each line of the time series, merge the labeled
values and data, and then save to get the new dataset with Gaussian noise. Here, the number
of neurons N inside the reservoir remains 32. We set the SNR to 10, 20, 30, 40, and 50,
respectively, and utilize the FESCN and EMNmodels on the nine datasets WordsSynonyms,
ShapesAll, Plane, ECG200, Ham, DistPhxAgeGp, CBF,MidPhxAgeGp, and NonInv-Thor1,
respectively Experiments were performed. The obtained data were plotted as point-line dia-
grams, as shown in Fig. 9.We have added a particular scale, ‘Inf,’ to the horizontal coordinate
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Fig. 8 Classification accuracy of FESCN on 9 UCR datasets with different number of reservoir units

of the graph, meaning that the SNR is infinite, which is the case without added noise. We
said the points without noise to do a better comparison.

With the nine graphs in Fig. 9, it is easy to see that the accuracy of the network decreases
gradually after adding noise. When the SNR is large, the network performance decreases
very little. But when the SNR is 10 or 20, the accuracy of the network is reduced to some
extent. For the dataset with few samples and few categories, the network accuracy decreases
by no more than 5% when the SNR is 10. As shown in Fig. 9d, e, g, h, compared with the one
without noise processing, the accuracy of the FESCN model decreases by 3, 2.8, 0.3, and
5% in order. It is easy to see that FESCN consistently outperforms EMN, and the decrease in
performance is smaller than that of EMN. For the dataset with a large number of categories,
as in Fig. 9a–c, f. When the signal-to-noise ratio is 10, the accuracy of the FESCN model
decreases by 4.2, 6, 2, and 3.2% in order. It can be seen that the performance degradation of
FESCN is smaller than that of EMN. for the dataset with a large number of samples, large
number of categories, and considerable sequence length, as in Fig. 9i. It can be intuitively seen
that the network accuracy decreases quite a lot for FESCN and EMNwhen the signal-to-noise
ratio is low, and the decrease is more remarkable for EMN.
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Fig. 9 Dot-line plots of the performance of FESCN and EMN under different levels of noise interference

5 Conclusion

This paper introduces a novel topology called FT-ESN to model time series and obtain rich
echo state information. Based on this, we propose a network framework, FESCN, to extract
discriminative features by utilizing multi-scale convolution and maximum pooling. After
comparing six traditional methods and four neural network models, we find that FESCN
performs best on the classification task on 55 UCR datasets, thanks to the temporal mod-
eling capability of its reservoir layers and the feature extraction capability of convolutional
neural networks. Subsequently, we investigated the effect of different reservoir sizes on the
performance of FESCN and found that good results were achieved on all datasets at N = 32
through data analysis. Finally, we tested the performance of FESCN and EMN when sub-
jected to different levels of noise interference. The experimental results show that FESCN has
better noise interference resistance than EMN. However, when dealing with datasets with
a more significant number of samples, more categories, and longer sequence lengths, the
performance degradation of our network structure is more extensive at low signal-to-noise
ratios. Thus, further optimization of the network structure is needed.

In the future, we need to deal with more complex time series data, both univariate and
multivariate, often disturbed by noise. Therefore, we need to improve the network structure
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further to increase its noise immunity and to better cope with the challenges of time series
classification tasks.
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