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Abstract
Traffic scene visual perception technology is very important for intelligent transportation.
Although the emerging panoptic segmentation is the most desirable sensing technology,
object detection and semantic segmentation are relatively more mature and have fewer
requirements for data annotation. In this paper, a joint object detection and semantic seg-
mentation perception method is proposed for both practicability and accuracy. The proposed
method is based on the results of object detection and semantic segmentation. Firstly, the
result of basic semantic segmentation is preprocessed according to the principle of entropy.
Secondly, the candidate bounding boxes of pedestrians and vehicles are extracted by object
detection. Thirdly, candidate bounding boxes are optimized by using aK-means based vertex
clustering algorithm. Finally, the contours of scene elements are matched with the results of
semantic segmentation. The experimental results on the Cityscapes dataset show that the final
perception effect is more susceptible to semantic segmentation results. The theoretical upper
limit of the actual perception effect is 95.4% of the ground-truth of panoptic segmentation.
The proposed method can effectively combine object detection and semantic segmentation,
and achieve perception results similar to panoptic segmentationwithout additional data anno-
tation.

Keywords Object detection · Semantic segmentation · Joint perception · Panoptic
segmentation

1 Introduction

Visual perception of traffic scenes is one of the research hotspots in the field of intelligent
transportation. Since there are a large number of elements in the actual traffic scene, it is a
huge challenge to achieve holistic scene perception. Referring to an early study [1], traffic
scene elements can be divided into two categories: things class, i.e., countable elements (e.g.,
pedestrians, vehicles and animals) and stuff class, i.e., the same texture area (e.g., sky, road
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and grass). After decades of research, a lot of great progress has been made in the visual
perception of traffic scenes. Before the ubiquitous use of deep learning, researchers targeted
specific perception tasks, such as the detection and recognition of vehicles, pedestrians and
traffic signs. Although holistic traffic scene perception has profound practical significance,
it did not become a research hotspot due to the limitation of knowledge and technology
at that time. The development of deep learning promotes the perception effect to a new
level. In addition to single-task oriented deep neural networks, multi-task oriented deep
neural networks are spring up continually, showing amazing scene perception performance.
Panoptic segmentation [2] woke up the research interests in holistic traffic scene perception.

For intelligent transportation, it is difficult to achieve both practicability and high accu-
racy of visual perception algorithms. At present, in the field of visual perception of traffic
scenes, object detection [3–7] and semantic segmentation [8–15] algorithms are relatively
mature and useful, whose requirements for data annotation are also simple. However, object
detection algorithms often produce false positive and false negative results, and cannot obtain
the contours of the objects. While semantic segmentation algorithms can obtain the contours
of the scene elements, but may have wrong results in image pixel classification and cannot
identify the individuals in the object groups (individual person in the crowd, separated car in
the vehicle group, etc.). Instance segmentation algorithms [16] can achieve the identification
of the individual objects in the groups by combining object detection and semantic segmen-
tation, but only focus on the foreground objects in the scene while ignoring the background
elements. Panoptic segmentation algorithms [2, 17–28], which can compensate for the disad-
vantages of instance segmentation, achieve the perception of the whole scene by combining
semantic segmentation and instance segmentation. However, panoptic segmentation algo-
rithms require complex data annotation detailed to the contour of each object in the scene.
Due to the complexity and variability of the actual traffic scene, the workload of data labeling
is huge. The number of labeled samples for model training in deep learning is relatively large,
even though training samples can be generated by generative adversarial networks which are
different from the real samples captured by cameras. Panoptic segmentation algorithms have
a promising future, but still lack practicality currently.

In this paper, a joint object detection and semantic segmentation algorithm is proposed.
The practicability of the method is guaranteed, since the data labeling only for basic object
detection and semantic segmentation is needed, which is quite simpler than that for panop-
tic segmentation. At the same time, similar accuracies of the perception results to panoptic
segmentation can be achieved. Firstly, under the principle of information entropy, semantic
binary images of pedestrians and vehicles can be extracted from the basic semantic seg-
mentation results, and then the processing of denoising and enhancing will be carried out.
Secondly, the candidate bounding boxes of pedestrians and vehicles will be supplemented
with the basic object detection result. Thirdly, the quality of each candidate bounding boxwill
be evaluated, and a K-means based vertex clustering algorithm will be used to optimize the
qualified candidate bounding boxes. Finally, based on the semantic segmentation results, the
contours of the scene elements belonging to the stuff class will be retained, and the contours
of the scene elements belonging to the things class will be matched with candidate bounding
boxes.

Since the perception results obtained by the proposed algorithm are similar to panoptic
segmentation algorithms, PQ [2] is also suitable to evaluate the performance of the proposed
algorithm. On the Cityscapes dataset [29], three groups of experiments are carried out: upper
limit verification experiments, lower limit verification experiments, and cross verification
experiments. The experimental results show that the precise scene perception results can be
obtained by the proposed method without additional complex instance-level data annotation.
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In addition, the basic semantic segmentation results contribute more to the final perception
effect than the basic object detection results.

The main contributions of this paper are summarized as follows:

(1) A joint perceptionmethod is proposed, which can obtain the perception results similar to
panoptic segmentation through combining object detection and semantic segmentation,
and can achieve both practicability and high accuracy;

(2) A grid based contour vertex clustering algorithm is designed to iteratively refine the
candidate bounding box, which can extract the backbone of each scene element from
noises;

(3) The feasibility of the proposed method is verified by the upper limit verification and the
lower limit verification experiments, and the main impact of the final perception effect is
clarified by the cross validation experiments which are the basic semantic segmentation
results.

The rest of this paper is organized as follows. In Sect. 2, some preliminaries and related
work will be introduced. Section 3 presents the principle and implementation details of the
proposed method. Experimental results and analyses to demonstrate the effectiveness of the
method are arranged in Sect. 4. Section 5 discusses some concluding remarks of this paper
and the prospects of future work.

2 RelatedWork

Scene perception is also known as scene parsing [1], image parsing [30], or holistic scene
understanding [31]. For the visual perception of traffic scenes, various algorithms have been
proposed for identifying pedestrians, vehicles and roads. Before the widespread use of deep
learning, traditional methods focused on specific target information perception in traffic
scenes. Compared with traditional methods, deep learning algorithms for visual perception
have more advantages. The deep neural networks for single-tasks can greatly improve the
perception performance. And multi-task deep neural networks can also achieve amazing
scene perception performance and understand complete traffic scene information at the same
time.

2.1 Traditional Scene Perception Algorithms

Traditional algorithms for traffic scene perception can be categorized into two classes: image
processing based algorithms andmachine learning based algorithms. Image processing based
perception algorithms normally use basic image operations to realize scene perception. These
basic image operations include image pre-processing (e.g., smoothing, sharpening and his-
togram equalization), image space conversion (e.g. color space conversion and space domain
transformation), edge detection (e.g., canny operator and sobel operator), morphological
operations (e.g., dilation, erosion and skeleton) and image segmentation (e.g., flood-fill and
graph-cut). By synthesizing various image processing operations, Fan et al. [32] proposed a
real-time lane detection algorithm using binocular stereo vision.Machine learning based per-
ception algorithms normally adopt a combination framework with a front-end image feature
extractor and a back-end object classifier. Traditional feature extractors include Haar-like,
HOG, LBP and SIFT. Decision tree, Bayesian network, artificial neural network, and sup-
port vector machine can be used as object classifiers. To achieve good results, the analysis of
the specific problems is usually carried out as the first procedure in the traditional methods.
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However, the robustness of the traditional methods is difficult to be guaranteed. Yao et al.
[31] combined traditional object detection, scene classification and semantic segmentation
to transform the whole problem into predictions of primitive structure to achieve holistic
scene perception. However, traditional methods based traffic scene perception systems are
large and cumbersome, and the final performance and the robustness cannot be achieved as
expected.

2.2 Scene Perception Deep Neural Networks

Entity-level object detection is the most common technology for scene perception tasks.
With the development of deep learning algorithms, a series of significant breakthroughs have
been made in the field of multi-object detection. Faster R-CNN proposed by Ren et al. [3]
could perceive a lot of elements in traffic scenes. However, a large number of candidate
objects need to be verified in this kind of two-stage neural networks for object detection,
which makes the overall efficiency unsatisfying. Therefore, single-stage object detection
neural networks such as RetinaNet [4], SSD [5], YOLO [6] and CenterNet [7] were proposed
for the efficiency issue. Although rectangular detection boxes are suitable for most scene
elements, they can hardly describe the specific contours of the elements. Moreover, only
detecting scene elements without identifying their attributes leaves much to be desired. It’s
also a big challenge to achieve high accuracy of traffic scene perception due to the unavoidable
false positive and false negative results.

Pixel-level semantic segmentation plays a very important role in scene visual perception.
Thanks to the development of deep learning, researchers have made great breakthroughs in
semantic segmentation. a variety of derivative and variant neural networks have emerged since
FCN [8] was proposed as the first deep neural network for image semantic segmentation.
Papers [9] and [15] made reviews on many semantic segmentation oriented deep neural
networks. UNET [10], Tiramisu [11], SegNet [12], DeepLab [13] and BiSeNet [14] are the
most representative architectures of neural networks for semantic segmentation. Yang et al.
[33] discussed some defects of object detection based scene understanding methods, and
proposed a semantic segmentation based neural network model for terrain perception which
can be used as an assistant for blindman navigation. Zhou et al. [34] proposed a real-time
perception method for drivable path prediction based on semantic segmentation. Although
the contours of scene elements can be identified clearly, the labels of pixels are not always
correct. In addition, when scene elements belonging to the same kind gather together to form
a group, the individuals in the group cannot be identified successfully.

In order to overcome the inherent defects of individual perception technology, multi-
task perception is becoming a trend. Teichmann et al. [35] proposed a multi-task learning
network named MultiNet, which combined object detection and semantic segmentation. In
the form of a unified neural network, MultiNet dealt with the task of object detection, object
classification and semantic segmentation, and achieved scene perception in real time. It was
found that the performance of multi-task learning neural network is closely related to the
weight distribution where the loss value of each branch task is calculated. Therefore, Kendall
et al. [36] proposed a multi-task learning method using uncertainty to weigh losses, which
achieved advanced performance in scene understanding. Hu et al. [37] proposed a multi-
task neural network based on Faster R-CNN to complete vehicle identification and body
attribute prediction simultaneously. Similar to Mask R-CNN, Dvornik et al. [38] designed
a deep neural network structure, BlitzNet, for real-time scene understanding. Since most of
the current algorithms are trained individually for each procedure in traffic scene recognition

123



Traffic Scene Perception Based on Joint Object Detection… 5337

tasks, Cheng et al. [39] proposed an end-to-end multi-task neural network, Dense-ACSSD,
to implement multi-object detection and drivable area segmentation.

Sometimes, multi-task perception results can be improved by fusion processing. Panop-
tic segmentation can achieve the most advanced scene perception performance by fusing
semantic segmentation results and instance segmentation results. The main variations of the
existing neural networks for panoptic segmentation lie in two aspects: the acquisition of
basic semantic segmentation and instance segmentation results, and the fusion algorithm of
the two results. Among them, the acquisitions of basic results are quite similar, while the
fusion of basic results shows some differences. Panoptic segmentation deep neural networks,
such as PFPNet [17], AdaptIS [18], Seamless [20], TASCNet [22], AUNet [23], DeeperLab
[24], Panoptic FCN [26], MaX-DeepLab [27], EfficientPS [28], simply fused the results of
semantic segmentation and instance segmentation under the artificial heuristic rules. UPSNet
[21] introduced a parameter-free panoptic decoder to fuse the basic results through pixel clas-
sification. OANet [25] designed a spatial sorting module to achieve fusion. Inspired by the
representation of scene graphs, SOGNet [19] used categories, geometries and attributes of
each scene element to perform a unified spatial embedding representation, and guided spe-
cific fusion processing by modeling overlap relations among instances. Panoptic FCN [26]
present a conceptually simple, strong, and efficient framework for panoptic segmentation
which aims to represent and predict foreground things and background stuff in a unified fully
convolutional pipeline. MaX-DeepLab [27] designed an end-to-end model for panoptic seg-
mentation which simplifies the current pipeline that depends heavily on surrogate sub-tasks
and hand-designed components, such as box detection, non-maximum suppression, thing-
stuff merging, etc. EfficientPS [28] architecture that consists of a shared backbone which
efficiently encodes and fuses semantically rich multi-scale features.

Different from panoptic segmentation, a joint perception method is proposed in this paper
which combines the results of basic object detection and semantic segmentation. Similar to
TASCNet known as a panoptic segmentation algorithm, the proposedmethod also uses binary
mask image processing but with different specific processing targets. The proposedmethod is
different from the method in paper [1] by combining the results of basic object detection and
semantic segmentation. To be specific, the proposed method focuses on the parallel fusion
of basic perceptual results based on deep learning, while the method in paper [1] focuses on
cascade semantic inference based on traditional methods. Since the accuracy of the object
detection results is lower than that of the instance segmentation results, candidate bounding
boxes are optimized to be matched with more detailed contours in the proposed method.

3 TheMethod

In this paper, a joint object detection and semantic segmentation based traffic scene perception
method is proposed. The overview of the method is shown in Fig. 1. Firstly, the basic object
detection and semantic segmentation results are obtained by deep neural networks. Secondly,
under the principle of information entropy, basic perception results are preprocessed. Thirdly,
candidate bounding boxes are supplemented by the joint algorithm. Fourthly, the quality of
each candidate bounding box is evaluated and further optimized within a manageable range.
Finally, contour matching is applied to achieve perception results which can be similar to
that achieved by panoptic segmentation methods.
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Fig. 1 Overview of the proposed joint pre-perception algorithm for mobile traffic scenes

3.1 Basic Perceptual Information Capturing

Basic perceptual information of traffic scenes includes object detection results and semantic
segmentation results. There are two key ways to obtain perceptual information, one is using
two independent deep neural networkmodels for each task, the other is training onemulti-task
neural network model for both tasks. The same training data should be prepared for these two
ways. The scene object detection task needs entity-level annotations in the form of a bounding
box, while the scene semantic segmentation task requires pixel-level category annotations.
Obviously, compared with the data annotation required by panoptic segmentation, the data
annotations required by simple object detection and semantic segmentation are simpler and
more practical. The concrete perception models are introduced as follows.

The output of the object detection model is a series of bounding boxes and the correspond-
ing category numbers of detected objects. For an input image X , the goal is to maximize the
likelihood probability pd(O|X) of the target sequence O = {oi |i = 1, 2, …, no} and the con-
fidence level of each object oi, where oi is usually composed of a tuple (c, x, y, w, h, t), and
c represents the category of the object, x、y、w and h represent the abscissa and ordinate of
the bounding box center, and the width and height of the bounding box respectively. Note x
、y、w and h are actually relative values, t represents the confidence level (t ∈ [0,1]) when
oi is predicted as category c, and no is the number of detected objects. The training task can
be described as maximizing the probability of the target sequence by solving Eq. (1):

O∗ = argmax
θ

∑

X ,O

log pd(O|X; θ) (1)

where θ represents the weight of the neural network model, and O* is a predicted sequence
derived from the input image X while the optimal training weight θ* is used. It should be
noted that the form of tuple oi in this paper is only one of the major forms.

The output of the semantic segmentation model is a scene semantic segmentation image.
For an input image X , the goal is to assign a unique label to each pixel (i, j) with the category
set ci, j(ci, j = 1, …, nc), and to output a scene semantic segmentation image Y , where nc
is the number of categories of the semantic labels. The overall training process of semantic
segmentation model is shown in Eq. (2):

Y ∗ = argmax ps(yi, j = ci, j |X;w) (2)
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where w represents the weight parameter of semantic segmentation neural network, ps is the
predicted distribution probability, yi, j is the predicted value of the pixel (i, j) in the output
image Y corresponding to the weight w, and Y * is the predicted result derived from the
optimal weight w*.

3.2 Perceptual Information Pre-Processing

Perceptual information preprocessing aims to analyze the topological structure of the seman-
tic output image Y* to obtain locations of scene objects, or object groups, which belong to
the things class.

In this method, the image boundary tracking algorithm is used for semantic analysis.
Structured information can be obtained by the boundary tracking algorithm encoding the
boundary contour of each object into a chain code with a series of points. Since the scene
semantic segmentation image Y* is too complex to be analyzed, Y* will be divided into a
binary image sequence {Yi |i= 1,…, nc} according to the pixel value. As shown in Fig. 2, the
original semantic segmentation image is split into a series of binary images, and each image
represents one category. Assuming that event A in scene perception means that the contour
of one scene object is clearly defined, and p(A) represents the probability of random event A.
Then the information entropy H(A) of the scene semantic perception task can be formulated
as Eq. (3), where Ai represents the event that the i-th object in the scene canmatch its contour,
and n is the number of objects. Under the principle of information entropy, the smaller the
probability of an event occurring, the more information can be achieved. To obtain more
information, attention should be focused on those objects whose contours are difficult to be
obtained.

H(A) = −
n∑

i=1

p(Ai ) log(p(Ai )) (3)

Based on information entropy theory, the scene elements belonging to the things class
(pedestrians and vehicles) with dense semantic contour have higher priority to be obtained.

Fig. 2 Examples of Semantic image splitting: a raw image with detected information; b semantic segmentation
image; c binary image of the road; d binary image of vehicles; e binary image of pedestrians; f binary image
of traffic signs; g binary image of poles
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Fig. 3 Examples of semantic image processing: a semantic pedestrian detection with noise; b semantic vehicle
detection with noise; c semantic pedestrian detection resulted from the algorithm; d semantic vehicle detection
resulted from the algorithm

Specifically, according to the pixel category, Y* is scanned to form vehicle mask image Yv

= {yi,j ∈ Tagv} and pedestrian mask image Yp = {yi,j ∈ Tagp}, where yi,j represents the
category of the pixel (i, j) in Y*, Tagv and Tagp are the sets of vehicle related tags (car, bus,
truck, etc.) and pedestrian related tags (man, woman, child, etc.) respectively. Then image
scaling is applied to improve the computational efficiency, and morphology close operation
is used to denoise the mask images. Therefore, Yv is enhanced to Yv

’, and Yp is enhanced
to Yp

’. Afterwards, a boundary tracking algorithm is applied to Yv
’ and Yp

’, and two output
sets are obtained, i.e., the set of vehicle contours Dv = {dvi |i = 1,2,…,nv}, and the set of
pedestrian contours Dp = {dpi |i = 1,2,…,np}, where dvi represents the contour of the i-th
vehicle, dpi represents the contour of the i-th pedestrian, and nv and np are the total number
of vehicles and pedestrians with contours respectively. Finally, the minimum rectangular
bounding box of each object in Dv and Dp is calculated according to its contour, and two
new sets are formulated as Dv

’ = {vdi = box(dvi)|i = 1, 2, …, nv}, Dp
’ = {pdi = box(dpi)|i

= 1, 2, …, np}, where box(*) is a function for the bounding rectangle calculation. Figure 3
shows the actual effect of mask image preprocessing. Locations of candidate vehicles and
pedestrians have been perceived successfully.

3.3 Perceptual Information Combination

Perception information combination is based on the semantic perception resultsDv
′
andDp

′
,

and the object detection results O*. Before the combination procedure, O* is divided into a
set of candidate vehicle Ov = {voj = oi |oi ∈ Tagv, j = 1, 2, …, nv

′
} and a set of candidate

pedestrians Op = {poj = oi |oi ∈ Tagp, j = 1, 2, …, np
′
}, where nv

′
and np

′
are the numbers

of detected vehicles and pedestrians respectively. More details about the enhancement of the
perception effect by combination are as follows.

The pairing matching algorithms can be used to filter the false positives. In order to filter
false positives, elements from both Dv

′
and Ov are unified into the same image coordinate

system. Then, every object in Dv
′
is compared to the objects in Ov. For vdi ∈ Dv

′
and voj ∈

Ov, if IOU(vdi, voj) > T iou, the pair of (vdi, voj) will be added to the candidate vehicle queue
V , where IOU(*) is the function to calculate the special relationship of two rectangular boxes
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Fig. 4 Left candidate regions of semantic object: a candidate regions of pedestrians; b candidate regions of
vehicles

and T iou is a threshold parameter. Since there is a one-to-one correspondence between vdi

from Dv
′
and dvi from Dv, for each pair of elements (vdi, voj) in V , a new set Gv = {gvj |j

= 1, 2, …, ngv} can be constructed with gvj = {(xp,yp)|(xp,yp) ∈ dvi and ϕ((xp,yp), voj)
= 1} consisted of the points in both region voj and contour dvi, here (xp,yp) represents the
coordinate value of the boundary point, ϕ((xp,yp), voj) is an indicative function of whether
the calculated point (xp,yp) is in region voj, and ngv is the number of elements of the set Gv.
Meanwhile, voj is added to the final bounding box set of vehicles V f. It is worth noting that
the pairing matching operation not only filters the false positives in object detection results,
but also gets the preparation work of recalling the false negatives ready.

Based on the pairing matching results, the false negatives can be recalled by finding
missing objects from the pre-processed mask images. First of all, for the mask image Yv

′
,

mask regions are removed if it appears in V f by setting the pixel value to 0. Secondly, for the
new image Yv

′
, a boundary tracking algorithm is applied again to obtain the supplementary

candidate vehicle contour setDw = {dwi |i = 1, 2,…, nvw}, where dwi represents the contour
of the i-th candidate vehicle, and nvw is the total number of supplementary candidate vehicles.
Thirdly, rectangular bounding boxes of contours in Dw are calculated, and constitute the set
Vw = {vwi |i = 1, 2,…, nvw}. As shown in Fig. 4, the recalled false negatives might introduce
new noises, which will reduce the accuracy of the recall results.

In order to filter the noises and extract the trunks, the recalled false negatives need to be
post-processed. Specifically, the recalled results with a rather small area are filtered at first.
Then, based on the set Vw, for every vwi ∈ Vw, the proportion of the pixels that belong to the
vehicle category in the total rectangular area is calculated as rwi. If rwi > T rate, vwi is added
to set V f, the final bounding box set of vehicles; otherwise, the current bounding box is not
ideal since a large number of irrelevant pixels are included.

For the latter case mentioned above, a grid based contour vertex clustering algorithm is
designed to iteratively refine the candidate bounding box. In the image coordinate system,
the current region vwi is divided into four sub-regions by a grid. Thus, the number of clusters
to be clustered by the K-means algorithm is set to "4", and each cluster center is initialized
as the center of the corresponding grid cell. Then, the Euclidean distance between boundary
points is adopted as the distance measurement of two clusters, and the final center points of
four clusters are named as pc1, pc2, pc3 and pc4. Afterwards, the external bounding box noted
as vwi* is calculated and then added to the set V f. Since there is a one-to-one correspondence
between vwi* and dwi from Dw, the set Gv is supplemented with gv = {(xp,yp)|(xp,yp) ∈ dwi

and ϕ((xp,yp), vwi*) = 1}. As shown in Fig. 5, although the original recalled false negative
result is rough, the refined result from theproposedK-meansbasedvertex clustering algorithm
is much more detailed.

After the above joint algorithm, set V f stores the joint enhanced results of vehicular
bounding boxes, set Gv records the results of vehicular contour, and the elements of both V f
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Fig. 5 K-Means based semantic principal component region extraction (the first row: iteration = 0; the second
row: iteration = 3; the third row: iteration = 10)

andGv are one-to-onemapped. By using the same algorithm, the joint enhanced results of the
pedestrian can also be obtained and stored in Pf andGp. In Fig. 6, each line is a scene sample
showing the comparison between the results obtained before processing and achieved from
the joint pre-perception algorithm respectively. The use of the joint pre-perception algorithm
can remove the false negative objects and recall the false negatives ones.

Finally, the perception results of the panoptic segmentation style can be obtained after
scene element contour matching. Specifically, according to the one-to-one relationship
between V f and Gv, with the correspondence between Pf and Gp, the instance-like seg-
mentation perception results can be generated. Obviously, the utilize of heuristic rules by
fussing the perceptual results of instance-like segmentation and basic semantic perceptual
information can provide similar results as panoptic segmentation. As shown in Fig. 7, scene

Fig. 6 The necessity of joint pre-perception (the first column and the second column represent results obtained
before processing and results achieved from the joint pre-perception algorithm respectively)
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Fig. 7 Panoptic-like segmentation examples

elements of both the stuff class and the things class are presented in a panoptic segmentation
style.

4 Experiments

The proposed joint perception algorithm which effectively combines the results of object
detection and semantic segmentation can achieve a similar effect to panoptic segmentation.
Therefore, three criteria defined for panoramic segmentation in paper [2] are used for eval-
uation, i.e., PQ (panoptic segmentation), SQ (segmentation quality) and RQ (recognition
quality). The formulations are shown in Eq. (4):
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

SQ =
∑

(p,g∈T P) I OU (p, g)

|T P|
RQ = |T P|

|T P| + 1
2 |FP| + 1

2 |FN |

PQ =
∑

(p,g∈T P) I OU (p, g)

|T P| × |T P|
|T P| + 1

2 |FP| + 1
2 |FN |

(4)

where p is the predicted result, g is the ground-truth, TP is the positive result, FP is the false
positive result, FN is the false negative result, IOU(p, g) is the function for evaluating the
proportion of the pixels that intersection of p and g over union of p and g. RQ is widely
used in object detection known as F1-score, which is used to calculate the accuracy of object
recognition for each element in perception. SQ is the average intersection ratio of predicted
semantic segmentation results and ground-truth. As discussed in paper [2], PQ = SQ × RQ
can provide insight for analysis which measures performance of all classes in a uniform
way using a simple and interpretable formula. Generally, IOU(p, g) > 0.5 is regarded as the
matching condition.

In order to prove the effectiveness and accuracy of the proposed method, three groups
of experiments are implemented: upper limit verification, lower limit verification, and cross
verification. The upper limit verification is carried out when the results of semantic segmen-
tation and object detection are completely consistent with the actual annotations, i.e., the
ground-truth is used to verify the proposed joint perception algorithm. The lower limit veri-
fication is carried out when the two basic perception results are poor, i.e., perception models
are trained on different datasets. The additional cross validation is designed to evaluate how
basic perceptual information makes an influence on the final performance.

In order to facilitate the comparison with the panoramic segmentation methods, the pro-
posed method is tested on the verification set of the Cityscapes dataset. All test methods
reach the following agreement conditions: 19 kinds of targets in the original data annotation
are used, including 11 kinds of stuff objects (road, sidewalk, building, wall, fence, pole,
trafficlight, trafficsign, vegetation, terrain and sky) and 8 kinds of things objects (person,
rider, car, truck, bus, train, motorcycle, cycle). Specifically, the upper limit verification uses
the pixel level semantic segmentation annotation and the bounding box level target detection
annotation directly, and the lower limit verification uses two models opened by OpenVINO:
semantic segmentation adas-0001 and person vehicle bike detection cross road-0078. The
model of object detection for them is obtained from the data training of the fixed-point traffic
scene, which meets the requirements of the perception model in the lower limit evaluation
for the traffic scene. Cross validation uses the two remaining combinations, A + O and O +
A, shown in Table 1.

As shown in Table 1, the results of the upper limit validation experiment illustrate that
the theoretical upper limit approximates the ground-truth of panoptic segmentation. In other
words, when the basic semantic segmentation and object detection results are perfect, the
proposed joint algorithm works well. When the basic semantic segmentation and object
detection results are quite poor, the lower limit is still acceptable even though there is a gap
between the results of the proposed algorithm and that of the state-of-the-art. As shown in
Table 2, in the upper limit validation experiment, the PQ values are quite high in general,
but not ideal in some semantic categories. Specifically, the PQ value is relatively low due
to the high probability of occlusion in the categories like pedestrian and vehicle of which
the number is large. As shown in Table 3, in the lower limit verification experiment, the SQ
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Table 1 Comparison of experimental results on Cityscapes val Benchmark

Method Backbone PQ SQ RQ Miou PC

Panoptic (Merge) [17] − 61.2 80.9 74.4 − −
AdaptIS [18] ResNet-101 60.6 − − 79.3 −
SOGNet [19] ResNet-50 60.0 − − − −
Seamless [20] ResNet-50 59.8 − − 75.4 −
UPSNet [21] ResNet-50 59.3 79.7 73.0 75.2 −
TASCNet [22] ResNet-101 59.2 − − 77.8 −
AUNet [23] ResNet-101 59.0 − − 75.6 −
Panoptic FPN [13] ResNet-101 58.1 − − 75.7 −
DeeperLab [24] Xception-71 56.5 − − − 75.6

Ours (upper limit) Annotation 95.4 97.5 97.6 95.7 −
Ours (lower limit) OpenVINO 37.1 73.8 47.4 36.7 −
Ours (mixed) A + O 79.4 94.0 83.0 76.2 −
Ours (mixed) O + A 39.5 74.6 50.4 39.0 −

Table 2 Experimental results on Cityscapes val Benchmark (upper evaluation)

Element Type PQ SQ RQ mIOU

Road Stuff 100 100 100 100

Sidewalk Stuff 100 100 100 100

Building Stuff 100 100 100 100

Wall Stuff 100 100 100 100

Fense Stuff 99.5 100 99.5 98.9

Pole Stuff 100 100 100 100

Trafficlight Stuff 100 100 100 100

Trafficsign Stuff 100 100 100 100

Vegetation Stuff 100 100 100 100

Terrain Stuff 100 100 100 100

Sky Stuff 100 100 100 100

Person Thing 77.1 89.7 85.9 74.9

Rider Thing 92.9 95.9 96.9 93.9

Car Thing 70.8 84.0 84.3 72.9

Truck Thing 97.5 98.6 100 97.9

Bus Thing 98.1 98.1 100 100

Train Thing 99.4 99.4 100 100

Motorcycle Thing 90.2 94.0 96.0 92.3

Bicycle Thing 86.3 93.0 92.9 86.7

PS: mIOU represents the average IOU of a single category
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Table 3 Experimental results on Cityscapes val Benchmark (lower evaluation)

Element Type PQ SQ RQ mIOU

Road Stuff 92.6 92.6 99.7 99.4

Sidewalk Stuff 59.9 77.6 77.2 62.8

Building Stuff 82.6 85.5 96.6 93.5

Wall Stuff 20.9 72.9 28.7 16.8

Fense Stuff 17.9 69.7 25.7 14.8

Pole Stuff 19.1 59.4 32.1 19.1

Trafficlight Stuff 28.2 62.7 44.9 28.9

Trafficsign Stuff 40.0 69.2 57.8 40.7

Vegetation Stuff 83.3 86.1 96.7 93.7

Terrain Stuff 13.4 63.5 21.1 11.8

Sky Stuff 79.0 89.8 88.0 78.5

Person Thing 20.1 68.1 29.6 17.3

Rider Thing 21.6 62.7 34.5 20.9

Car Thing 32.9 76.7 42.9 27.3

Truck Thing 17.9 83.7 21.4 12.0

Bus Thing 31.4 81.7 38.4 23.8

Train Thing 15.6 70.0 22.2 12.5

Motorcycle Thing 11.1 65.7 16.9 9.2

Bicycle Thing 16.6 65.0 25.6 14.7

PS: mIOU represents the average IOU of a single category

values of the proposedmethod are not low, but poorRQ values could lead to unsatisfactoryPQ
values. This means that there are a lot of false positives and false negatives in the perception
results which should blame on the basic semantic segmentation results. In addition to the
indicators, Fig. 7 shows the panoptic-level segmentation results in the lower limit verification
experiment. Obviously, the scale of the scene element is an important factor that affects the
perceived performance. As shown in Table 1, through additional mixed experiments, it can
be found that when the result of semantic segmentation is perfect and even the result of
object detection is not good, the proposed algorithm can still maintain a high performance;
while when the result of semantic segmentation is not good and the result of object detection
is perfect, the actual results of the proposed joint algorithm is close to that of the lower
limit evaluation. Apparently, the result of the basic semantic segmentation determines the
theoretical lower limit of perception performance, while the result of basic object detection
determines the theoretical upper limit of perception performance. In general, the proposed
joint perception algorithm is effective and has high accuracy.

5 Conclusion

In this paper, a joint perception algorithm for traffic scenes is proposed, which combines
object detection and semantic segmentation. This is an attempt at holistic traffic scene pars-
ing. Under the principle of information entropy, the perception of pedestrians and vehicles
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is targeted. Through the flexible application of image processing technology, the joint per-
ception algorithm achieves panoptic-level segmentation performance. The proposed method
can take both the accuracy and practicality into account without complex data annotation
as panoptic segmentation required. Competitive performance is achieved on the Cityscapes
dataset, and the importance of basic semantic segmentation results during the joint progress
is verified. Since there is no need to specify the basic perception model, the algorithm has a
wide range of generality. However, compared to the state-of-the-art panoptic segmentation
technology, the proposedmethod still has defects in the effect of instance segmentation. Since
the proposed method is based on both results of the basic semantic segmentation and object
detection, either mistakes will lead to undesirable results. And occlusions or similar traffic
scene elements also may lead to errors during semantic boundary calculation of adjacent ele-
ments. Thus, there are still improvements to be made in traffic scene perception algorithms
based on joint object detection and semantic segmentation.
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