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Abstract
In this article, the issue of adaptive neural fixed-time tracking control for uncertain robotic
manipulators subject to input saturation, external disturbance and prescribed constraints is
studied. To handle the influence of input saturation, a novel auxiliary nonlinear dynamic sys-
tem is constructed in which the system state is fixed-time stable. Radial basis function neural
networks (RBF NNs) are used to approximate the system uncertainty. Instead of adjusting all
weight vectors of RBF NNs, only one parameter is needed to be updated online. Then, based
on performance function and auxiliary dynamic system, a fixed-time sliding mode controller
with prescribed transient and steady-state performance is developed. Through theoretical
analysis, it is concluded that the position tracking error can stabilize around the equilib-
rium point in fixed time and satisfy the prescribed requirements. Meanwhile, all signals in
the closed-loop system are proved to be fixed-time stable by using the Lyapunov method.
Finally, simulation results are presented to demonstrate the effectiveness of the proposed
method.
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1 Introduction

Due to technological advancement in recent years, robotic manipulators have been exten-
sively used in various areas, such as industrial manipulators, aerospace manipulators and
so on. For industrial applications like loading and unloading workpieces, assembling parts
and sorting goods, the requirements for the trajectory tracking accuracy and control perfor-
mance of robotic manipulators are constantly increasing. In order to meet these demands,
it is necessary to realize the precise motion control of the manipulator, which has attracted
great attention from the academic and engineering circles [1–4]. However, designing a fast
tracking controller for a robotic manipulator remains challenging due to the uncertainty of
the manipulator system, input saturation and prescribed tracking error constraints.

The robotic manipulator system is characterized by inherent nonlinearity and physical
constraints of components, which brings great difficulty for tracking controller design. Lots
of good schemes have been proposed such as PID control [5], feedback linearization [6],
model predictive control [7], slidingmode control [8–12], optimal control [13, 14] and robust
control [15]. Among these control strategies, sliding mode control is widely used because of
its robustness to external disturbances. However, the linear sliding manifold can only achieve
asymptotic convergence of the system state, which means that high gains are required to
achieve rapid state convergence. Because of this issue, some nonlinear sliding mode surfaces
are proposed such as terminal sliding mode [16], nonsingular terminal sliding mode [17] and
fast nonsingular terminal sliding mode [18, 19]. [18] proposed a fast nonsingular terminal
sliding mode controller with a disturbance observer for permanent magnet linear motors. In
[19], an integral fast nonsingular terminal sliding mode surface was introduced for robotic
manipulators and proposed a novel backstepping slidingmode controller. It should be pointed
out that the finite-time stability of [18] and [19] is proved by using the Lyapunov method.
Recently, a so-called fixed-time sliding mode controller is proposed in the literature [20–
22]. The biggest difference between the fixed-time stability and the finite-time stability is the
settling time of the closed-loop system. To bemore specific, the settling time of the finite-time
stability depends on the initial conditions and will change when different initial conditions
are selected. However, the settling time of the fixed-time stability is not affected by initial
conditions, which implies that the settling time of the fixed-time stability is bounded and only
depends on the design parameters. Paper [20] proposed an integral fixed-time sliding mode
control algorithm for permanent magnet synchronous motor with a disturbance estimation
compensation. The speed tracking error was proved to be fixed-time stable based on the
Lyapunov method. In [21] a fixed-time disturbance observer-based tracking controller was
presented for the n-DOFmanipulators and Barrier Lyapunov Function was used to ensure the
prescribed performance of the tracking errors. A fault-tolerant fixed-time trajectory tracking
control schemewas introduced for marine surface vessels in [22]. The aforementioned results
can ensure the fixed-time stability of the closed-loop system, but all controllers are designed
based on the systemmodel. It should be pointed out that for roboticmanipulators, the nominal
parts of the system model may not be available. Therefore, how to design a fixed-time
controller for a robotic manipulator with system uncertainty is still a problem to be solved.

Dynamic uncertainty always appears in robotic manipulator systems, which will cause
great problems when designing a trajectory tracking controller. Therefore, the influence
of uncertainty on the design of industrial manipulator controllers cannot be ignored. The
dynamic uncertainty indicates that we cannot obtain the accurate mathematical model of the
system for controller design and how to improve the tracking performance of the uncertain
robotic manipulator is still a challenge for the research community. On purpose to handle
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the uncertainty of mechanical systems, many approaches had been put forward such as fuzzy
control [23, 24] and neural networks control [25, 26]. Owing to its universal approximation
property, neural networks have been extensively used to approximate unknown dynamics.
Considering the system uncertainty and time-varying output constraints, [27] proposed a
model-based control scheme and an adaptive neural networks control scheme for robotic
manipulators. Paper [28] used neural networks to handle the system uncertainty and input
dead zone, both the state-feedback controller and output-feedback controllerwere introduced.
However, only asymptotic convergence or uniformly ultimately bounded is achieved in [26–
28]. Therefore, designing a fixed-time neural adaptive controller for an uncertainmanipulator
system is the purpose of this paper.

Although much great progress has been made in trajectory tracking controller design
for robotic manipulators, most control schemes are developed due to the hypothesis that
controllers are working in good conditions. However, many control systems are subjected to
physical limitations and how to handle these constraints of the system in the controller design
process has become a hot research issue. Limited by the physical properties of components,
input saturation always appears in mechanical systems. Therefore, it is inevitable to reckon
input saturation nonlinearity in concrete applications. Controller design with input saturation
for nonlinear systems had been considered by researchers and many great methods had been
proposed. For uncertain mobile robot systems with input saturation, [29] proposed a novel
adaptive neural controller and used a dynamic system to compensate input saturation. Track-
ing errors of the system were proved to be asymptotically convergent. In [30], an auxiliary
system was employed to reduce the influence of input saturation and a fuzzy controller was
introduced for nonstrict-feedback stochastic nonlinear systems under input saturation. [31]
presented a neural controller for a pure-feedback stochastic MIMO nonlinear system with
input saturation and full state constraints. The proposed controller decreased the influence
of input saturation by citing an asymmetric smooth model and achieved a smooth saturation
limitation. By applying smooth hyperbolic functions, [32] proposed a boundary controller
for flexible manipulators subject to input saturation. According to the above literature, nearly
no study has tackled the fixed-time anti-saturation control problem for robotic manipulators.

For many practical systems, it is necessary to design a reasonable controller to make the
trajectory tracking error satisfies performance requirements, such as realizing the tracking
error convergence to an arbitrarily small residual set, error convergence speed not less than
a preset value, and the maximum overshoot less than a certain constant. In order to design a
controller to achieve the above performance requirements, Bechlioulis and Rovithakis [33]
first proposed a prescribed performance controller for nonlinear systems. By introducing
performance function, the prescribed performance control method can specify the transient
performance and steady-state performance of trajectory tracking error and have been suc-
cessfully extended to a variety of different applications such as quadrotor [34], DC converter
system [35], rigid satellite [36], space manipulators [37] and other fields [38–41]. However,
the existing prescribed performance control results cannot guarantee the fixed-time stability
of tracking error, and cannot meet the requirements of the control accuracy and convergence
time of the manipulator system subject to input saturation.

In this paper, an adaptive neural fixed-time sliding mode controller is created for a class
of uncertain robotic manipulators subject to input saturation and prescribed constraints. An
auxiliary nonlinear dynamic system is introduced to handle the input saturation nonlinearity,
RBF NNs are used to approximate the closed-loop dynamic uncertainty and the performance
of trajectory tracking error is ensured by a performance function. Compared with former
results, the advantages of our controller are
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1. A novel auxiliary nonlinear dynamic system is constructed to deal with the influence
of input saturation. Different from the auxiliary system proposed in [29] and [30], the
fixed-time stability of the auxiliary system state is proved by using the Lyapunovmethod.

2. A neural adaptive fixed-time sliding mode control method is proposed based on auxiliary
dynamic system and performance function. Under the physical limitation, the proposed
scheme can ensure the trajectory tracking error satisfies the prescribed performance and
converge to a smaller neighborhood of the origin within a fixed time.

3. RBF NNs are used to approximate the uncertainty of the closed-loop system. Different
from most neural controllers that update all weight elements online [25–28], this paper
uses the norm of the weight matrix as adaptive parameter. Therefore, the parameter that
need to be adjusted is decreased to one, which can reduce the calculation burden.

The remaining parts are ordered as the following arrangements: Sect. 2 provides some
lammes and control objective of this article. The adaptive neural fixed-time tracking control
approach is designed and stability discussion is introduced in Sec. 3. Simulation results are
shown in Sect. 4 to verify the good performance of the present controller. Moreover, in Sect.
5, we complete this paper with some conclusions.

1.1 Notations

In this paper, Sigα(ζ ) = [|ζ1|αsign(ζ1), |ζ2|αsign(ζ2), . . . , |ζn |αsign(ζn)
]T and Dα(ζ ) =

diag {|ζ1|α, |ζ2|α, . . . , |ζn |α} where α > 0 and ζ = [ζ1, ζ2, . . . , ζn]T . |ζi | and ‖ζ‖ denote
the absolute value and Euclidean norm, respectively. ‖A‖F represents the Frobenius norm
and λmin(A), λmax(A) denote the minimum eigenvalue and maximum eigenvalue of matrix
A, respectively.

2 Problem Formulation

2.1 Dynamic Model of Robotic Manipulator

The dynamics of n-link robotic manipulator system in joint space can be expressed as

M(q)q̈ + C(q, q̇)q̇ + G(q) = u(v) + τd (1)

where M(q) ∈ Rn×n denotes the inertia matrix. C(q, q̇) ∈ Rn×n represents the Coriolis
and centrifugal matrix. G(q) ∈ Rn represents the gravity force. q , q̇, q̈ ∈ Rn are the vectors
of the manipulator position, velocity and acceleration, respectively. τd ∈ Rn represents
external disturbance which is upper bounded by ‖τd‖ ≤ τ ∗

d . In this paper, we assume that τ ∗
d

is unknown. u(v) ∈ Rn represents manipulator input subject to saturation nonlinearity and
can be expressed as

u(v) =
{
sign(v)umax if ‖v‖ ≥ umax

v if ‖v‖ < umax
(2)

where v denotes the designed control input. The constant umax denotes the given bound of
saturation nonlinearity. Define Δu = u(v) − v and assume that ‖Δu‖ ≤ U where U is a
known constant.

In this paper, assume that M(q), C(q, q̇) and G(q) in (1) are totally unknown, which
means that the nominal values and the actual values of the system dynamics cannot be used
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in the controller design process. Thus, to facilitate the design of the controller, a designed
positive diagonal matrix M0 is introduced and equation (1) can be rewritten as

M0q̈ = u(v) + τd − (M(q) − M0) q̈ − C(q, q̇)q̇ − G(q) (3)

2.2 Preliminaries

In order to design a fixed-time controller for the robotic manipulator system (1), some useful
definitions and lemmas are presented in this subsection.

Definition 1 [42] Consider the following nonlinear system

ẋ(t) = g(t, x), x(0) = x0 (4)

where x ∈ Rn and g ∈ R+ × Rn → Rn are nonlinear functions. The origin of the system
(4) is said to be fixed-time stable if for any initial condition x0, the system state reach the
origin at T (x0), i.e. limt→T (x0) x(t) = 0 and there exists a constant Tmax ∈ R+ such that
T (x0) ≤ Tmax.

Lemma 1 [43] For a selected Lyapunov function V (x) such that

V̇ (x) = −αV
m
n (x) − βV

p
q (x) (5)

where α, β are positive constants and m, n, p, q are odd integers satisfying m > n, p < q.
Then, the origin of (4) is fixed-time stable and the settling time is

T <
1

α

n

m − n
+ 1

β

q

q − p
(6)

Lemma 2 [44] For a selected Lyapunov function V (x) such that

V̇ (x) = −αV
m
n (x) − βV

p
q (x) + ς (7)

where α, β, ς are positive constants and m, n, p, q are odd integers satisfying m > n, p < q.
Then, the origin of (4) is practical fixed-time stable and the settling time is

T <
1

αδ

n

m − n
+ 1

βδ

q

q − p
(8)

where 0 < δ < 1. The residual set of (7) is given by

x ∈
{

V (x) ≤ min

{(
ς

(1 − δ)α

) n
m

,

(
ς

(1 − δ)β

) q
p
}}

(9)

Lemma 3 [45] For any a > 1 we have the following inequality

N∑

i=1

yai ≥ N 1−a

(
N∑

i=1

yi

)a

(10)

and if 0 < a ≤ 1 we have
N∑

i=1

yai ≥
(

N∑

i=1

yi

)a

(11)

where N is a positive constant and yi > 0.
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Lemma 4 [45] For any a ≥ 0, b > 0 and c > 0, the following inequality holds

ac(b − a) ≤ 1

1 + c

(
b1+c − a1+c) (12)

Lemma 5 [45] For any a > 0, b ≤ a and c > 1, the following inequality holds

(a − b)c ≥ bc − ac (13)

2.3 RBF NNs

In this article, RBF NNs are used to approximate the unknown dynamics of the manipulator.
According to Park and Sandberg [46], a continuous unknown function f (Z) approximated
by RBF NNs can be written as

f (Z) = w∗Tφ(Z) + ε (14)

wherew∗ ∈ Rp1×m1 denotes the idealweightmatrix.φ(Z) = [
φ1(Z), φ2(Z), . . . , φp1(Z)

]T

is the basis function vector and φi (Z) for i = 1, 2, . . . , p1 are Gaussian functions, such that

φi (Z) = exp

(
−‖Z−ξi‖2

η2i

)
where Z represents the input of RBF NNs, ξi and ηi represent

the receptive field center and width of the Gaussian function, respectively. ε denotes the
approximation error and ‖ε‖ ≤ ε∗ with ε∗ ≥ 0.

2.4 Control Objective

In this article, the control objective is to design an adaptive neural fixed-time sliding mode
trajectory tracking control approach for a class of uncertain robotic manipulators to achieve
the following requirements

1. Under the effect of input saturation, the system output q tracks the desired trajectory qd
in fixed time.

2. Tracking error will satisfy the prescribed performance requirements and all signals in the
closed-loop system are fixed-time stable.

3 Controller Development

In this section, the adaptive neural fixed-time sliding mode control approach is designed for
the robotic system (1). A novel fixed-time auxiliary dynamic system is designed to deal with
input saturation. The prescribed performance method is used to make tracking error satisfies
the prescribed constraints. All signals in the closed-loop system are proved to be fixed-time
stable.

3.1 Prescribed Performance and Error Transformation

Considering system dynamics (3), define x1 = q and x2 = q̇, thus equation (3) can be written
as {

ẋ1 = x2
M0 ẋ2 = u(v) + τd + f (Z)

(15)
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where f (Z) = − (M(x1) − M0) ẋ2−C(x1, x2)x2−G(x1). Let z1 = x1−qd and z2 = x2−q̇d
where z1 = [z11, z12, . . . , z1n]T denotes angular tracking error and z2 = [z21, z22, . . . , z2n]T

denotes angular velocity error. Assuming that z1 satisfies the prescribed performance such
as

− k1iσi (t) < z1i < k2iσi (t) i = 1, 2, . . . , n (16)

where k1i and k2i are positive design constants and σi (t) is the performance function which
can be written as

σi (t) = (σi (0) − σi (∞))e−�i t + σi (∞) (17)

where σi (0) > σi (∞) > 0 and �i > 0 are designed parameters that based on the perfor-
mance requirements.We can see from (17) that the performance function σi (t) is exponential
decreasing and the decreasing rate is adjustable by �i .

In order to achieve trajectory tracking control with prescribed performance, a performance
transformation method is introduced to transform the constrained error z1i into an equivalent
unconstrained error S1i . Define

z1i = σi (t)T1i (S1i ) (18)

where T1i (S1i ) is a smooth and strictly increasing function with limS1i→−∞ T1i (S1i ) = −k1i
and limS1i→+∞ T1i (S1i ) = k2i . In this paper we choose the trasnformed function T1i (S1i ) as

T1i (S1i ) = k2i eS1i − k1i e−S1i

eS1i + e−S1i
(19)

From (18) and (19), the transformed unconstrained error can be expressed as

S1i = 1

2
ln

k1i + z1i
σi (t)

k2i − z1i
σi (t)

(20)

Differentiating (20) along time we have

Ṡ1i = hi

(
z2i − σ̇i (t)

σi (t)
z1i

)
(21)

where hi = 1
2σi (t)

k1i+k2i(
k1i+ z1i

σi (t)

)(
k2i− z1i

σi (t)

) and hi > 0. Thus the vector form of (21) can be given

as
Ṡ1 = H (z2 − Ψ z1) (22)

where S1 = [S11, S12, . . . , S1n]T , H = diag {h1, h2, . . . , hn} and Ψ = diag
{

σ̇1(t)
σ1(t)

,
σ̇2(t)
σ2(t)

,

. . . ,
σ̇n(t)
σn(t)

}
. Define S2 = z2 − Ψ z1,thus (22) can be expressed as

{
Ṡ1 = HS2
Ṡ2 = ż2 − Ψ̇ z1 − Ψ z2

(23)

3.2 Fixed-time Auxiliary Nonlinear Dynamic System

How to design a fixed-time auxiliary dynamic system to handle the effect of input saturation
is the main difficulty in this part. Therefore, to solve this problem, we propose the following
auxiliary system

�̇ = −H1Sig
m1
n1 (�) − H2Sig

p1
q1 (�) −UM−1

0 sign(�) + M−1
0 (u(v) − v) (24)
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where � is the state parameter of the auxiliary dynamic system, H1 and H2 are designed
diagonal matrices, m1, n1, p1, q1 are odd integers satisfying m1 > n1, p1 < q1.

Theorem 1 Considering the auxiliary nonlinear dynamic system (24), the system state � is
fixed-time stable and the settling time T1 satisfies

T1 <
1

n
n1−m1
2n1 2

m1+n1
2n1 λmin(H1)

2n1
m1 − n1

+ 1

2
p1+q1
2q1 λmin(H2)

2q1
q1 − p1

(25)

Proof Choosing the Lyapunov function candidate as

V1 = 1

2
�
T
� (26)

taking the time derivative of (26) and combine with (24) we have

V̇1 = −�
T H1Sig

m1
n1 (�) − �

T H2Sig
p1
q1 (�) − �

TUM−1
0 sign(�) + �

T M−1
0 (u(v) − v) (27)

From some basic mathematical derivation, it can be seen that �
TUM−1

0 sign(�) −
�
T M−1

0 (u(v) − v) ≥ 0, thus we have

V̇1 ≤ −n
n1−m1
2n1 2

m1+n1
2n1 λmin(H1)V

m1+n1
2n1

1 − 2
p1+q1
2q1 λmin(H2)V

p1+q1
2q1

1
(28)

Based on Lemma 1, the fixed-time convergence of the system state � is guaranteed and
the settling time of the dynamic system can be estimated as (25).

3.3 Fixed-time SlidingMode Controller Design

The fixed-time sliding mode controller is now designed for manipulator system (1) in this
subsection. Considering the transformed errors S1, S2 and the auxiliary dynamic system state
�, the nonsingular fixed-time sliding mode surface is formulated as

s = S2 + �1Sig
m2
n2 (S1) + �2ϕ(S1) − � (29)

where�1 and�2 are designed positivematrix,m2 andn2 are odd integers satisfyingm2 > n2.
ϕ(S1) = [ϕ1(S11), ϕ2(S12), . . . , ϕn(S1n)]T is expressed as

ϕi (S1i ) =

⎧
⎪⎨

⎪⎩

|S1i |
p2
q2 sign(S1i ) if s1i = 0, or

s1i 	= 0, |S1i | > μ

l1S1i + l2S21i sign(S1i ) if s1i 	= 0, |S1i | ≤ μ

(30)

where s1 = [s11, s12, . . . , s1n]T and s1 is defined as s1 = S2+�1Sig
m2
n2 (S1)+�2Sig

p2
q2 (S1).

l1 =
(
2 − p2

q2

)
μ

p2
q2

−1
, l2 =

(
p2
q2

− 1
)

μ
p2
q2

−2
where p2 and q2 are odd integers satisfying

p2 < q2 and μ is a small positive constant.

Theorem 2 Considering the sliding mode surface (29), if s = s1 = 0 is achieved, then the
transformed error S1 is fixed-time stable and the settling time is

T2 <
1

n
n1−m1
2n1 2

m1+n1
2n1 λmin(H1)

2n1
m1 − n1

+ 1

2
p1+q1
2q1 λmin(H2)

2q1
q1 − p1

+ 1

α0n
n2−m2
2n2 2

m2+n2
2n2

2n2
m2 − n2

+ 1

β02
p2+q2
2q2

2q2
q2 − p2

(31)
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Proof Choosing the Lyapunov function candidate

V2 = 1

2

n∑

i=1

S21i (32)

when s = s1 = 0, it indicates that

S2i + �1i |S1i |
m2
n2 sign(S1i ) + �2i |S1i |

p2
q2 sign(S1i ) − �i = 0 (33)

Based on Theorem 1 we have �i is fixed-time stable, thus (33) can be expressed as

S2i = −�1i |S1i |
m2
n2 sign(S1i ) − �2i |S1i |

p2
q2 sign(S1i ) (34)

Take the time derivative of equation (32), we have

V̇2 =
n∑

i=1

S1i Ṡ1i (35)

Combine with (23) and (34), (35) can be rewritten as

V̇2 =
n∑

i=1

S1i hi

(
−�1i |S1i |

m2
n2 sign(S1i ) − �2i |S1i |

p2
q2 sign(S1i )

)

≤ − α0

n∑

i=1

(S21i )
m2+n2
2n2 − β0

n∑

i=1

(S21i )
p2+q2
2q2

(36)

where α0 = min {h1�11, h2�12, . . . , hn�1n} and β0 = min {h1�21, h2�22, . . . , hn�2n}.
Based on Lemma 3, we have

V̇2 ≤ −α0n
n2−m2
2n2 2

m2+n2
2n2 V

m2+n2
2n2

2 − β02
p2+q2
2q2 V

m2+q2
2q2

2
(37)

Thus, based onLemma 1 the fixed-time convergence of the transformed error S1 is guaranteed
and the settling time can be estimated as (31).

Now the fixed-time controller is designed based on (29). Derivate (29) along time, we get

ṡ = Ṡ2 + m2

n2
�1D

m2−n2
n2 (S1)Ṡ1 + �2ϕ̇(S1) − �̇ (38)

Multipulting M0 and considering (23) (24), (38) can be expressed as

M0ṡ =M0 ẋ2 − M0q̈d − M0Ψ̇ z1 − M0Ψ z2 + m2

n2
M0H�1D

m2−n2
n2 (S1)S2 + M0�2ϕ̇(S1)

+ M0H1Sig
m1
n1 (�) + M0H2Sig

p1
q1 (�) +Usign(�) − u(v) + v

(39)
Combine with (15) and use RBF NNs to approximate the system uncertainties f (Z). Thus
(39) can be written as

M0ṡ = v + τd + w∗Tφ(Z) + ε − M0q̈d − M0Ψ̇ z1 − M0Ψ z2 + m2

n2
M0H�1D

m2−n2
n2 (S1)S2

+ M0�2ϕ̇(S1) + M0H1Sig
m1
n1 (�) + M0H2Sig

p1
q1 (�) +Usign(�)

(40)
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Remark 1 Based on (15) considering unknown function f (Z) ∈ Rn , the ideal weight matrix
w∗ ∈ Rp1×n . Thus, the totally number of the estimate parameters are np1. Considering
‖w∗‖F is an unknown constant and define ‖w∗‖2F = kN θ∗ where kN > 0. Thus we can
estimate θ∗ instead of the weight matrix w∗, and the estimate number is decreased from np1
to one, which can reduce the calculation burden.

Assuming that θ̂ , τ̂d are the estimate of θ∗ and τ ∗
d respectively. θ̃ and τ̃d are defined as

θ̃ = θ∗ − θ̂ and τ̃d = τ ∗
d − τ̂d . Then, the adaptive neural fixed-time controller can be written

as
v = − K1Sig

m3
n3 (s) − K2Sig

p3
q3 (s) + M0q̈d + M0Ψ̇ z1 + M0Ψ z2

− m2

n2
M0H�1D

m2−n2
n2 (S1)S2 − M0�2ϕ̇(S1) − M0H1Sig

m1
n1 (�)

− M0H2Sig
p1
q1 (�) −Usign(�) − kN

2
θ̂sφT (Z)φ(Z) − τ̂dsign(s)

(41)

where K1 and K2 are controller gain matrix and m3, n3, p3, q3 are odd integers satisfying
m3 > n3, p3 < q3. The adaptive laws of θ̂ and τ̂d are developed as

˙̂
θ = kN

2
sT sφT (Z)φ(Z) − r1θ̂

m3
n3 − r2θ̂

p3
q3 (42)

˙̂τd = kd‖s‖ − r3τ̂
m3
n3
d − r4τ̂

p3
q3
d (43)

where kd , r1, r2, r3 and r4 are positive numbers.

3.4 Stability Analysis

Theorem 3 For uncertain roboticmanipulator dynamic system (1)with the transformed error
dynamic system (23) and auxiliary nonlinear dynamic system (24). If the fixed-time sliding
mode surface is chosen as (29) and (30), and the controller is designed as (41) with the
adaptive laws (42) and (43), then we have the following statements:

1. The fixed-time sliding mode surface s will converge to a small neighborhood of zero in
fixed time.

2. The transformed error S1 is bounded in fixed time which means that the tracking error
z1 will converge to the neighborhood of the equilibrium in fixed time and satisfy the
prescribed performance.

3. All signals in the closed-loop system are fixed-time stable subject to input saturation.

Proof Considering the following Lyapunov Function

V3 = 1

2
sT M0s + 1

2
θ̃2 + 1

2kd
τ̃ 2d (44)

Taking time derivative of V3 we have

V̇3 = sT M0ṡ − θ̃
˙̂
θ − 1

kd
τ̃d ˙̂τd (45)
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Combine with (40), (42) and (43), we get

V̇3 = sT
(

v − M0q̈d − M0Ψ̇ z1 − M0Ψ z2 + m2

n2
M0H�1D

m2−n2
n2 (S1)S2

+M0�2ϕ̇(S1) + M0H1Sig
m1
n1 (�) + M0H2Sig

p1
q1 (�) +Usign(�)

)

+ sT τd + sT
(
w∗Tφ(Z) + ε

)
− 1

kd
τ̃d

(
kd‖s‖ − r3τ̂

m3
n3
d − r4τ̂

p3
q3
d

)

− θ̃

(
kN
2
sT sφT (Z)φ(Z) − r1θ̂

m3
n3 − r2θ̂

p3
q3

)

(46)

Considering the following inequalities

sT τd ≤ τ ∗
d ‖s‖

sTw∗Tφ(Z) ≤ kN
2

θ∗sT sφT (Z)φ(Z) + 1

2

sT ε ≤ 1

2
sT s + 1

2
ε∗2

(47)

thus (46) can be given as

V̇3 ≤sT
(

v − M0q̈d − M0Ψ̇ z1 − M0Ψ z2 + m2

n2
M0H�1D

m2−n2
n2 (S1)S2 + M0�2ϕ̇(S1)

+M0H1Sig
m1
n1 (�)+M0H2Sig

p1
q1 (�) +Usign(�)

)
+τ ∗

d ‖s‖ + kN
2

θ∗sT sφT (Z)φ(Z)

+ 1

2
+ 1

2
sT s + 1

2
ε∗2 − 1

kd
τ̃d

(
kd‖s‖ − r3τ̂

m3
n3
d − r4τ̂

p3
q3
d

)

− θ̃

(
kN
2
sT sφT (Z)φ(Z) − r1θ̂

m3
n3 − r2θ̂

p3
q3

)

(48)
Substituting (41) into (48), we have

V̇3 ≤ − sT K1Sig
m3
n3 (s) − sT K2Sig

p3
q3 (s) + 1

2
+ 1

2
sT s + 1

2
ε∗2

+ r1θ̃ θ̂
m3
n3 + r2θ̃ θ̂

p3
q3 + r3

kd
τ̃d τ̂

m3
n3
d + r4

kd
τ̃d τ̂

p3
q3
d

(49)

Based on Lemmaes 4 and 5, we can get

θ̃ θ̂
m3
n3 ≤ n3

m3 + n3

(
2θ

∗m3+n3
n3 − (θ̃2)

m3+n3
2n3

)

θ̃ θ̂
p3
q3 ≤ q3

p3 + q3

(

2θ∗
p3+q3
q3 − (θ̃2)

p3+q3
2q3

)

τ̃d τ̂

m3
n3
d ≤ n3

m3 + n3

(
2τ

∗m3+n3
n3

d − (τ̃ 2d )
m3+n3
2n3

)

τ̃d τ̂

p3
q3
d ≤ q3

p3 + q3

(

2τ ∗
p3+q3
q3

d − (τ̃ 2d )
p3+q3
2q3

)

(50)
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Thus (49) can be rewritten as

V̇3 ≤ − λmin(K1)n
n3−m3
2n3 2

m3+n3
2n3

(
1

2
sT s

)m3+n3
2n3 − 2

m3+n3
2n3

r1n3
m3 + n3

(
1

2
θ̃2

)m3+n3
2n3

− 2
m3+n3
2n3 k

m3−n3
2n3

d
r3n3

m3 + n3

(
1

2kd
τ̃ 2d

)m3+n3
2n3 − λmin(K2)2

p3+q3
2q3

(
1

2
sT s

) p3+q3
2q3

− 2
p3+q3
2q3

r2q3
p3 + q3

(
1

2
θ̃2

) p3+q3
2q3 − 2

p3+q3
2q3 k

p3−q3
2q3

d
r4q3

p3 + q3

(
1

2kd
τ̃ 2d

) p3+q3
2q3

+ 1

2
sT s + F

(51)

where

F =1

2
+ 1

2
ε∗2 + 2r1n3

m3 + n3
θ∗

m3+n3
n3 + 2r2q3

p3 + q3
θ∗

p3+q3
q3

+ 2r3n3
kd(m3 + n3)

τ
∗m3+n3

n3
d + 2r4q3

kd(p3 + q3)
τ ∗

p3+q3
q3

d

Based on Lemma 3, we have

V̇3 ≤ −3
n3−m3
2n3 CV

m3+n3
2n3

3 − DV
p3+q3
2q3

3 + F (52)

where

C =min

⎧
⎨

⎩
λmin(K1)n

n3−m3
2n3 2

m3+n3
2n3 − 1

(λmax(M0))
m3+n3
2n3

, 2
m3+n3
2n3

r1n3
m3 + n3

, 2
m3+n3
2n3 k

m3−n3
2n3

d
r3n3

m3 + n3

⎫
⎬

⎭

D =min

⎧
⎨

⎩
λmin(K2)2

p3+q3
2q3 − 1

(λmax(M0))
p3+q3
2q3

, 2
p3+q3
2q3

r2q3
p3 + q3

, 2
p3+q3
2q3 k

p3−q3
2q3

d
r4q3

p3 + q3

⎫
⎬

⎭

(53)

From Lemma 2, we have s, θ̃ and τ̃d are fixed-time stable and can converge to a small
neighborhood of zero by choosing suitable parameters. The residual set is

V3 ≤ min

⎧
⎪⎨

⎪⎩

(
F

3
n3−m3
2n3 C(1 − δ)

) 2n3
m3+n3

,

(
F

D(1 − δ)

) 2q3
p3+q3

⎫
⎪⎬

⎪⎭
(54)

and the settling time is

T3 <
1

3
n3−m3
2n3 Cδ

2n3
m3 − n3

+ 1

Dδ

2q3
q3 − p3

(55)

Remark 2 It can be seen that s, θ̃ and τ̃d are bounded and converge to a small neighborhood
of zero from (54). Considering θ̃ = θ∗ − θ̂ , τ̃d = τ ∗

d − τ̂d and the boundedness of θ∗ and τ ∗
d ,

then we have θ̂ and τ̂d are bounded. When s is converge to a small neighborhood of zero, it
implies that S1, S2 are bounded. Thus from (20), it is easy to find that z1 and z2 are bounded.
Therefore, we can conclude that the output q will track the desired trajectory qd successfully
with input saturation and perscribed constraints, and all signals in the closed-loop system are
fixed-time stable.
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Fig. 1 Trajectory tracking performance of q1
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Fig. 2 Trajectory tracking performance of q2

Remark 3 The main challenge of this paper is to use the sliding mode method to design a
fixed-time prescribed performance controller that meets the performance requirements and
construct a fixed-time auxiliary dynamic system to deal with input saturation nonlinearity.
Unlike most prescribed performance controllers that achieve uniformly ultimately bounded
[36–38], fixed-time stability is proved by using the Lyapunov method. Compared with [29]
and [30], a fixed-time auxiliary dynamic system is designed to deal with input saturation
and only one neural parameter needs to be adjusted online, which can reduce the calculation
burden.
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Fig. 3 Trajectory tracking error of q1
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Fig. 4 Trajectory tracking error of q2

4 Simulation

Simulation results on a 2-DOF robotic manipulator with input saturation are shown in this
section to illustrate the effectiveness of the adaptive neural fixed-time controller proposed in
this paper.

The simulation model of the manipulator is chosen from Ge et al [47], details are as
follows

M(q) =
[
p(1) + p(2) + 2p(3)cos(q2) p(2) + p(3)cos(q2)

p(2) + p(3)cos(q2) p(2)

]

C(q, q̇) =
[−p(3)q̇2sin(q2) −p(3)(q̇1 + q̇2)sin(q2)

p(3)q̇1sin(q2) 0

]
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Fig. 6 Transformed error S12

G(q) =
[
p(4)gcos(q1) + p(5)gcos(q1 + q2)

p(5)gcos(q1 + q2)

]

τd =
[
0.3sin(t)
0.3sin(t)

]

where p = [2.9 0.76 0.87 3.04 0.87] kgm2 and g = 9.8m/s2 . The RBF NNs are
constructed by using 54 nodeswith the center evenly laying on [−1 1]×[−1 1]×[−1 1]×
[−1 1] and the width of Gaussian function are selected as η1 = 3 and η2 = 5.

Performance function is designed as

σi (t) = (1.5 − 0.02)e−t + 0.02, i = 1, 2 (56)
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Fig. 8 Sliding mode surface s2

and the tracking errors are required to satisfy (16) where k11 = 1, k12 = 0.8, k21 = 0.8 and
k22 = 1. The design parameters are chosen as M0 = diag {2 4} H1 = H2 = diag {10 10},
�1 = diag {5 3}, �2 = diag {5 4} and K1 = K2 = diag {8 8}. m1 = 21, n1 = 17,
p1 = 11, q1 = 17, m2 = 23, n2 = 17, p2 = 17, q2 = 23, m3 = 37, n3 = 29, p3 = 31,
q3 = 33. μ = 0.1, kN = 5, kd = 15, r1 = r2 = 3 and r3 = r4 = 0.9. The desired trajectory
qd = [0.6 + 0.5cos(t), 0.3 + 0.8sin(t)]T with the initial position and velocity are selected
as q1 = 1.4rad , q2 = 0.8rad , q̇1 = q̇2 = 0rad/s respectively. The input saturation is set as
umax = 50Nm and t ∈ [0, 20].

Simulation results are shown from Figs. 1, 2, 3, 4, 5, 6, 7,8, 9, 10, 11 and 12. Figs. 1
and 2 show the manipulator joint trajectory tracking performance. From these two figures,
we can see that the joint angular can track the desired trajectory successfully. The tracking
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Fig. 10 Control input of u2

error of the two joints will converge to a small region of zero in fixed time and satisfy the
prescribed performance requirements, which can be seen in Figs. 3 and 4. The transformed
errors S11 and S12 are shown in Figs. 5 and 6 which are converged to the neighborhood of
zero. The convergence of slidingmode surfaces s1 and s2 can be seen in Figs. 7 and 8. Control
inputs are presented in Figs. 9 and 10. We can see that the actual control input u1 and u2
are within the limit of input saturation while the designed control input v1 and v2 exceed the
limit amplitude. Therefore, it indicates that by introducing the fixed-time auxiliary dynamic
system, the influence of input saturation nonlinearity is handled successfully. The auxiliary
dynamic system state � is shown in Figs. 11 and 12 shows the estimated value of θ̂ .

From Figs. 1, 2, 3, 4, 5, 6, 7,8, 9, 10, 11 and 12 it is easy to see that the adaptive fixed-time
neural sliding mode controller proposed in this paper can make the manipulator track the
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Fig. 12 Norm estimation of RBF NNs weight matrix

desired trajectory successfully when considering system uncertainty, input saturation and
prescribed constraints. Thus the simulation results verify the effectiveness of our proposed
fixed-time trajectory tracking controller.

5 Conclusions

In this paper, the sliding mode based fixed-time adaptive neural trajectory tracking con-
troller for uncertain robotic manipulators under input saturation, external disturbances and
prescribed constraints is constructed. The prescribed performance method is utilized to deal
with the prescribed constraints of trajectory tracking error. The effect of input saturation is
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tackled successfully by employing a novel fixed-time auxiliary nonlinear dynamic system
and the fixed-time sliding mode surface is introduced for controller design. RBF NNs are
constructed to approximate the system uncertainty. Different from most neural controllers
that adjust all weight parameters, in this paper, only one parameter is needed to be updated
online by estimating the norm of the weight matrix. Furthermore, by using the Lyapunov
synthesis, all signals in the closed-loop system are illustrated to be fixed-time stable. Finally,
simulation works show the feasibility and effectiveness of the fixed-time neural tracking
controller proposed in this article.

For future studies, how to achieve fixed-time stability when only position measurement
is available is one research direction. Meanwhile, the convergence time of the fixed-time
stability depends on the control parameters and how to ensure the stability of the system
within a given time constant is another research direction in the future.
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