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Abstract
Deep neural networks (DNN) can achieve high performance when applied to In-Distribution
(ID) data which come from the same distribution as the training set. When presented with
anomaly inputs not from the ID, the outputs of a DNN should be regarded as meaningless.
However, modern DNN often predict anomaly inputs as an ID class with high confidence,
which is dangerous and misleading. In this work, we consider three classes of anomaly
inputs, (1) natural inputs from a different distribution than the DNN is trained for, known as
Out-of-Distribution (OOD) samples, (2) crafted inputs generated from ID by attackers, often
known as adversarial (AD) samples, and (3) noise (NS) samples generated frommeaningless
data. We propose a framework that aims to detect all these anomalies for a pre-trained DNN.
Unlike some of the existing works, our method does not require preprocessing of input data,
nor is it dependent to any known OOD set or adversarial attack algorithm. Through extensive
experiments over a variety of DNNmodels for the detection of aforementioned anomalies, we
show that in most cases our method outperforms state-of-the-art anomaly detection methods
in identifying all three classes of anomalies.

Keywords Deep neural networks · Out-of-distribution · Adversarial attack · Anomaly
detection

1 Introduction

Although being an emerging technology, Deep Neural Networks (DNN) is valued to be
$38.71 billion globally by 2023, with wide range of applications cross sectors like finance,
energy & utilities, retail, IT & telecom, manufacturing, aerospace & defence, healthcare
etc. (according to Allied Market Research) [36]. Along with DNN’s popularity is a growing
concern on the safety of DNN models in carrying out the tasks (typically classification)
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in those applications, especially the security or safety critical ones such as healthcare and
self-driving vehicles.

To address the concern, the foremost issue is to ensure the quality of the input data, which
the DNN models depend on. As a data-driven technique, a DNN model will only be as good
or as bad as the data provided (training data). For instance, a speech recognition system
trained on clean speech will not perform well on noisy speech. However, when applied to
real-world tasks, it is inevitable that the testing data differs from the training data due to a
variety of reasons, such as mis-operations in data collection, natural noise, untrusted data
resources etc. Such unavoidable anomaly testing data leads to severe safety problems - the
DNN tends to provide high-confidence predictions while being woefully incorrect [16].

A variety of works exist aiming to detect anomaly in testing data, most of which focus on
the applications of image classification. We classify these works according to the types of
anomaly data they handle: out-of-distribution (OOD) data, adversarial (AD) data, and noise
(NS) data.

OOD Out-of-Distribution (OOD) data refers to inputs that do not contain any of the classes
modeled in the training distribution. For example, the clothing images from Fashion-
MNIST are OOD data for a DNN trained with the MNIST data set which consists of
hand-written digits. The OOD data considered in this paper are collections of mean-
ingful natural images that are not from ID, excluding those crafted images (known as
adversarial data) and meaningless images (classified as noise data).

AD Adversarial (AD) data is generated by introducing an imperceptible perturbation to
an image from the in-distribution (ID), with the intention of inducing a DNN to make
wrong judgments. The adversarial methods used in our experiments include FGSM
[13], BIM [22], JSMA [33] and CW [5].

NS We consider two types of noise (NS) data. The first type (NS-I) is merely random
noise (e.g., Gaussian noise). The second type (NS-II) is often known as fooling images,
which are created by evolvingmeaningless images in order tomislead aDNN to output
classes in ID with high confidence, such as the images generated in [30] (examples
shown in Figure 9).

Through a comprehensive literature study (see Table 1 in Sect. 2), we observe that existing
works either focus only on OOD and NS-I detection, or focus on AD detection. Few works
detect both OOD and AD (a notable exception is [25]); and no works aim to detect NS-II.

As suggested by [4], there are no known intrinsic properties that differentiate natural
images and adversarial images. We believe that for real-world tasks, all types of anomalies
could potentially be fed into DNN models, and there is no effective way to tell ahead of time
if they are in-distribution, adversarial, or out-of-distribution images. Many existing works
make an implicit assumption that the analysers know which type of anomaly in advance and
build detection approaches for the particular type, which is impossible in reality. Therefore,
detection approaches should be developed to be able to handle all three types of anomalies
that people are aware of.

The uncertainty of the anomaly types leads to a non-trivial challenge in the anomaly
detection task. During experiments, we observe that, (1) in general, an approach for OOD
performs badly for detecting AD and vice versa. Any combination of the results for each
approach would not be able to outperform either the best result for OOD or the best result
for AD. In addition, we observe (2) many existing works require pre-processing to the input
data. This hinders their applicability in real-world tasks, since one needs to know, in advance,
which data is ID and which is OOD in the case of OOD detection, and needs to know by
which adversarial algorithm the data is generated in the case of AD detection. Removing
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Table 1 A summary of related
work

Method OOD& NS-I AD NS-II Pre-proc.

Baseline [16]
√ × × ×

ODIN [26]
√ × × √

ELO [1]
√ × × ×

OE [17]
√ × × ×

G-ODIN [18]
√ × × √

KD+BU [11] × √ × √
LID [27] × √ × √
IF [8] × √ × √
FS [46] × √ × ×
MD [25]

√ √ × √

the prior knowledge would largely degrade performance. Therefore, this work improves the
anomaly detection accuracy without requiring prior knowledge of input data. Our approach
detects anomaly using features from the Most Discriminative Layer (MDL) which has better
distinction for the sub-domain of the test input. The anomaly detector then combines the
MDL features with the Logit layer to cover all the three types of anomalies.

Contributions This paper proposes a uniform framework for detecting anomaly inputs,
which has wider coverage of the anomaly types, easier applicability to various models, and
better performance in accuracy, compared to the state-of-the-art approaches.

Coverage Our approach is able to detect all three types of anomaly inputs, including
OOD, AD and NS, which addresses the challenge of unknown anomaly
types in real-world applications.

Applicability Our approach provides a uniform way for the anomaly detection, and thus
can be applied to any existingmodel without requiring extra pre-processing.

Performance To evaluate our approach, we conduct extensive experiments and a compre-
hensive comparison with the state-of-the-art approaches. The experiment
results show that our approach outperforms the best results in OOD, AD
and NS in most of the cases.

2 RelatedWork

Asmentioned in the previous section, existingworks either focus onOODandNS-I detection,
e.g., [1, 12, 16–18, 26], or focus on AD detection, e.g., [8, 11, 27, 42, 46]. The only work
that can detect both is Mahalanobis distance (MD) [25].
OOD+NS-I The seminal work for OOD detection is known as the baseline approach [16],
which observes that the softmax prediction probability of OOD tends to be lower than the
prediction probability for correct examples, and thus a threshold over the predicted softmax
probability can be used to detectOOD.Ayear later, theworkODIN observes that temperature
scaling and input perturbation (pre-processing) can enlarge the gap between ID andOOD, and
thus can be used to improve the detection performance [26]. Meanwhile, the pre-processing
of ODIN requires access to OOD samples in advance, which is impossible in reality, to
fine-tune the degree of perturbation. To address this limitation, the work Early Layer Output
(ELO) [1] proposes a one-class classifier trained on the output of an early layer instead of
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the softmax layer, which does not need to access to OOD samples. An alternative approach
called Generalized ODIN (G-ODIN) [18] is later proposed, which only tunes the ID data
instead of OOD data. Differing from the above works, the work Outlier Exposure (OE) [17]
fine-tunes the pre-trained model using an auxiliary data set that is selected from a disjoint set
of OOD samples. OE includes an additional loss function to minimize the distance between
the output distribution produced by the pre-trained model for the auxiliary data set and the
uniform distribution. The softmax values are used as scores for anomaly detection. Similar to
ELO andOE, our approach does not require preprocessing and the use of the OOD samples in
training. Nevertheless, our approach extracts data from a specific sub-domain, which achieves
better separation of ID and OOD (see Fig. 3).
AD A variety of approaches have been proposed to detect adversarial samples from their
normal and noisy counterparts. For instance, Feinman et al. trains a logistic regression detec-
tor using a distance-based generative learning method called kernel density and Bayesian
uncertainty features (KD+BU) [11]. Ma et al. proposes an intrinsic character of the adver-
sarial regions - the local intrinsic dimensionality (LID), as the confidence score to separate
the adversarial samples [27]. The IF approach demonstrates the correspondence between the
training data and the classification of the network, which is quantified using the Influence
Function, and outperforms LID [8]. Differing from the above works, Xu et al. applies Fea-
ture Squeezing (FS) to distinguish the adversarial samples from ID and does not need special
treatment to the input data [46]. These works can only detect AD and are not suitable for
detecting OOD and NS.

Finally, the work MD measures the probability density of a test sample and uses the
Mahalanobis distance as the confidence score to distinguish OOD and AD from ID. It is the
first work that can detect both OOD and AD [25]. Our work is able to detect an additional
type (NS-II) of anomaly and outperforms MD on most of the test data sets.

3 Preliminaries

In this section, we introduce the notions that are necessary to understand the remaining part
of the paper. Let a deep neural network (DNN) of m layers be represented as a function
f : I → O, where I is the input domain and O is the domain for the output vectors of
length d . Given x ∈ I, we have f (x) = 〈o1, . . . , od〉 ∈ O, and the final classification chosen
by the DNN is C f (x) = argmax

i∈{1,··· ,d}
(oi ) for the index of the largest element in vector f (x).

For � = 1 . . .m, we write f �(x) for the output vector in the feature space of layer �. In the
literature, the second last layer (i.e., � = m−1, right before the softmax layer) is often called
the logit layer.

It is commonly assumed that the training data of DNN f is drawn from the distribution
� known as ID. we write �in(x) if x ∈ I is from ID given f . An anomaly detector g f for
DNN f is a binary classifier, such that given input x ∈ I, g f (x) answers whether x is an
anomaly with respect to f . Since it is often difficult to define what an anomaly distribution
is, we focus on the three types of anomalies (i.e., OOD, AD and NS) in our experiments.

Our anomaly detection algorithm is based on a discriminative model known as Support
Vector Domain Description (SVDD) by [41].1 Similar to the famous Support VectorMachine
[43], SVDDdefines support vectors for a sphere shaped decision boundary enclosing the class

1 Another important approach for one class classification known as ν-SVC is introduced by Schölkopf et al.
[38], which can be shown as equivalent to SVDD when the Gaussian kernel is used [40].
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of objects represented by the (unlabeled) training data with minimal space, as shown in the
following formulation.

min
R,a,ξ

R2 + 1

nν

∑

i

ξi (1)

s.t. ∀i : xi − a2 ≤ R2 + ξi , ξi ≥ 0

The solution of the above constraints provides a center vector a, radius R and slack variables
ξi such that the target term in Eq. (1) is minimized, provided that the square of distance from
each training data xi to the center a may exceed R2 by at most ξi . Here ν is a constant in
(0, 1] and n is the size of the training set. Intuitively, a smaller ν gives more weight to the
right hand side of target term in Eq. (1), which imposes smaller values for ξi and larger R.
The solution of Eq. (1) allows us to determine if a test input z is from the ID by checking the
following condition.

z − a2 = (z · z) − 2
∑

i

αi (z · xi ) +
∑

i, j

αiα j (z · xi ) ≤ R2 (2)

Here αi (α j ) is the Lagrange multiplier associated with the constraint for the i-th ( j-th)
training input when solving Eq. (1), which is non-zero only if the i-th ( j-th) training input is
used as a support vector. Given all inputs (including the test input) only appearing in the form
of inner product, it is thus viable to replace the inner products by kernel functions, of which
the Gaussian Radial Basis Function (RBF) provides the best performance in practice [40].
The RBF kernel is given in the following formulation, where the free parameter s controls
the spread, or how tight the density is, of the kernel.

K (xi , x j ) = exp(−‖xi − x j‖2/s2) (3)

Early-Layer Output (ELO) [1], the work most related to ours, trains a one-class SVDD
classifier using an early-layer output of ID data in a latent space, based on the observation
that there exists an early-layer called the Most Discriminative Layer (MDL), such that in this
latent space the ID data and OOD data are well separated.

4 Our Approach

We propose a uniform framework for the anomaly detection task. In the training phase, for
a given DNN classifier, we empirically choose the Most Discriminative Layer (MDL) using
a randomly picked OOD set (mix data), in the way similar to ELO [1]. Then we use the
data generated from the MDL layer (Step 1) and the logit layer of the DNN to train two
one-class SVDD classifiers for each known class (Step 2). During the testing phase, an input
is first given to the DNN classifier which produces an output class i . The data from the
corresponding MDL and logit layers are forwarded to the corresponding SVDD classifiers,
i.e., SVDD1

i and SVDD2
i , and the scores obtained from the SVDD classifiers are combined

to form a final judgment on whether the given input is anomalous (Step 3). The overview of
our approach is sketched in Fig. 1.

Let layer � be the MDL in a reasonable DNN classifier f to ID with sub-domains for
the known classes 1 . . . d , and the set { f �(x) | �in(x)} forms a manifold of ID in the latent
space of layer �. We conjecture that anomaly detection precision can be further improved
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Fig. 1 The overview of the proposed approach. The proposed approach has three steps. Step 1 Select one of
hidden layers as MDL which has the minimum detection errors for mix data. Step 2 Feed the extracted the
data of the MDL and logit layer into the corresponding SVDD�

i . Step 3 Calculate the score of an input sample

by using the corresponding SVDD�
i in MDL and logit layer, which helps to detect anomaly inputs

Fig. 2 A two-dimensional representation of features extracted from the MDL of a LeNet model trained on
MNIST. The feature cluster consisting of data from all 10 MNIST classes is shown in green dots, and yellow
dots represent F-MNIST (OOD) data

by making predictions conditional to output of the DNN. We focus on the sub-domains
{ f �(x) | �in(x) ∧ C f (x) = i} for each known class i = 1 . . . d .

Taking Eq. (1), the approach of ELO empirically chooses ν = 0.001, which imposes a
strong penalty on samples with distance larger than R (i.e., the slack variables should be very
small) when minimizing the entire term of Eq. (1), which is reasonable if the sub-domains
for different classes are relatively apart. Since R becomes relatively large, potentially more
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Fig. 3 Two-dimensional representations of features extracted from the MDL of a LeNet model trained on
MNIST. The feature clusters for the 10 classes are shown, with green dots for MNIST (ID) data and yellow
dots for F-MNIST (OOD) data

Table 2 Comparison of our approach with the baseline, ODIN, Mahalanobis distance (MD) and ELO for
OOD data

Model OOD TNR at 95% TPR ↑ AUROC ↑
baseline/ODIN/MD/ELO/ours

LeNet F-MNIST 97.90/99.59/95.60/99.15/ 99.72 99.26/99.81/98.81/99.77/99.83

(MNIST) Omniglot 97.03/99.86/93.62/100.0/ 100.0 98.82/99.81/98.48/100.0/99.99

VGG-16 TinyIm 36.14/55.76/46.61/84.73/85.61 89.79/92.79/90.68/96.45/97.54

(CIFAR10) LSUN 38.82/63.41/56.92/91.97/92.81 90.90/94.58/93.05/98.13/98.98

iSUN 39.06/63.65/54.90/89.22/92.64 90.89/94.53/92.61/97.77/98.70

SVHN 27.89/43.58/23.28/87.44/68.07 89.01/91.92/85.56 /97.15/95.66

ResNet TinyIm 30.32/48.41/15.52/95.08/94.24 87.13/90.58/79.46/98.91/98.61

(CIFAR10) LSUN 35.47/67.04/22.84/96.21/97.34 89.66/94.72/85.22/99.07/99.25

iSUN 34.25/63.47/22.45/93.61/95.34 89.22/94.10/84.41/98.64/99.01

SVHN 38.71/67.27/24.77/85.29/86.29 89.74/93.80/82.19/96.74/97.00

VGG-16 TinyIm 78.69/88.79/76.37/92.06/93.97 96.92/97.99/96.56/98.21/ 98.87

(SVHN) LSUN 78.27/88.13/78.42/93.57/94.80 96.80/97.83/96.71/98.39/99.05

iSUN 81.48/90.83/79.82/93.55/95.38 97.26/98.27/96.95/98.46/99.08

CIFAR10 78.13/88.87/76.39/71.88/87.37 97.67/97.91/85.69/94.62/97.83

ResNet TinyIm 75.38/85.39/63.93/93.74/95.73 96.21/97.17/94.37/98.62/99.01

(SVHN) LSUN 72.67/83.02/58.96/96.27/96.58 95.85/96.72/93.64/99.06/99.18

iSUN 75.65/86.39/63.04/95.75/96.64 96.28/97.30/94.20/98.99/99.21

CIFAR10 74.12/85.12/63.91/80.14/87.60 96.04/97.07/94.47/95.35/97.41

Bold indicates sufficient values

anomaly samples, especially those spatially closer to ID such as adversarial samples, are
classified as ID. Moreover, an anomaly input positioned between two ID clusters of distinct
classes in the latent space may also be classified as ID. Figure 2 provides a 2-D view of
the clusters of MNIST samples (green dots) and Fashion-MNIST samples (yellow dots) in
the MDL of a LeNet model.2 If we split the MNIST samples and Fashion-MNIST samples
into 10 classes based on the classification results of the LeNet model, and study the MNIST
samples and Fashion-MNIST samples confined to each class, we get the 2-D view in Fig. 3,
fromwhich it seems that near perfect separation can be achieved in some classes (e.g., the 1st,
5th, 9th and 10th classes). Our experiment results shown in Tables 2 and 3 confirm that the

2 We choose UMAP [28] as the visualization tool.
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Table 3 Comparison of our approach with the KD+BU, LID, MD and ELO for adversarial data

Model AD TNR at 95% TPR ↑ AUROC ↑
KD+BU/LID/MD/ELO/ours

LeNet FGSM 83.91/94.65/83.11/100.0/100.0 86.86/89.03/96.66/99.97/99.98

(MNIST) BIM-a 96.29/51.29/70.82/54.25/95.57 98.88/89.04/95.81/87.82/99.04

BIM-b 28.51/34.70/23.63/99.28/99.32 74.07/73.32/77.29/99.57/99.64

JSMA 96.78/81.24/89.72/16.77/89.70 98.90/94.60/97.78/57.40/98.16

CW 97.23/60.30/66.33/6.77/79.73 99.07/90.60/95.12/50.81/97.12

VGG-16 FGSM 77.35/92.81/73.82/92.41/96.74 87.66/98.11/95.75/98.59/99.22

(CIFAR10) BIM-a 40.58/7.76/85.93/1.47/63.57 76.36/64.40/97.27/51.08/94.10

BIM-b 11.76/3.44/2.34/1.21/15.80 52.25/48.98/75.95/57.55/81.53

JSMA 77.20/37.08/96.91/4.97/83.60 94.65/67.70/98.73/48.49/97.13

CW 49.92/6.93/86.22/7.39/81.18 80.04/66.11/96.96/65.27/96.53

ResNet FGSM 38.93/99.95/9.70/99.98/ 99.96 75.70/99.98/82.14/100.0/99.81

(CIFAR10) BIM-a 17.48/11.74/6.63/14.56/35.65 65.77/60.12/71.41/72.69/83.67

BIM-b 99.89/80.43/99.99/95.17/99.98 99.93/90.74/99.99/98.66/99.99

JSMA 60.0/71.80/35.00/83.76/91.62 76.38/67.23/92.17/93.44/97.74

CW 26.38/12.49/9.74/9.63/37.98 75.75/60.91/82.99/63.21/86.84

VGG-16 FGSM 86.91/99.90/83.50/99.91/97.69 89.70/99.50/96.93/99.21/99.46

(SVHN) BIM-a 57.05/15.64/53.43/4.21/40.81 91.19/74.40/89.81/55.35/81.36

BIM-b 1.35/76.36/22.69/20.09/98.84 60.41/91.84/91.85/87.67/99.17

JSMA 94.05/27.94/93.81/5.67/76.76 98.33/81.04/98.52/55.55/94.72

CW 75.20/11.28/100.0/4.43/66.88 97.03/71.18/98.48/49.38/94.54

ResNet FGSM 73.89/99.56/72.93/100.0/99.76 83.01/99.55/95.30/99.85/99.80

(SVHN) BIM-a 50.60/16.81/54.5/3.44/24.53 89.66/74.60/89.40/43.52/77.33

BIM-b 100.0/99.12/ 100.0/66.31/100.0 100.0/98.50/100.0/94.58/99.98

JSMA 84.33/34.73/84.05/8.28/51.04 95.88/78.93/97.02/53.45/90.81

CW 83.17/9.26/78.72/4.48/54.53 97.26/63.81/96.68/48.40/92.36

Bold indicates sufficient values

methodwith sub-domain splitting is comparable (if not marginally better) to the ELOmethod
for the detection of OOD inputs, and for the detection of adversarial inputs the sub-domain
based method significantly outperforms ELO.3

Our second observation is that the features represented by different layers of aDNN indeed
represent distinctive discriminative power on anomalies. In the literature the softmax and
logit layers [16, 25, 26] are used to distinguish OOD from ID, while some others consider the
usage of early layers [1, 19]. Since anomaly data in the class AD are crafted by introducing
imperceptible perturbations to images from the ID, they are closer to the ID in the input
domain than OOD and NS in the majority of adversarial attack scenarios, especially the
AD with relatively small perturbation. Therefore, intuitively, it requires more processing in
the original classifier to separate them from ID in the penultimate logit layer, rather than
the earlier MDL layer. This has also been described in detail in the literature [32]. Figure 4
provides a 2-D view of the clusters ofMNIST ID samples (green dots) and JSMAADsamples

3 Empirically, in our experimental setting, we let ν = 0.1 which ensures a tighter bound (i.e., a smaller R) on
each individual class to rule out adversarial samples.
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Table 4 Comparison of our approach with the baseline, ODIN and MD for noise data

Model NS TNR at 95% TPR ↑ AUROC ↑
baseline/ODIN/MD/ours

LeNet Gaussian 100.0/100.0/100.0/100.0 99.58/100.0/99.77/100.0

(MNIST) Uniform 99.27/100.0/99.25/100.0 98.31/99.92/98.85/100.0

FoolIm 0.0/0.0/2.07/100.0 75.56/86.73/68.61/99.74

VGG-16 Gaussian 7.75/58.42/97.43/100.0 90.26/95.21/98.83/100.0

(CIFAR10) Uniform 49.56/87.79/99.81/100.0 94.72/96.78/99.28/100.0

FoolIm 0.0/0.0/0.0/97.23 71.60/79.53/71.82/98.14

ResNet Gaussian 30.22/58.51/33.67/100.0 89.08/93.90/89.87/99.67

(CIFAR10) Uniform 24.56/53.40/23.48/100.0 87.96/93.38/89.13/99.77

FoolIm 0.0/0.0/16.83/100.0 72.84/82.74/76.65/99.73

VGG-16 Gaussian 84.76/91.95/80.21/99.53 97.67/98.49/97.00/99.70

(SVHN) Uniform 90.49/96.35/83.88/98.99 98.35/99.11/97.30/99.63

FoolIm 0.0/0.0/0.0/100.0 16.65/19.45/37.91/98.39

ResNet Gaussian 83.52/93.28/66.61/100.0 97.28/98.32/95.31/99.92

(SVHN) Uniform 82.68/93.08/62.76/99.98 42.09/46.74/94.89/99.86

FoolIm 0.0/0.0/1.30/96.93 42.09/46.74/53.18/98.63

Bold indicates sufficient values

(yellow dots) in the MDL of a LeNet model. Figure 5 and Figure 6 show the feature clusters
for the 10 classes of MNIST ID samples (green dots) and JSMAAD samples (yellow dots) in
the MDL and logit layer of a LeNet model, respectively. Such a conjecture is also confirmed
by the results in Tables 2 and 3. We believe that combining the power of the early layers and
the late layers can achieve better precision on detecting different types of anomalies.

Based on the above observations,we train twoSVDDdetectors for layers �1 and �2 for each
class i ∈ {1, . . . d}, and combine the results by defining gi (x) = β1 · g�1

f ,i (x)
∗ +β2 · g�2

f ,i (x)
∗

as a score to determine if x is an anomaly, given C f (x) = i . In the above formulation, we
choose theMDL as �1 which is empirically determined and it is most of the time an early layer
that gives better precision on detection anomalies than any other layers, and �2 is the logit
layer. When used for combining scores, g�

f ,i (x)
∗ is the normalized value of g�

f ,i (x), which

applies here because g�1
f ,i and g

�2
f ,i tend to produce scores of different scales. Coefficients β1

and β2 are used to balance the weights from the two detectors. As shown in Fig. 7 which is
the result of a preliminary experiment, setting β1 = β2 = 0.5 produces a close to optimal
precision on all the given OOD, AD and NS data sets when CIFAR-10 is ID in a ResNet
model. This figure also suggests that relying only on the MDL layer may provide acceptable
results on detection of Out-of-Distribution anomalies (by treating TinyIm, LSUN, iSUN,
SVHN as OOD) and noise detection (e.g., Gaussian noises), while relying only on the logit
layer may provide acceptable results on detection of a few adversarial attacks.
Threshold Similar to othermethods [16, 26], we need to have thresholds to distinguish normal
inputs and anomaly inputs. Different from most other works, we define multiple thresholds
based on classes of training samples. In the case of MNIST, there are 10 classes of ID data,
so we define a threshold for each class. When a sample x is given to the DNN model which
generates output class i , our approach collects data from the MDL layer and logit layer for
the SVDDs to generate a score to compare with τi . The threshold τi is computed in the
way to ensure that 95% of the test samples from class i of ID have scores above τi . The
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Fig. 4 A two-dimensional representation of features extracted from the MDL of a LeNet model trained on
MNIST. The feature cluster consisting of all 10 MNIST classes is shown in green dots, and yellow dots
represent JSMA (AD) data

Fig. 5 Two-dimensional representations of features extracted from the MDL of a LeNet model trained on
MNIST. The feature clusters for the 10 classes are shown, with green dots for MNIST (ID) data and yellow
dots for JSMA (AD) data

Fig. 6 Two-dimensional representations of features extracted from the Logit layer of a LeNet model trained
on MNIST. The feature clusters for the 10 classes are shown, with green dots for MNIST (ID) data and yellow
dots for JSMA (AD) data

threshold-based discriminator can be formally described as follows.

is Anomaly(x) =
{
True, i f gi (x) < τi

Fasle, i f gi (x) ≥ τi
(4)

Note that SVDD performs poorly on high-dimensional data. Given the MDL layer is
usually an early convolutional layer, the feature space of the MDL is often high-dimensional.
In this case, we compute the mean of each channel to reduce the dimension of the extracted
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Fig. 7 AUROC of the combined anomaly detection model with different weight coefficients for values from
the logit layer of a ResNet model (CIFAR-10 as ID)

features from the MDL layer. More precisely, let f � ∈ R
d×w×h be the feature maps of a

convolutional layer, where d , w and h are depth, width and height, respectively. Then the
feature size for the SVDD classifier is d , which is reduced from d × w × h to d , with each
dimension taking the average of all w × h values of the same depth.
Nomalization As we mentioned before the SVDD classifiers for the MDL layer and the
logit layer tend to generate scores of different scales. If we simply combine the scores with
incomparable scales, it is likely to weight one SVDD classifier more than the other, leading
to undesirable results. Therefore, a normalization process is essential. In our approach, we
apply the min-max normalization procedure.

score∗
i = scorei − scoremin

scoremax − scoremin
(5)

where the scoremin and scoremax are the minimum and maximum of the score vector,
respectively.

In summary, our SVDD detectors are trained from ID data only, i.e., g�
f ,i only depends on

the feature space at layer � of training inputs if C f (x) = i . Most of the ID data are wrapped
inside the hypersphere decision boundary in the feature space, as defined by Eq. (1), and
the hyperparameter ν controls the relative size R and the percentage of training data to
be outside of the boundary. Through some initial experiments we empirically choose an
early layer, i.e., the MDL, and determine the coefficients β1 and β2, such that the detector
gi (x) = β1 · g�1

f ,i (x)
∗ + β2 · g�2

f ,i (x)
∗ produces a score by combining information from the

MDL (as �1) and the logit layer (as �2), if x is likely to be from class i (i.e., C f (x) = i).
This score is then used to decide whether x is anomaly.

5 Experiments, Evaluations and Discussions

We conduct experiment on three types of pre-trained DNN models, with three data sets
chosen as ID, against various types of OOD, AD and NS data sets. Our testing code is
publicly available at https://github.com/fangzhenzhao/AnomalyDetection_NPL.

5.1 Experiment Settings

We choose three popular DNN models used for image classification. All DNN models are
pre-trained. The anomaly detection algorithm is run on aWindows 10 desktop equipped with
Intel I7-9700 3.0GHz processor, 16G RAM and Nvidia GetForce GTX1660Ti.
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Table 5 Comparison of results with OE about the baseline, ODIN, Mahalanobis distance (MD) and ELO for
OOD data

Model OOD TNR at 95% TPR ↑ AUROC ↑
baseline+OE/ODIN+OE/MD+OE/ELO+OE/ours+OE

LeNet F-MNIST 98.98/99.49/94.85/99.13/99.73 99.58/99.84/98.53/99.76/99.87

(MNIST) Omniglot 99.91/99.97/98.82/100.0/100.0 99.75/99.92/99.27/100.0/100.0

VGG-16 TinyIm 55.74/66.46/65.85/81.24/81.93 92.57/93.90/93.07/95.63/96.74

(CIFAR10) LSUN 60.56/75.72/77.23/90.20/91.81 94.02/95.98/96.10/97.68/98.66

iSUN 60.07/74.49/75.26/87.91/90.20 93.77/95.78/95.56/97.41/98.33

SVHN 60.85/74.65/78.96/75.53/95.88 94.80/95.92/94.58/95.94/98.22

ResNet TinyIm 46.50/65.42/13.90/94.43/93.55 90.78/93.60/80.95/98.76/98.47

(CIFAR10) LSUN 53.60/80.98/21.51/96.22/97.43 93.02/96.74/86.31/99.06/99.27

iSUN 53.23/80.94/21.69/93.74/95.55 92.84/96.66/86.12/98.62/99.04

SVHN 71.10/81.27/51.46/85.44/89.41 95.61/97.35/91.22/96.78/97.66

VGG-16 TinyIm 87.98/96.48/94.57/87.09/96.65 97.78/99.17/98.54/97.36/99.30

(SVHN) LSUN 85.50/95.48/93.33/84.92/95.75 97.54/99.00/98.37/97.12/99.28

iSUN 89.31/97.10/95.05/85.77/96.97 97.96/99.26/98.70/97.29/99.35

CIFAR10 84.54/92.22/93.56/59.61/92.30 97.40/98.07/98.33/92.52/98.52

ResNet TinyIm 87.82/91.29/77.02/92.95/95.56 97.52/98.10/95.75/98.45/98.91

(SVHN) LSUN 86.20/90.38/74.55/95.79/96.68 97.30/97.97/95.29/98.96/99.19

iSUN 88.50/92.43/78.39/94.87/96.53 97.66/98.33/95.82/98.84/99.08

CIFAR10 88.41/91.95/78.26/78.98/87.94 97.59/98.27/95.89/95.10/97.35

Bold indicates sufficient values

1. A LeNet [24] model with two convolutional layers and three fully connected layers. The
model is trained for theMNIST data set [24] and achieves 99.20%accuracy on the testing
set. MNIST consists of 60, 000 28 × 28 grayscale images of hand-written digits in the
training sets and 10, 000 images in the testing set.

2. A ResNet [15] model for the CIFAR-10 [21] data set and another ResNet model for the
SVHN [29] data set, achieving accuracies of 91.65% and 96.12%, respectively.CIFAR-
10 consists of 50, 000 and 10, 000 32 × 32 color images in its training set and testing
set, respectively, with each image belonging to one of the ten classes. SVHN consists
of 73, 257 and 26, 032 colored house numbers from Google Street View images in its
training set and testing set, respectively.

3. A VGG [39] model for the CIFAR-10 data set and another VGG model for the SVHN
data set, achieving accuracies of 93.47% and 95.56%, respectively.

Outlier Exposure (OE) has been shown as an effective fine-tuning method for improving
the performance of existing anomaly detectors [17, 31, 34]. In this work, we also present the
experimental results that combines OE and our approach, which are shown in the ‘ours +
OE’ column of Tables 5, 6 and 7. The authors of [17] demonstrate that only 50, 000 samples
from auxiliary data set to be used to fine-tune the pre-trained model is enough to improve
the performance of existing anomaly detectors. In this work, we use 50, 000 English letters
from E-MNIST [7] as the auxiliary data set to fine-tune the LeNet model. For VGG and
ResNet models, we use 50, 000 samples from the TinyImageNet data set [9] to perform the
fine-tuning. Note that the training data from the auxiliary data set, the anomaly testing data
and ID testing data are pairwise disjoint.
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Table 6 Comparison of results with OE about the KD+BU, LID, MD and ELO for adversarial data

Model AD TNR at 95% TPR ↑ AUROC ↑
KD+BU+OE/LID+OE/MD+OE/ELO+OE/ours+OE

LeNet FGSM 78.21/95.85/86.18/99.99/99.99 93.91/95.93/97.23/99.93/99.98

(MNIST) BIM-a 51.58/52.72/49.85/43.53/97.09 88.31/87.49/91.59/84.01/99.29

BIM-b 28.95/34.98/18.33/96.99/96.69 78.28/77.90/72.48/99.10/99.22

JSMA 79.40/81.08/80.64/17.19/91.84 95.12/92.89/96.69/58.80/98.42

CW 46.74/37.65/37.62/6.21/92.46 84.28/75.22/88.08/49.57/98.44

VGG-16 FGSM 81.83/92.85/78.42/89.44/96.58 66.79/98.73/96.07/97.99/99.14

(CIFAR10) BIM-a 73.95/12.55/76.07/1.34/67.55 78.86/67.37/96.17/49.81/95.24

BIM-b 5.77/8.47/7.03/1.05/10.63 47.04/55.96/70.12/55.02/74.51

JSMA 87.92/35.01/87.66/5.05/80.88 94.55/69.82/97.60/47.95/96.90

CW 75.53/10.33/77.29/4.79/74.75 80.02/67.87/96.27/63.06/96.36

ResNet FGSM 28.32/100.0/7.02/100.0/100.0 75.40/99.99/80.22/100.0/99.79

(CIFAR10) BIM-a 12.14/11.12/5.78/18.05/38.84 63.96/60.58/71.26/74.63/84.73

BIM-b 99.84/66.52/99.96/95.93/99.98 99.93/85.00/99.99/98.84/99.99

JSMA 32.13/68.30/18.65/83.39/91.69 73.45/67.78/89.57/93.36/97.83

CW 13.11/11.23/7.19/13.98/48.12 68.51/60.73/78.72/66.74/89.21

VGG-16 FGSM 91.72/99.68/91.32/95.08/96.83 89.18/99.56/97.77/97.69/99.40

(SVHN) BIM-a 68.60/18.85/68.93/4.17/75.45 94.03/75.77/93.83/53.17/93.10

BIM-b 15.26/57.61/21.04/8.63/52.43 69.16/88.40/85.54/81.62/93.30

JSMA 80.22/28.44/78.11/4.76/91.64 95.10/80.66/95.57/53.04/97.65

CW 22.67/8.04/23.43/4.43/91.99 78.16/57.97/76.28/49.18/97.97

ResNet FGSM 61.24/99.96/70.00/100.0/99.63 81.94/99.86/94.52/99.83/99.72

(SVHN) BIM-a 48.86/17.20/59.02/3.40/31.95 90.86/75.94/91.51/43.49/81.22

BIM-b 99.98/96.71/99.98/52.93/100.0 99.99/97.54/100.0/ 92.24/99.97

JSMA 68.19/31.36/73.28/8.00/58.82 94.08/79.76/95.59/52.52/92.05

CW 19.70/6.75/20.83/4.50/80.93 80.88/58.54/81.35/48.71/96.53

Bold indicates sufficient values

Evaluation Metrics
Given a (binary) anomaly detector, we define true positive (TP) as the number of cases

when an input from ID is correctly reported as is Anomaly(x) = False, and false negative
(FN) as the number of cases when an input from ID is incorrectly reported as True, for
anomaly. Similarly, true negative (TN) is the number of cases when an anomaly input is
correctly reported as True, and false positive (FP) is the number of cases when an anomaly
is incorrectly reported as False, for data from ID. We adopt two commonly used metrics,
TNR (True Negative Rate) at 95% TPR (True Positive Rate) and Area Under the Receiver
Operating Characteristic curve (AUROC), to evaluate the effectiveness of our method.

Since we have a detector gi for each class i , all counted values need to be taken weighted
average for each class. For example, we have TPR =

∑
i=1,...d γi · TPRi , where TPRi is

the true positive rate calculated for inputs that are classified as i by the DNN and γi is the
percentage of sample cases being classified as i .

Existing works mostly focus on detecting either OOD only, or AD only. Therefore, we
compare our results on OOD data sets and Noise data with models designed for OOD
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Table 7 Comparison of results with OE about the baseline, ODIN and MD for noise data

Model NS TNR at 95% TPR ↑ AUROC ↑
baseline+OE/ODIN+OE/MD+OE/ours+OE

LeNet Gaussian 100.0/100.0/100.0/100.0 99.99/100.0/99.63/100.0

(MNIST) Uniform 100.0/100.0/100.0/100.0 99.95/99.99/99.59/100.0

FoolIm 30.57/51.29/30.44/100.0 90.65/93.20/83.78/99.95

VGG-16 Gaussian 97.47/99.56/99.97/100.0 98.38/98.79/99.42/100.0

(CIFAR10) Uniform 97.82/99.60/99.96/100.0 98.49/98.78/99.42/100.0

FoolIm 2.92/5.96/11.14/98.37 82.51/84.05/86.42/99.31

ResNet Gaussian 54.79/83.82/31.24/100.0 93.58/97.28/91.33/99.76

(CIFAR10) Uniform 54.68/88.33/25.16/100.0 93.77/97.62/90.77/99.73

FoolIm 25.51/32.02/32.97/100.0 84.59/86.04/85.34/99.86

VGG-16 Gaussian 99.19/99.91/99.42/99.98 99.68/99.95/99.38/99.97

(SVHN) Uniform 99.58/99.96/99.69/99.99 99.83/99.98/99.54/99.97

FoolIm 7.44/24.98/15.68/68.13 63.92/69.08/62.91/96.25

ResNet Gaussian 94.31/96.49/83.93/100.0 98.51/99.04/96.76/99.92

(SVHN) Uniform 93.47/95.74/81.94/99.98 98.43/98.89/96.57/99.89

FoolIm 7.97/14.17/8.81/99.38 75.51/78.40/74.01/99.11

Bold indicates sufficient values

detection, and compare our results on AD data with models designed for adversarial attack
detection, in separate.

5.2 Experiment Results

OOD Detection
We consider several OOD data sets for evaluating the effectiveness of our methods. In

particular, Fashion-MNIST (F-MNIST) [44] and Omniglot [23] are used as OOD for the
LeNet model trained with MNIST. For the ResNet model trained with CIFAR-10, the OOD
sets are TinyImageNet [9], LSUN [47], iSUN [45] and SVHN [29]. For the ResNet model
trained with SVHN, the OOD sets are TinyImageNet, LSUN, iSUN and CIFAR-10. The
experiments for the two VGG models are treated in the same way as the ResNet models.
Note that we do not test MD with feature ensemble which uses output from all layers but
involves tuning with particular OOD sets. We only apply the version of MD which uses the
logit layer of the DNN instead.

The results for OOD detection of these models are presented in Table 2, where the data
set enclosed by the brackets next to the model denotes the ID set, e.g., MNIST is the ID for
the LeNet model. As shown in the results, our method has the best precision for detection
of OOD anomalies in most cases. Even for the one case when ELO is better, the percentage
difference is minor.
AD Detection

We compare with the works that are designed for adversarial detection, including KD+BU
[11], LID [27] andMD [25].We include the ELOmethod because this is themost relatedwork
to ours. The adversarial samples used in the experiment are generated by various well-known
methods, including FGSM [13], BIM [22], JSMA [33] and CW [5]. For the BIM attack,
we consider two scenarios: BIM-a, which stops iterating as soon as the attack is successful
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Fig. 8 Some normal images and AD anomaly images for MNIST, CIFAR10 and SVHN

Fig. 9 NS-II anomaly inputs

confidence ≥ 99.9%confidence ≥ 99.99%

(‘at the decision boundary’), and BIM-b, which attacks for a fixed number of iterations that
is well beyond the average misclassification point (‘eyond the decision boundary’. Some
normal inputs and adversarial inputs are displayed in Fig. 8. Since both KD+BU and LID
require training with adversarial inputs, in this experiment, both detectors are trained with
FGSM.

The results in Table 3 have shown that our method produces the best precision in about
half of the cases regarding the AUROC values. For the rest cases where other methods have
better precision, our scores are not much behind except for the two BIM-a cases for the
SVHN data set.
NS Detection In this experiment we have prepared three types of noise images.

1. TheGaussian noise (NS-I) set consists of 10, 000 images ofwhich every pixel is sampled
from random Gaussian distribution with the mean μ = 0.5 and the variance σ = 1,
clipped to [0,1];

2. TheUniform noise (NS-I) set consists of 10, 000 images of which every pixel is sampled
from a random uniform distribution between [0, 1];

3. The Fooling images (NS-II) are generated by evolving meaningless images in order to
mislead a DNN to output classes in ID with high confidence. We adopt the algorithm
from Section 3 of [30]. The Fooling Image sets feeding to the LeNet model consists
of 10, 000 28 × 28 images (confidence≥ 99.99%). The Fooling Image sets feeding to
ResNet and VGG models both consist of 10, 000 32× 32 images (confidence≥ 99.9%).
Those images are totally unrecognizable to human eyes. Two examples from NS-II are
displayed in Fig. 9.
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The results shown in Table 4 indicate that only our method achieves near 100% precision
regardingdetection of the givenNoise inputs.Note that somemethods, includingbaseline [16]
and ODIN [26], which take the classification probability of an input to discriminate whether
this image is abnormal, fail to detect anomalies from NS-II and in most cases classify them
as ID with high confidence. In particular, these methods mostly report 0 in the column of
TNR at 95% TPR. One possible explanation is that inputs fromNS-II are quite different from
any known anomaly distributions that have been considered by these approaches, therefore,
those images are relatively hard for them to detect.

5.3 Comparison of Results with Outlier Exposure

Since OE is designed and proved to be effective for enhancing Out-of-Distribution (OOD)
detection tasks [17], we need to check if it is also useful in our approach by using OE to fine-
tune the models. However, in our experiment, it is inconclusive whether OE is an effective
way to enhance precisionwhen the target anomaly includes not only OOD, but also AD. First,
out of the 18 OOD detection benchmarks, OE has improved the results of our method for 11
benchmarks regarding the AUROCmetric. For adversarial (AD) detection tasks, our method
combined with OE has produced equal or better performance in 15/25 cases. Nevertheless,
performance of our method has been enhanced in a few benchmarks, e.g., for the SVHN
data set, the results of the two BIM-a are significantly improved (11.74% gain in VGG
model and 3, 89% gain in ResNet model). For Noise (NS) detection, the performance of our
method with OE is also improved in most cases (equal or better in 13/15 cases), although
the improvements are mostly minor.

Regarding the other methods, similar improvement in performance has been observed for
basline, ODIN and MD regarding OOD detection tasks. For AD detection, the improvement
of performance for KD+BU, LID, MD, ELO are in general insignificant (some cases even
suffering performance degradation). The effect of OE for NS detection is in general positive
for all the tested methods.

5.4 Comparison of Results with AEs

Another class of approach for anomaly detection, which is substantially different from the
main methodology presented in this paper, applies autoencoder (AE) based structures, such
as AE [3] and VAE [20], to measure the difference between the reconstruction loss of normal
and anomalous examples. In general, AEs are used to detect anomaly data in an unsupervised
manner. Some more recent works include MemAE [12], which augments the autoencoder
with a memory module and targets OOD, and AE&KL [42], which measures the difference
between the outputs of the DNN with original data and reconstructed data as inputs and
targets AD detection mostly. To achieve a better coverage over the anomaly detection works
in the literature, we compare the performance of our method and a few recent AE-based
methods, and demonstrate that our method delivers more stable results when facing OOD
and AD.

In the literature, the AEs are often applied in the following twoways for anomaly detection
tasks. First, an AE is used to reconstruct a test sample and the reconstruction error can be
calculated and directly used for detection [6, 12, 14, 49]. Second, an AE can be used to learn
a low-dimensional representation of the input data in its latent space, then distance-based
metrics are applied to measure the difference between a test example and the ID dataset [10,
37, 42, 50]. The reconstruction error or distance metrics are used as an anomaly score and
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Table 8 Comparison of results with AE, VAE, AE&KL and MemAE for OOD data

Model OOD TNR at 95% TPR ↑ AUROC ↑
AE / VAE / AE&KL / MemAE / ours

LeNet F-MNIST 100.0 / 99.64 / 99.60 / 82.20 / 99.72 100.0 / 99.89 / 99.82 / 93.89 / 99.83

(MNIST) Omniglot 100.0 / 100.0 / 99.86 / 100.0 / 100.0 100.0 / 100.0 / 99.83 / 100.0 / 99.99

VGG-16 TinyIm 88.17 / 49.86 / 57.03 / 32.90 / 85.61 96.84 / 83.17 / 92.81 / 78.03 / 97.54

(CIFAR10) LSUN 95.79 / 65.44 / 65.10 / 38.12 / 92.81 98.96 / 90.90 / 94.63 / 81.98 / 98.98

iSUN 91.44 / 53.39 / 65.55 / 30.15 / 92.64 97.64 / 84.81 / 94.60/ 75.33 / 98.70

SVHN 0.01 / 1.12 / 47.82 / 1.62 / 68.07 2.62 / 13.47 / 92.54 / 28.15 / 95.66

ResNet TinyIm 88.53 / 49.65 / 48.77 / 29.03 / 94.24 96.88 / 83.10 / 90.62 / 78.69 / 98.61

(CIFAR10) LSUN 95.99 / 64.78 / 67.79 / 31.18 / 97.34 99.00 / 90.79 / 94.80 / 83.17 / 99.25

iSUN 91.73 / 52.77 / 64.21 / 24.39 / 95.34 97.69 / 84.55 / 94.17 / 78.21 / 99.01

SVHN 0.01 / 1.25 / 67.77 / 1.35 / 86.29 2.33 / 13.95 / 93.86 / 23.74 / 97.00

VGG-16 TinyIm 99.94 / 94.79 / 90.04 / 43.93 / 93.97 99.97 / 98.77 / 98.17 / 90.21 / 98.87

(SVHN) LSUN 99.98 / 98.30 / 89.43 / 47.73 / 94.80 99.99 / 99.49 / 97.97 / 92.16 / 99.05

iSUN 99.94 / 95.94 / 92.00 / 44.15 / 95.38 99.97 / 99.09 / 98.42 / 90.08 / 99.08

CIFAR10 97.91 / 79.46 / 90.45 / 33.00 / 87.37 99.42 / 96.13 / 98.08 / 83.47 / 97.83

ResNet TinyIm 99.93 / 94.87 / 85.78 / 65.45 / 95.73 99.97 / 98.83 / 97.21 / 92.14 / 99.01

(SVHN) LSUN 99.97 / 98.50 / 83.46 / 71.54 / 96.58 99.99 / 99.51 / 96.76 / 94.30 / 99.18

iSUN 99.93 / 96.17 / 86.76 / 63.26 / 96.64 99.97 / 99.11 / 97.36 / 92.25 / 99.21

CIFAR10 98.15 / 80.18 / 85.63 / 43.24 / 87.60 99.46 / 96.20 / 97.13 / 85.39 / 97.41

Bold indicates sufficient values

compared with a given threshold, and the samples above the threshold are considered as
anomalous.

We compare our proposed method with a few standard or recent anomaly detectors using
AE models, including autoecoder (AE) [3], variational autoencoder (VAE) [20], memory-
augmented autoencoder (MemAE) [12] and autoecoder combined with KL divergence
(AE&KL) [42]. The AE [3] and VAE [20] were widely used for anomaly detection [2],
while these models may also reconstruct well anomaly data, causing unsatisfactory detection
performance [35, 48]. TheMemAE [12] is a more recent work that augments the autoencoder
with a memory module which is used to represent the prototypical elements of the normal
data, so that the reconstruction is obtained from only a restricted set of memory records. The
above three works belong to the first category, i.e., they use the reconstruction error as the
anomaly detection metrics. The data sample with reconstruction error above a given thresh-
old is anomalous. The AE&KL defines the KL divergence as distance measure between the
output distributions of the classifiedmodel on input data and reconstructed data. TheAE&KL
belongs to the second category.

The detailed implementation and parameter settings are given in our public code. The
experimental results are given in Tables 8 and 9. The results show that AE and VAE perform
better than our model in a few experiments, e.g., on detecting OOD on the SVHN dataset.
However, it does not perform stably, because it also reconstruct well on some anomaly data,
e.g., the BIM-a and CW for CIFAR-10 (ResNet) and SVHN (VGG/ResNet). For MemAE,
we train 10 anomaly detectors according to 10 subclasses, which is the same as the original
work [12]. The difference is that the original work selects one class as ID, and the remaining
classes from the same dataset are considered to be anomalous,
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Table 9 Comparison of our approach with the AE, VAE, AE&KL and MemAE for adversarial data

Model AD TNR at 95% TPR ↑ AUROC ↑
AE / VAE / AE&KL / MemAE / ours

LeNet FGSM 100.0 / 100.0 / 91.79 / 99.66 / 100.0 100.0 / 100.0 / 98.21 / 99.32 / 99.98

(MNIST) BIM-a 97.15 / 30.87 / 82.52 / 34.10 / 95.57 99.40 / 82.53 / 97.03/ 78.44 / 99.04

BIM-b 100.0 / 100.0 / 1.89 / 67.81 / 99.32 100.0 / 100.0 / 37.34 / 94.78 / 99.64

JSMA 98.91 / 93.37 / 91.72 / 77.42 / 89.70 99.76 / 98.80 / 98.44 / 94.94 / 98.16

CW 70.11 / 9.16 / 68.34 / 35.01 / 79.73 94.08 / 65.19 / 95.08 / 78.07 / 97.12

VGG-16 FGSM 77.12 / 76.73 / 39.13 / 1.05 / 96.74 99.98 / 99.78 / 94.69 / 20.75 / 99.22

(CIFAR10) BIM-a 15.01 / 4.91 / 40.11 / 0.14 / 63.57 73.31 / 54.27 / 95.72 / 14.92 / 94.10

BIM-b 23.02 / 4.27 / 0.36 / 0.15 / 15.80 84.63 / 54.33 / 33.95 / 14.16 / 81.53

JSMA 17.77 / 5.98 / 64.16 / 11.29 / 83.60 76.57 / 54.10 / 93.50 / 59.24 / 97.13

CW 63.98 / 64.35 / 49.59 / 0.15 / 81.18 95.82 / 91.79 / 96.14 / 13.62 / 96.53

ResNet FGSM 60.14 / 60.53 / 37.30 / 44.60 / 99.96 99.98 / 98.43 / 93.24 / 83.76 / 99.81

(CIFAR10) BIM-a 8.75 / 4.71 / 30.10 / 0.14 / 35.65 60.40 / 43.51 / 86.48 / 18.38 / 83.67

BIM-b 34.96 / 0.97 / 0.0 / 0.15 / 99.98 91.65 / 34.16 / 0.01 / 18.47 / 99.99

JSMA 60.77 / 5.81 / 56.70 / 40.22 / 91.62 97.61 / 62.45 / 93.95 / 83.84 / 97.74

CW 20.96 / 19.93 / 33.34 / 0.12 / 37.98 76.00 / 63.27 / 92.80 / 18.23 / 86.84

VGG-16 FGSM 100.0 / 82.55 / 68.26 / 11.50 / 97.69 100.0 / 98.91 / 97.12 / 80.05 / 99.46

(SVHN) BIM-a 11.44 / 5.69 / 40.12 / 5.77 / 40.81 69.55 / 53.20 / 89.35 / 52.49 / 81.36

BIM-b 100.0 / 16.51 / 0.0 / 6.44 / 98.84 99.93 / 87.01 / 1.98 / 62.41 / 99.17

JSMA 83.48 / 14.10 / 71.47 / 7.38 / 76.76 98.91 / 73.12 / 97.92 / 59.09 / 94.72

CW 5.60 / 4.98 / 37.36 / 5.58 / 66.88 52.37 / 50.28 / 94.46 / 51.75 / 94.54

ResNet FGSM 100.0 / 91.25 / 74.89 / 14.23 / 99.76 100.0 / 99.01 / 97.62 / 81.93 / 99.80

(SVHN) BIM-a 11.66 / 5.29 / 53.08 / 5.64 / 24.53 75.50 / 52.80 / 89.40 / 52.93 / 77.33

BIM-b 100.0 / 15.90 / 0.0 / 6.49 / 100.0 99.97 / 86.34 / 0.0 / 63.26 / 99.98

JSMA 89.84 / 16.73 / 70.12 / 7.44 / 51.04 99.29 / 77.23/ 97.04 / 59.92 / 90.81

CW 5.25 / 4.96 / 38.31 / 5.66 / 54.53 51.77 / 50.17 / 91.82 / 52.07 / 92.36

Bold indicates sufficient values

while in our approach, ID and anomalous data (OOD and AD) are different datasets.
In addition, our approach detects anomalies in given classes, meaning that for each input,
we apply the target DNN to return a class, based on which we select the corresponding
MemAE-based detector for testing, whether the input is anomalous. The results of MemAE
are significantly inferior to the results of our method and other methods for OOD and AD, as
shown in Tables 8 and 9. The AE&KL demonstrates better performance than ours in some
cases for AD, e.g., the results of the BIM-a for SVHN. However, the results for BIM-b are
not as good. Besides, the results for OOD are significantly inferior to our results. In summary,
the performance of the above AE-based anomaly detectors are unstable and cannot be used
as a general method to tackle both OOD and AD.

5.5 Discussion on Preprocessing

As shown in Table 1, both ODIN and MD apply input pre-processing to improve their
precision. To illustrate the performance of our work, we further compare our results with their
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Table 10 The results of ODIN and MD for pre-processing

Model OOD TNR at 95% TPR ↑ AUROC ↑
ODIN / MD / ours

VGG-16 TinyIm 73.76 / 63.64 / 85.61 95.66 / 92.14 / 97.54

(CIFAR10) LSUN 83.80 / 73.74 / 92.81 97.36 / 94.87 / 98.98

iSUN 84.06 / 72.56 / 92.64 97.27 / 94.51 / 98.70

SVHN 84.06 / 35.61 / 68.07 96.54 / 84.39 / 95.66

ResNet TinyIm 65.35 / 41.32 / 94.24 93.57 / 84.67 / 98.61

(CIFAR10) LSUN 85.40 / 58.12 / 97.34 97.42 / 91.58 / 99.25

iSUN 82.33 / 56.00 / 95.34 96.98 / 90.65 / 99.01

SVHN 67.27 / 60.26 / 86.29 93.80 / 87.44 / 97.00

Bold indicates sufficient values

Table 11 Comparison of our approach with the KD+BU, LID for the known adversarial data

Model AD TNR at 95% TPR ↑ AUROC ↑
KD+BU/LID/ours

VGG-16 FGSM 77.35/92.81 /96.74 87.66/98.11/99.22

(CIFAR10) BIM-a 86.38/82.79/63.57 83.74/84.15/94.10

BIM-b 0.05/45.40/15.80 49.11/86.86/81.53

JSMA 97.23/94.81/ 83.60 97.29/97.15/97.13

CW 87.01/95.94/81.18 85.80/88.75/ 96.53

ResNet FGSM 38.93/99.95/99.96 75.70/99.98/99.81

(CIFAR10) BIM-a 17.48/65.25/35.65 65.77/83.52/83.67

BIM-b 99.89/99.89 /99.98 99.93/99.93/99.99

JSMA 60.0/81.13/91.62 76.38/90.69/97.74

CW 26.38/49.92/37.98 75.75/72.55/86.84

Bold indicates sufficient values

best performance i.e., ODIN and MD with pre-processing, using VGG and ResNet models
on the CIFAR-10 data set. The results (see Table 10) confirm that the performance of ODIN
and MDwith pre-processing is obviously better than those without pre-processing (Table 2),
and demonstrate that our results are better than both ODIN and MD with pre-processing.
Similarly, for AD detection, knowing the adversarial attack strategy, the performance of LID
can be significantly improved and the performance of KD+BU can also be improved to some
extent (excluding BIM-b for VGG model) as shown in Table 11. More importantly, we show
that our results outperformbothKD+BUandLIDwith known adversarial samples inmajority
cases, when applied to VGG and ResNet models on the CIFAR-10 data set (see Table 11).

6 Conclusion and FutureWork

To enhance the applicability of DNN input anomaly detection in real-world tasks, we have
proposed a novel approach that is able to detect all three types of anomalies, namely Out-of-
Distribution (OOD) data, Adversarial (AD) data andNoise (NS) data. By combining the early
and late layers of pre-trained DNN models, and deepening to a fine-grained level of each
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sub-class, our approach generally outperforms the state-of-the-art approaches for detection
of all aforementioned anomaly types, to the best of our knowledge, which has been evidenced
by the experiments.

One limitation is that this work and other anomaly detection works focus only on image
classification. As the application domains of DNN is expanding fast, it is interesting and
necessary to explore whether the existing methodology can be adopted to other applications
beyond image processing, such as speech recognition, natural language processing, and
intrusion detection with network traffic monitoring.
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