
Neural Processing Letters (2022) 54:3641–3656
https://doi.org/10.1007/s11063-022-10778-w

Synchronization Analysis of Multi-Order Fractional Neural
Networks Via Continuous and Quantized Controls

Minglin Xu1 · Peng Liu1 · Feifei Yang1 · Na Liu1 · Junwei Sun1

Accepted: 9 February 2022 / Published online: 25 February 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In this paper, the synchronization of multi-order fractional neural networks (MoFNNs) with
time-varying delays is investigated. Two kinds of controls, namely continuous control and
quantized control, are introduced respectively to implement the synchronization. Moreover,
by virtue of vector Lyapunov functions, sufficient criteria for realizing the synchronization
of the MoFNNs with time-varying delays are deduced. The results of this paper cover the
synchronization of traditional fractional neural networks with identical derivative order as a
special case. Finally, a numerical example with two cases is given to verify the theoretical
results.

Keywords Synchronization · Fractional neural networks · Multiple order · Quantized
control

1 Introduction

Fractional systems are characterized by that each state described by a differential equation
in systems is allowed to have an non-integer order. It has been found that fractional systems
are fit for simulating many physical systems with memory hysteresis and diffusion dynamics
[1–3], and can be successfully used in all kinds of fields on engineering and science such
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as viscous-elastic material, electronic device, colored noise, and so forth [4–9]. To this end,
fractional systems have been received increasing attention in the past few years.

In some scenarios, the fractional systems may be with multi-order, which means that
each differential equation of state has its own derivative order which may differ from the
others. Compared with fractional systems with the identical order, multi-order fractional
systems are more flexible in terms of order and may be more accurate in portraying some
phenomena. Consequently, the attention of dynamic behavior analysis towards multi-order
fractional systems has increased in recent years [10–15]. In [10], underpinning the theory
of positive system, the asymptotic stability on multi-order fractional time-varying delayed
system was addressed. In [13], the global boundedness of solution and asymptotic stability
for nonlinear multi-order fractional systems were investigated. In [14], by proposing a multi-
order comparison principle, the issue of asymptotic stability on the multi-order fractional
system was discussed in detail.

Fractional neural networks are typical fractional systems. It has been substantiated that
fractional neural networks with different dynamical behaviors can be successfully utilized
in many applications [7–9, 16–18]. In particular, fractional neural networks with synchro-
nization can effectively depict a number of physical phenomena and can be utilized in
communication science, associative memory, combinational optimization, etc [19–23]. In
view of this, plenty of efforts have been dedicated to investigate the synchronization on vari-
ous fractional neural networks in current years [24–30]. For instance, the synchronization of
fractional neural networks with unbounded time-varying delays was discussed in [26]. Some
interesting results concerning the synchronization of fractional recurrent neural networks are
presented in [27]. The cluster synchronization for fractional time delayed neural networks
in finite-time sense and asymptotic sense were reported in [28]. Note that the current works
about the synchronization of fractional neural networks are with identical derivative order.

In view that multi-order fractional neural networks are valuable generalizations of frac-
tional neural networks with identical derivative order, they have widespread application
potentials. However, in comparison with numerous results for the dynamic characteristics of
fractional neural networks with identical derivative order, there are few works on the dynam-
ical behavior analysis of multi-order fractional neural networks. Just in [15], the global
stabilization for multi-order fractional neural networks based on memristor with multiple
time-varying delays was reported. As far as authors know, there has been no report concern-
ing the synchronization of multi-order fractional neural networks, in spite of their widespread
application potentials.

In addition, the existence of time delays is ineluctability in designing neural networks
owing to large-scale networks and limited channels of information transmission between
neurons [31, 32]. In some scenarios, the time delays actually may be changed with regard to
time and even unbounded. In the existing research results of multi-order fractional systems,
the networks considered are with no delays or bounded time delays [10–14]. This stimulates
us to discuss the synchronization of multi-order fractional systems with time-varying delays,
wherein the delays considered are not assumed to be bounded.

Inspired by the above discussions, the synchronization of MoFNNs with time-varying
delays is investigated in this paper. Themain contributions of this paper include the following
aspects: Firstly, by virtue of an inequality for multi-order fractional systems with time-
varying delays, a vector Lyapunov function is introduced to investigate the synchronization
of MoFNNs with time-varying delays. Secondly, in addition to the continuous control, a
quantized control is introduced to realize the synchronization of MoFNNs, which effectively
reduces the transmission pressure in the control. Finally, the systems investigated in this paper
are of multiple order, which can be viewed as extensions of fractional systems investigated
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in [24–30]. And the criteria herein are also applicable to the synchronization of fractional
systems with identical derivative order.

The remaining part of this paper is outlined as follows: Several definitions and lemmas
about fractional calculus are introduced and the model description of MoFNNs is provided
in Sect. 2. Sufficient criteria are deduced to guarantee the realization of synchronization on
MoFNNswith time-varying delays in Sect. 3.Moreover, an example for verifying the validity
and correctness of the results is given in Sect. 4. Finally, the conclusion is made in Sect. 5.

Notation: R
n×n and R

n respectively represent the sets of n× n-dimensional real matrices
and n-dimensional real column vectors. B > 0 (∈ R

n×n) signifies that B is positive definite.
For z = (z1, · · · , zn)T ∈ R

n , z > 0 (< 0) means that zi > 0 (< 0) for i = 1, 2, · · · , n. N

is the set of integers.

2 Preliminaries

In this section, several definitions and lemmas for the fractional calculus are introduced.
Moreover, the model description of MoFNNs with time-varying delays is provided.

2.1 Definitions and Lemmas of Fractional Calculus

Definition 1 [33] The fractional integral of a vector function h(t) = (h1(t), · · · , hn(t))T is
denoted by D−β

t0+h(t) = (D−β1
t0+ h1(t), · · · , D−βn

t0+ hn(t))T , where

D−βi
t0+ hi (t) = 1

�(βi )

∫ t

t0
(t − ι)βi−1hi (ι)dι, t ≥ t0,

β = (β1, · · · , βn)
T with βi > 0 for i = 1, 2, · · · , n, �(z) = ∫ ∞

0 ιz−1e−ιdι.

Definition 2 [33] The Caputo fractional derivative of a vector function hi (t) is denoted by
C Dβ

t0+h(t) = (C Dβ1
t0+h1(t), · · · ,C Dβn

t0+hn(t))
T , where

C Dβi
t0+hi (t) = 1

�(1 − βi )

∫ t

t0
(t − ι)−βi ḣi (ι)dι, t ≥ t0,

β = (β1, · · · , βn)
T with βi ∈ (0, 1) for i = 1, 2, · · · , n, ḣi (ι) stands for the first-order

derivative of hi (ι).

Lemma 1 [34] The fractional calculus of a continuously differentiable function z(t) ∈ R

obeys the following derivative rule:

C Dβ̄
t0+z

2(t) ≤ 2z(t)C Dβ̄
t0+z(t),

where β̄ ∈ (0, 1) is a constant.

Definition 3 Amatrix is calledMetlzer matrix if its non-diagonal elements are non-negative;
a matrix is called nonnegative matrix if its elements are non-negative; a matrix is Hurwitz
matrix if all the eigenvalues have negative real parts.

The following lemma refers to the comparison principle for multi-order fractional time-
varying delayed systems.
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Lemma 2 [15] Assume that there exists aMetlzer matrix� ∈ R
n×n and a nonnegativematrix

� ∈ R
n×n such that the nonnegative vector y(t) = (y1(t), · · · , yn(t))T ∈ R

n satisfies:{
C Dβ

t0+y(t) ≤ �y(t) + �y(t − τ(t)),
y(ι) = φ(ι) ≥ 0, ι ∈ [t0 − ϑ, t0].

where β = (β1, · · · , βn)
T with βi ∈ (0, 1] for i = 1, 2, · · · , n and C Dβ

t0+y(t) =
(C Dβ1

t0+y1(t), · · · , C Dβn
t0+yn(t))T ; τ(t) = (τ1(t), · · · , τn(t))T (∈ R

n) stands for the term
of time delays which satisfies τi (t) ≤ t + ϑ (ϑ > 0) and limt→+∞ t − τi (t) = +∞ for
i = 1, 2, · · · , n. If � + � is a Hurwitz matrix, one has limt→+∞ y(t) = 0.

2.2 Model Description

Consider a multi-order fractional system consisting of N MoFNNswith time-varying delays,
and the i-th MoFNN is introduced by

C Dβ
t0+xi (t) = − Axi (t) + Bh(xi (t)) + Fh(xi (t − τ(t)))

+ c
N∑
j=1

gi j�x j (t) + E + ui (t), i = 1, 2, · · · , N , (1)

where β = (β1, · · · , βn)
T with βi ∈ (0, 1) (i = 1, 2, · · · , n) represents the multi-

order vector; xi (t) = (xi1(t), · · · , xin(t))T ∈ R
n stands for the state vector and

C Dβ
t0+xi (t) = (C Dβ1

t0+xi1(t), · · · , C Dβn
t0+xin(t))

T ; h(xi ) = (h1(xi1), · · · , hn(xin))T :
R
n → R

n stands for the activation function vector, which is continuously differentiable;
τ(t) = (τ1(t), · · · , τn(t))T is the vector of time delays, which satisfies τi (t) ≤ t+ϑ (ϑ > 0)
and limt→+∞ t − τi (t) = +∞ for i = 1, 2, · · · , n; constant c > 0 represents the coupling
strength; A = diag(a1, · · · , an) > 0 is the self-feedback matrix; B = (bpq)n×n ∈ R

n×n

and F = ( f pq)n×n ∈ R
n×n signify the connection and delayed connection weight matrices

respectively; gi j stand for the elements of coupling configuration matrix G = (gi j )N×N and
obey the following rule: gi j > 0 when there exist directed links from node j to i (i �= j),
or else, gi j = 0, and gii = −∑N

j=1, j �=i gi j (i = 1, 2, · · · , N ); � = diag(γ1, · · · , γn) > 0
and E ∈ R

n represents the inner coupling matrix and external input vector respectively.
ui (t) = (ui1(t), · · · , uin(t))T ∈ R

n stands for the feedback control.

Remark 1 Due to the combination of the characteristics of fractional calculus and neural
networks, fractional neural networks have been widely applied in many fields, such as system
identification [8, 9], associative memory [7, 18, 19], secure communication [22], parameter
estimation [23], and so forth. Particularly, as valuable generalizations for traditional fractional
neural networks and with greater flexibility in fractional differential order, it is foreseeable
that the MoFNNs will have a wide range of applications.

Let C([t0 − ϑ, t0], R
n) be the set of continuous function mapping [t0 − ϑ, t0] → R

n . The
initial condition of MoFNN (1) has the form of

xik(ι) = φik(ι), ι ∈ [t0 − ϑ, t0], k = 1, 2, · · · , n,

where φi ∈ C([t0 − ϑ, t0], R
n).

In addition, the desired state of the multi-order fractional system is denoted by s(t), which
satisfies

C Dβ
t0+s(t) = − As(t) + Bh(s(t)) + Fh(s(t − τ(t))) + E, (2)
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where C Dβ
t0+s(t) = (C Dβ1

t0+s1(t), · · · , C Dβn
t0+sn(t))

T , and s(t) could be viewed as a cycle
orbit, an equilibrium point or even a chaos. The main objective in the following is to devise
suitable controls ui (t) so that the solutions in (1) could be synchronized with desired state
s(t) in (2) as t → +∞, i.e., limt→+∞ ‖xi (t) − s(t)‖ = 0 for i = 1, 2, · · · , N .

A necessary assumption is provided as follows:

Assumption 1 There exists positive constant wp such that

| h p(x) − h p(y) |≤ wp | x − y |, ∀x, y ∈ R, p = 1, 2, · · · , n. (3)

3 Main Results

In this section, the continuous control and quantized control are introduced respectively for
achieving the synchronization of MoFNNs.

Without loss of generality, assume that the first l ∈ N (1 ≤ l ≤ N ) MoFNNs are picked
to be pinned. Denote node 0 as a virtual node and di (≥ 0) as the link weight from node
0 to i (i = 1, 2, · · · , N ), which meets that di > 0 for 1 ≤ i ≤ l, otherwise, di = 0.
Correspondingly, a graph G is gained by combining original graph G, virtual node 0 along
with the links from it to the first l nodes. The assumption on the graph G is as follows:

Assumption 2 G contains a direct spanning tree.

From Assumption 2, the following lemma is given.

Lemma 3 [35] Under Assumption 2, there exists a diagonal matrix	 = diag(ω1, , · · · , ωN )

(> 0) such that
(L + D)T	 + 	(L + D) ≥ κ	, (4)

where L = (li j )N×N is the Laplacian matrix of graph G, whose elements satisfy li j = −gi j
(i, j = 1, 2, · · · , N ); D = diag(d1, · · · , dN ); κ = λmin((L+D)T	+	(L+D))/λmax(	)

is a positive constant.

Denoting ei (t) = xi (t)− s(t) = (xi1(t)− s1(t), · · · , xin(t)− sn(t))T as the error vector,
the following error equation is obtained,

C Dβ
t0+ei (t) = − Aei (t) + Bh̄(ei (t)) + Fh̄(ei (t − τ(t)))

+ c
N∑
j=1

gi j�x j (t) + ui (t), i = 1, 2, · · · , N , (5)

where h̄(ei (t)) = h(xi (t))− h(s(t)) and h̄(ei (t − τ(t))) = h(xi (t − τ(t)))− h(s(t − τ(t))).
Due to the existence of different differential orders in the MoFNNs, it is not feasible to

analyze the errors by using methods provided in [28, 29, 36, 37], which analyzes the error
of each network as a whole. Instead, for i-th (i = 1, 2, · · · , N ) MoFNN, the error function
of p-th (p = 1, 2, · · · , n) neuron is introduced as follows:

C D
βp
t0+eip(t) = − apeip(t) +

n∑
q=1

bpq h̄q(eiq(t)) +
n∑

q=1

f pq h̄q(eiq(t − τq(t)))

+ c
N∑
j=1

gi jγpx jp(t) − uip(t). (6)
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3.1 The Synchronization of MoFNNs with Time-varying Delays Under a Continuous
Control

Introduce a continuous control as follows:

ui (t) = −cdi�ei (t), (7)

where constant di stands for the feedback gain with di > 0 if 1 ≤ i ≤ l, otherwise, di = 0.
Denote� = −diag(2a1−2n+cκγ1, 2a2−2n+cκγ2, · · · , 2an−2n+cκγn)+(b2pqw

2
q)n×n

and � = ( f 2pqw
2
q)n×n , where κ = λmin((L + D)T	 + 	(L + D))/λmax(	) > 0 and

D = diag(

l︷ ︸︸ ︷
d1, · · · , dl ,

N−l︷ ︸︸ ︷
0, · · · , 0). It can be observed that � is a Metlzer matrix and � is

nonnegative. Then, the following theorem about the synchronization of MoFNNs with time-
varying delays under continuous control (7) is obtained.

Theorem 1 Under Assumptions 1 and 2, the synchronization of MoFNNs (1) can be realized
via continuous control (7) if � + � is a Hurwitz matrix.

Proof Consider a vector Lyapunov function V (t) = (V1(t), · · · , Vn(t))T , and

Vp(t) = 1

2

N∑
i=1

ωi e
2
i p(t) = 1

2
εTp (t)	εp(t), p = 1, 2, · · · , n, (8)

where εp(t) = (e1p(t), · · · , eNp(t))T , 	 is defined in Lemma 3.
From Lemma 1 and (8), one has

C D
βp
t0+Vp(t) ≤

N∑
i=1

ωi eip(t)
C D

βp
t0+eip(t)

=
N∑
i=1

ωi eip(t)
(

− apeip(t) +
n∑

q=1

bpq h̄q(eiq(t))

+
n∑

q=1

f pq h̄q(eiq(t − τq(t))) + c
N∑
j=1

gi jγpx jp(t) − cdiγpeip(t)
)
.

With Assumption 1, one arrives at

N∑
i=1

ωi eip(t)
( n∑
q=1

bpq h̄q(eiq(t))
)

≤1

2

N∑
i=1

ωi

(
ne2i p(t) +

n∑
q=1

b2pqw
2
qe

2
iq(t)

)

=nVp(t) +
n∑

q=1

b2pqw
2
qVq(t).

Similarly,

N∑
i=1

ωi eip(t)
( n∑
q=1

f pq h̄q(eiq(t − τq(t)))
)

≤ 1

2

N∑
i=1

ωi

(
ne2i p(t) +

n∑
q=1

f 2pqw
2
qe

2
iq(t − τq(t))

)

= nVp(t) +
n∑

q=1

f 2pqw
2
qVq(t − τq(t)).
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Moreover, it follows from Lemma 3 that

N∑
i=1

ωi eip(t)
(
c

N∑
j=1

gi jγpx jp(t) − cdiγpeip(t)
)

= cγpε
T
p (t)	Gεp(t) − cγpε

T
p (t)	Dεp(t)

= − cγpε
T
p (t)	(L + D)εp(t)

= − 1

2
cγpε

T
p (t)

(
(L + D)T	

+ 	(L + D)T
)
εp(t)

≤ − 1

2
cγpε

T
p (t)κ	εp(t)

= − cκγpVp(t).

Combining the above inequalities yields to

C D
βp
t0+Vp(t) ≤ −(2ap − 2n + cκγp)Vp(t) +

n∑
q=1

b2pqw
2
qVq(t) +

n∑
q=1

f 2pqw
2
qVq(t − τq(t)).

According to the definitions of � and �,

C Dβ
t0+V (t) ≤�V (t) + �V (t − τ(t)),

where C Dβ
t0+V (t) = (C Dβ1

t0+V1(t), · · · , C Dβn
t0+Vn(t)). Since � + � is a Hurwitz matrix,

from Lemma 2, one arrives at limt→+∞ V (t) = 0, implying limt→+∞ εp(t) = 0 for all
p = 1, 2, · · · , n. As a consequence, the synchronization of MoFNNs (1) is achieved via
continuous control (7). 
�
Remark 2 The vector Lyapunov function introduced in this paper can be seen as an extension
of the scalar Lyapunov function in terms of dimensionality. In view of this, the vector Lya-
punov functionmay bemore advantageous than the scalar Lyapunov function in analyzing the
dynamical behaviors of systems in certain situations. In [28, 29, 36, 37], the scalar Lyapunov
function is utilized to investigate the dynamic behaviors of fractional systems with identical
derivative order. Due to that the fractional systems of this paper are with different deriva-
tive orders, the scalar Lyapunov function cannot be directly utilized herein, and the vector
Lyapunov function is introduced in Theorem 1 analyze the synchronization of MoFNNs.

Especially, if βi ≡ β0 (0 < β0 < 1) for i = 1, 2, · · · , n, theMoFNN (1) and error system
(5) can be respectively rewritten as

C Dβ0
t0+xi (t) = − Axi (t) + Bh(xi (t)) + Fh(xi (t − τ(t)))

+ c
N∑
j=1

gi j�x j (t) + ui (t), i = 1, 2, · · · , N , (9)

and

C Dβ0
t0+ei (t) = − Aei (t) + Bh̄(ei (t)) + Fh̄(ei (t − τ(t)))

+ c
N∑
j=1

gi j�x j (t) + ui (t), i = 1, 2, · · · , N , (10)
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where C Dβ0
t0+xi (t) = (C Dβ0

t0+xi1(t), · · · , C Dβ0
t0+xin(t))

T .
One can see that Theorem 1 still holds for βi ≡ β0 (i = 1, 2, · · · , n). That is, by virtue of

vector Lyapunov function (8), the following corollary about the synchronization on fractional
neural networks (9) with identical derivative order can be obtained.

Corollary 1 Under Assumptions 1 and 2, the synchronization of fractional neural networks
(9) with identical derivative order can be realized via continuous control (7) if � + � is a
Hurwitz matrix, where matrices � and � are the same as defined above.

It should be noted that if the scalar Lyapunov function is used to investigate the synchro-
nization of fractional neural networks (9) with identical derivative order, a corollary with
another form of synchronization criteria is obtained.

Corollary 2 Under Assumptions 1 and 2, the synchronization of fractional neural networks
(9) with identical derivative order can be realized via continuous control (7) if the following
inequality can be satisfied

c > max

{
λmax(μ1BBT + W/μ1 + μ1 In + μ2FFT − 2A)

κλmin(�)
, 0

}
, (11)

where μ1 and μ2 are positive constants with μ1 > μ2 > max1≤p≤n{wp}, κ is defined in
Lemma 3, and W = diag(w2

1, · · · , w2
n).

Proof Consider a scalar Lyapunov function as

Ṽ (t) = 1

2
ε̃T (t)(	 ⊗ In)ε̃(t), (12)

where 	 is as defined in Lemma 3, and ε̃(t) = (eT1 (t), · · · , eTN (t))T . In light of error system
(6) and the analysis in [26], one can get

C Dβ0
t0+Ṽ (t) + μ1Ṽ (t) − μ2 sup

−τ(t)≤�≤0
Ṽ (t + �)

≤ − 1

2
(c − λmax(M)

κλmin(�)
)ε̃T (t)(	 ⊗ In)ε̃(t) + ε̃T (t − τ(t))(	 ⊗ (−μ2 In − W/μ2

2
))ε̃(t − τ(t)),

where M = μ1BBT +W/μ1 + μ1 In + μ2FFT − 2A. According to (11) and the definition
of μ2, one has

C Dβ0
t0+Ṽ (t) + μ1Ṽ (t) − μ2 sup

−τ(t)≤�≤0
Ṽ (t + �) ≤ 0,

which follows from the results in [26] that limt→+∞ Ṽ (t) = 0, implying that
limt→+∞ ||ε̃(t)|| = 0. Hence, the synchronization of fractional neural networks (9) with
identical derivative order can be realized via continuous control (7). 
�

Remark 3 Compared with the results about the synchronization of fractional systems in [27–
30], where the fractional systems are with identical derivative order, the synchronization of
multi-order fractional systems is discussed in Theorem 1.What is more, as a special case, the
synchronization of fractional time-varying delayed neural networks with identical derivative
order is considered in Corollary 2. In view of this, the obtained results in Theorem 1 are more
general.
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3.2 The Synchronization of MoFNNs with Time-varying Delays Under a Quantized
Control

Consider the following function:

ξ(ι) =

⎧⎪⎨
⎪⎩

χi ,
1

1 + θ
χi < ι ≤ 1

1 − θ
χi

0, ι = 0
−ξ(−ι), ι < 0

, (13)

where ξ(·) : R → Q signifies the quantizer and Q = {±χi : χi = �iχ0, i =
0,±1,±2, · · · , } ∪ {0} with χ0 > 0; θ = 1−�

1+�
with 0 < � < 1. According to the anal-

ysis of [40], there exists a Filippov solution δ ∈ [−θ, θ) satisfying ξ(ι) = (1 + δ)ι.
Based on (13), introduce the following quantized control:

ui (t) = −cdi�ξ̄(ei (t)), (14)

where di as defined in control (7), and ξ̄ (ei (t)) = (ξ(ei1(t)), · · · , ξ(ein(t)))T .
Denote �̃ = −diag(2a1−2n+cκ̃γ1, 2a2−2n+cκ̃γ2, · · · , 2an−2n+cκ̃γn)+(b2pqw

2
q)n×n

and � = ( f 2pqw
2
q)n×n , where κ̃ = λmin((L + D̃)T	 + 	(L + D̃))/λmax(	) > 0 and

D̃ = (1 − θ)diag(

l︷ ︸︸ ︷
d1, · · · , dl ,

N−l︷ ︸︸ ︷
0, · · · , 0). It can be observed that �̃ is a Metlzer matrix and

� is nonnegative. The following theorem about the synchronization on MoFNNs with time-
varying delays under quantized control (14) is obtained.

Theorem 2 Under Assumptions 1 and 2, the synchronization of MoFNNs (1) can be realized
via quantized control (14) if �̃ + � is a Hurwitz matrix.

Proof It follows from the vector Lyapunov function (8) and Lemma 1 that

C D
βp
t0+Vp(t) ≤

N∑
i=1

ωi eip(t)
C D

βp
t0+eip(t)

=
N∑
i=1

ωi eip(t)
(

− apeip(t) +
n∑

q=1

bpq h̄q(eiq(t))

+
n∑

q=1

f pq h̄q(eiq(t − τq(t))) + c
N∑
j=1

gi jγpx jp(t) − cdiγpξ(eip(t))
)
.

Similar to the proofs in Theorem 1, one arrives at

N∑
i=1

ωi eip(t)
( n∑
q=1

bpq h̄q(eiq(t))
)

≤ nVp(t) +
n∑

q=1

b2pqw
2
qVq(t),

and

N∑
i=1

ωi eip(t)
( n∑
q=1

f pq h̄q(eiq(t − τq(t)))
)

≤ nVp(t) +
n∑

q=1

f 2pqw
2
qVq(t − τq(t)).
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Moreover, it follows from Lemma 3 that

N∑
i=1

ωi eip(t)
(
c

N∑
j=1

gi jγpx jp(t) − cdiγpξ(eip(t))
)

≤
N∑
i=1

ωi eip(t)
(
c

N∑
j=1

gi jγpx jp(t) − cdiγp(1 − θ)eip(t)
)

=cγpε
T
p (t)	Gεp(t) − cγpε

T
p (t)	D̃εp(t)

= − 1

2
cγpε

T
p (t)

(
(L + D̃)T	 + 	(L + D̃)T

)
εp(t)

≤ − 1

2
cγpε

T
p (t)κ̃	εp(t)

= − cκ̃γpVp(t).

Combining the above inequalities yields to

C D
βp
t0+Vp(t) ≤ −(2ap − 2n + cκ̃γp)Vp(t) +

n∑
q=1

b2pqw
2
qVq(t) +

n∑
q=1

f 2pqw
2
qVq(t − τq(t)).

Hence, one obtains

C Dβ
t0+V (t) ≤�̃V (t) + �V (t − τ(t)),

where C Dβ
t0+V (t) = (C Dβ1

t0+V1(t), · · · , C Dβn
t0+Vn(t)). As �̃ + � is a Hurwitz matrix, in

virtue of Lemma 2, we have limt→+∞ V (t) = 0, implying that limt→+∞ εp(t) = 0 for p =
1, 2, · · · , n. Therefore, the synchronization of MoFNNs (1) can be achieved via quantized
control (14). 
�
Remark 4 In Theorem1, the continuous control is proposed to investigate the synchronization
on MoFNNs with time-varying delays. In contrast in Theorem 2, the quantized control is
proposed to realize the synchronization of MoFNNs with time-varying, which can reduce
the transmission pressure effectively.

Similar to Corollaries 1 and 2, the following two corollaries about the synchronization of
fractional neural networks (9) with identical derivative order under quantized control (14)
are presented.

Corollary 3 Under Assumptions 1 and 2, the synchronization of fractional neural networks
(9) with identical derivative order can be realized via quantized control (14) if �̃ + � is a
Hurwitz matrix.

Corollary 4 Under Assumptions 1 and 2, the synchronization of fractional neural networks
(9) with identical derivative order can be realized via quantized control (14) if the following
inequality can be satisfied

c > max

{
λmax(μ1BBT + W/μ1 + μ1 In + μ2FFT − 2A)

κ̃λmin(�)
, 0

}
, (15)

where μ1 and μ2 are positive constants with μ1 > μ2 > max1≤p≤n{wp}, κ̃ as denoted
above, and W = diag(w2

1, · · · , w2
n).
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Fig. 1 The graph of orbits for the network (2)

Proof It following from Lyapunov function (12) and error system (10) that
C Dβ0

t0+Ṽ (t) + μ1Ṽ (t) − μ2 sup
−τ(t)≤�≤0

Ṽ (t + �)

≤ − 1

2
(c − λmax(M)

κ̃λmin(�)
)εT (t)(	 ⊗ In)ε(t) + εT (t − τ(t))(	 ⊗ (−μ2 In − W/μ2

2
))ε(t − τ(t)),

where M = μ1BBT +W/μ1 +μ1 In +μ2FFT −2A. Similar to the arguments in Corollary
2, we know that the synchronization of fractional neural networks (9) with identical derivative
order can be realized via quantized control (14). 
�
Remark 5 In previous works [24, 27–30, 41], the continuous control or quantized control was
utilized to realize the synchronization of fractional neural networks that are with identical
derivative order. In contrast, the two kinds of controls are introduced to implement the syn-
chronization of MoFNNs in Theorem 1 and Theorem 2 respectively. Therefore, the results
of this paper can be viewed as extensions for the existing works.

4 A Numerical Example

In this section, an example is provided to demonstrate the effectiveness of results.
Consider a three-dimensional (n = 3) isolated MoFNN with time-varying delays, where

β = (0.92, 0.95, 0.98)T ; τ1(t) = τ2(t) = τ3(t) = lg(1 + t)/10; h1(·) = h2(·) = h3(·) =
tanh(·); E = (0, 0, 0)T ; A = diag(1, 1, 1), and

B =
⎛
⎝ 1.99 −1.59 0

2.11 1.77 1.21
−4.85 0.5 0.85

⎞
⎠ , F =

⎛
⎝−0.1 0.2 0

−0.2 −0.05 −0.2
0 0 0.2

⎞
⎠ .

The orbits of network (2) with initial values φ(t0) = (1.1, 0.01,−1)T (t0 = 0) are
depicted in Fig. 1.

In the following, a multi-order fractional system composed of 9 (N = 9) MoFNNs (1)
with time-varying delays is considered, in which matrix � = diag(1, 1, 1). Moreover, the
initial conditions of those networks are chosen randomly and the topology is shown in Fig.
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Fig. 2 The topology of MoFNNs
(1) with a virtual node 0

Fig. 3 The transient behaviors of
synchronized error E(t) under
continuous control (7)

0 1 2 3 4 5
0

1

2

3

4

5

2, whose weights of all directed connections are equal 1. According to the given activation
function tanh(·), it can be verified that there existwp = 1 (p = 1, 2, 3) such that Assumption
1 holds. In addition, by virtue of the introduced pinning control, the first three (l = 3) nodes
are selected to be controlled so that the graph of this system has a spanning tree, as shown in
Fig. 2, which means that Assumption 2 holds.

Case 1. By utilizing continuous control (7), pick up d1 = d2 = d3 = 5,
i.e., D = diag(5, 5, 5, 0, 0, 0, 0, 0, 0, 0). By virtue of Lemma 3, there exists 	 =
diag(1, 1, 1, 1, 1, 1, 1, 1, 1) such that (4) holds with κ = 1.5667. When choosing coupling
strength c = 8, one obtains

� + � =
⎛
⎝−4.5635 2.5681 0

4.4921 −5.3982 1.5041
23.5225 0.25 −7.7711

⎞
⎠ .

It can be verified that all eigenvalues of matrix � + � have negative real parts, showing
that � + � is a Hurwitz matrix. According to Theorem 1, the synchronization of MoFNNs
(1) can be achieved via continuous control (7).

Finally, denote E(t) = max1≤i≤9 ‖xi (t) − s(t)‖ as synchronized error to illustrate the
viability of the above results. Figure 3 shows the transient behaviors of E(t) with regard to t ,
which indicates that the realization of synchronization on MoFNNs via continuous control
(7).
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Fig. 4 The transient behaviors of
synchronized error E(t) under
quantized control (14)
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Fig. 5 The time evolutions of
linear control ui j (t)
(i, j = 1, 2, 3) in Case 1
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Case 2. Choose θ = 0.8 and χ0 = 2 as the parameters of quantizer (13). By applying
quantized control (14), take d1 = d2 = d3 = 10, i.e., D = diag(10, 10, 10, 0, 0, 0, 0, 0, 0, 0)
and D̃ = diag(2, 2, 2, 0, 0, 0, 0, 0, 0, 0). Similarly, according to Lemma 3, there exists 	 =
diag(1, 1, 1, 1, 1, 1, 1, 1, 1) such that (4) holds with κ̃ = 1.5056. When choosing c = 8.3,
one has

�̃ + � =
⎛
⎝−4.5264 2.5681 0

4.4921 −5.3611 1.5041
23.5225 0.25 −7.7340

⎞
⎠ .

We can verify that �̃ + � is a Hurwitz matrix. Hence, in view of Theorem 2, the syn-
chronization of MoFNNs (1) can be realized via quantized control (14). Figure 4 depicts the
transient behaviors of E(t) with regard to t , which indicates that the realization of synchro-
nization on MoFNNs via quantized control (14).

Figures 5 and 6 illustrate the time evolutions of controls utilized in Case 1 and Case 2,
respectively. In view that the control in Case 2 is the quantized control, it can reduce the
transmission pressure compared with the continuous control utilized in Case 1.
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Fig. 6 The time evolutions of
quantized control ui j (t)
(i, j = 1, 2, 3) in Case 2
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5 Conclusion

The synchronization on MoFNNs with time-varying delays has been discussed in this paper.
By means of the vector Lyapunov function, the synchronized criteria of MoFNNs with time-
varying delays under continuous control and quantized control have been derived respectively.
Compared with traditional fractional neural networks with identical derivative order, the
systems investigated in this paper are general andwithmultiple derivative orders. An example
for demonstrating the effectiveness of theoretical results has been presented. Future research
efforts may aim to extend the results to other types of synchronization on MoFNNs with
time-varying delays, such as cluster synchronization, finite-time synchronization, etc.
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