
Neural Processing Letters (2022) 54:3425–3442
https://doi.org/10.1007/s11063-022-10768-y

TFM: A Triple Fusion Module for Integrating Lexicon
Information in Chinese Named Entity Recognition

Haitao Liu1 · Jihua Song1 ·Weiming Peng1 · Jingbo Sun1 · Xianwei Xin1

Accepted: 4 February 2022 / Published online: 22 April 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Due to the characteristics of the Chinese writing system, character-based Chinese named
entity recognition models ignore the word information in sentences, which harms their
performance. Recently, many works try to alleviate the problem by integrating lexicon infor-
mation into character-based models. These models, however, either simply concatenate word
embeddings, or have complex structures which lead to low efficiency. Furthermore, word
information is viewed as the only resource from lexicon, thus the value of lexicon is not
fully explored. In this work, we observe another neglected information, i.e., character posi-
tion in a word, which is beneficial for identifying character meanings. To fuse character,
word and character position information, we modify the key-value memory network and
propose a triple fusion module, termed as TFM. TFM is not limited to simple concatenation
or suffers from complicated computation, compatibly working with the general sequence
labeling model. Experimental evaluations show that our model has performance superiority.
The F1-scores on Resume, Weibo and MSRA are 96.19%, 71.12% and 95.63% respectively.

Keywords Chinese named entity recognition · Lexicon information · Information fusion ·
Natural language processing

1 Introduction

NamedEntityRecognition (NER) is a fundamental task in natural languageprocessing (NLP),
aiming at recognizing specific entities in unstructured texts, such as persons, countries and
institutions. It is the upstream task of many NLP tasks which prevail currently, including
question generation [7], event extraction [41] and knowledge graph [10]. NER has been
regarded as a sequence labeling task in English and the BiLSTM-CRF architecture [19] is
always taken as the model backbone. Popular models are based on words, since there are
natural delimiters in English sentences [5, 24, 33, 47].

However, word-based NER models do not work well in Chinese NER. There are no
natural delimiters in Chinese sentences, which means that sentences must be segmented

B Jihua Song
songjh@bnu.edu.cn

1 School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-022-10768-y&domain=pdf

3426 H. Liu et al.

Fig. 1 The lattice structure. Green directed arrows denote information flow paths which connect word cells
with their first character cells and last character cells

into words before a word-based model is applied. This is a tough process for machines and
bad judgement maymislead NER inference. To eliminate the influence of word segmentation
error, models based on characters have becomemainstream inChineseNER [9, 14, 37]. Later,
Character-based models gradually hit a bottleneck because they ignore the fact that many
Chinese characters express multiple meanings and only referring to words canmost character
meanings be determined. Guided by the idea that lexicon can play a supplementary role,
researchers turn to integrating lexicon information into character-based models. Under this
circumstance, the famous Lattice-LSTM [48] is proposed. The schematic diagram of Lattice-
LSTM is shown in Fig. 1. More information flow paths are added to the standard LSTM layer
[19], connecting words with their first characters and last characters. By a well-designed
calculating method, it effectively integrates lexicon information into the character-based
model. Though Lattice-SLTM is proven effective, its drawbacks are obvious. The complex
model architecture greatly slows down its speed, which makes this model not very practical.
Subsequentmodels likeWC-LSTM[26], SoftLexicon [28] successfully solve the inefficiency
problem of Lattice-LSTM, but they are limited in simply concatenating lexicon information
and character embeddings. As a result, it still remains challenging to explore a more proper
way to integrate lexicon information.

In addition, word information is often taken as the only information that can be obtained
from lexicon in recentmodels. This information is presented inword embeddingswhile being
integrated into models. According to our observation, however, another information can also
be extracted from lexicon, i.e., character position in a word. This information is always not
taken seriously by recent models, but sometimes it is valuable in distinguishing different
meanings of a character. Take the character as an example. On the one hand, if
is at the beginning position of a word, it most likely conveys the meaning of “substitute” or
“acting” and in this condition character position information can help to recognize TITLE
entities like (acting general manager). On the other hand, if is at the
end of a word, it usually conveys the meaning of “era” or “epoch”, which is conducive to
identify TIME entities like (Ming Dynasty).

To utilize the character position information and solve the problems formermodels remain,
we propose TFM, a triple fusion module which fuses character, word and character position
information from lexicon. This module is inspired by the key-value memory network (KV-
MemNN) [30], which is designed for the question answering task. The original KV-MemNN
first incorporates key-value slots. Then it uses keys and a fixed question embedding to address
weights, by which values are selectively retained. As shown in Fig. 2, the differences between
KV-MemNN and TFM mainly reflect in the input form and the inner calculation process.

123

TFM: A Triple Fusion Module for Integrating Lexicon Information... 3427

Fig. 2 Comparison between KV-MemNN and TFM. The KV-MemNN cell is on the left and the TFM cell is
on the right

TFM takes lexicon information triples as input. Then weights are computed by the character
and word information. Finally, the output is derived from the embeddings concatenated by
the word and character position information. Though there are some differences, TFM keeps
the main idea of KV-MemNN, i.e., memorizing information according to weights. Like a list
of recent works [39, 40], we insert TFM into the general BiLSTM-CRF architecture to form
our model. The contributions of our work can be summarized as follows:

1. We propose TFM to integrate lexicon information into the character-based Chinese NER
model. TFM fuses information by neither complicated calculation nor simple concatena-
tion, which is between these two.

2. Apart from word information, we exploit another information from lexicon which is
overlooked by other methods, i.e., character position information. This information is
fused together with the other two information in TFM and finally integrated into the
character-based model.

3. To investigate the performance of our model, we evaluate it on three public Chinese NER
datasets, i.e., Resume [48], Weibo [34] and MSRA [21]. By these experiments, we find
that our model outperforms all the models for comparison.

The remaining sections of this article are organized as follows. Section 2 analyzes related
work about this paper. Section 3 introduces the details of our model. Section 4 describes the
setup of experiments and reports final results. Section 5 draws a conclusion.

2 RelatedWork

2.1 NER with Lexicon Information

The phenomenon of word information loss through lack of delimiters does not exist in
languages like English. Therefore, there is no need to deliberately consider word information
in NER in these languages. But utilizing words and phrases from lexicon can help models
know specific entity instances in advance, thus enhancing their inference ability. For example,
Liu et al. [25] concatenated query results to the output of BiLSTM and got tags by Semi-CRF.
Peshterliev et al. [35] put gazetteer embeddings togetherwithword embeddings,whichmeans

123

3428 H. Liu et al.

they introduced lexicon information in the embedding layer. This concatenating method of
fusing knowledge is also seen in Japanese and Hindi NER [13, 31]. Different from NER in
word-based languages, the desire of word information in Chinese NER is not only confined
to partial entity nouns, but also words in the whole sentences. So, the integration of word
information needs further investigation.

Different methods have been proposed. On the one hand, jointly training and transfer
learning worked. Peng and Dredze [34] jointly trained Chinese NER and Chinese word
segmentation (CWS) models, improving the Chinese NER model with nearly 5% absolute
improvement. Wu et al. [44] used CNN to capture local context and also jointly trained
Chinese NER andCWSmodels. Cao et al. [3] applied adversarial transfer learning in Chinese
NER, incorporating word boundary information from CWS task. On the other hand, lexicon
information was valued. Ding et al. [8] constructed a directed acyclic graph to connect
characters and words in lexicon, integrating both with a graph neural network. Gui et al.
[15] and Sui et al. [37] utilized graph neural networks to integrate word information. Zhang
and Yang [48] changed the architecture of standard LSTM, using shortcut paths to provide a
link between character cells and word cells, which formed a lattice structure. In view of the
complexity and inefficiency of lattice structure, Li et al. [23] proposed FLAT, Liu et al. [26]
proposed WC-LSTM and Ma et al. [28] proposed SoftLexicon, all focusing on simplifying
the complicated lattice structure, improving running speed and advancing the applicability of
the models. Recently, Hu and Wei [18] rethought the second-order lexicon knowledge of the
character which relieved word boundary conflicts. Gong et al. [12] constructed a hierarchical
tree structure to utilize characters, subwords and lexicon words. Unlike all those models, we
exploit one more information from lexicon, i.e., character position information and design
TFM to integrate lexicon knowledge into the character-based model.

2.2 Key-Value Memory Network

KV-MemNN [30] was proposed for the question answering task, aiming at narrowing the gap
between referring to knowledge bases and reading directly from documents. It encodes and
integrates prior knowledge in key-value pairs. Thismethod of incorporating information has a
strong transferability and is often superior to simple embedding concatenation. As a result, it
has been applied to other tasks, such as image recognition [2], clinical diagnostic inferencing
[36] and machine translation [42]. In sequence labeling task, KV-MemNN has also proven
its merits. Tian et al. [40] utilized wordhood information with KV-MemNN for CWS. In
Slot Filling for dialogue systems, Wu et al. [45] adopted this method to trace long-term slot
context. For NER task, to get document-level representation, Gui et al. [16] recorded context
representations and label embeddings while Luo et al. [27] incorporatedword representations
and hidden states, all following the idea ofKV-MemNN.Besides, some researchers leveraged
syntactic information. Nie et al. [32] learned three syntactic information and Tian et al. [39]
injected syntactic knowledge into the biomedical NER model. It is worth noting that all the
mentioned methods for sequence labeling task generate various key-value pairs according
to the task objectives and keep the basic structure of KV-MemNN unchanged. Different
from these models, we incorporate lexicon knowledge into the NER model and modify KV-
MemNN to make it suitable for the input of triples, instead of key-value pairs.

123

TFM: A Triple Fusion Module for Integrating Lexicon Information... 3429

Fig. 3 The architecture of our model. The left part is the standard BiLSTM-CRF model and the right part is
the proposed TFM. Word information is fused with character and character position information, where ⊕
denotes concatenation operation, ⊗ denotes element-wise product operation, s© denotes the softmax function
and � denotes the formation of triples

3 Method

In this work, we propose TFM to incorporate lexicon information into the character-based
model. The architecture of our model is illustrated in Fig. 3, where the general BiLSTM-
CRF model is on the left part with TFM on the right part working between the BiLSTM
layer and the CRF layer. The first layer is an embedding layer which maps characters into
dense vectors. The second layer is a BiLSTM layer by which character representations with
context information are obtained. Then, triples containing character, word and character
position information are sent to TFM to get fusion information. The last layer is the CRF
layer whose input is the fusion information and output is the predicted named entity tags.
Details are elaborated in the rest of this section.

3.1 Embedding Layer

In the embedding layer, characters in the input sentence in text form are mapped into values
and expressed as dense vectors. Formally, given an input sentence X = {x1, x2, . . . , xn} ∈
VC , where n denotes the length of the sentence and VC denotes the character vocabulary,
each character xi is represented as:

eci = BERT (xi) , (1)

123

3430 H. Liu et al.

where BERT (·) denotes the pre-trained BERT [6] model. Recently, this model which inte-
grates abundant semantic information has been widely used in NLP tasks. Rather than static
embeddings, BERT can generate dynamic embeddings for the same character depending on
its context characters.

3.2 BiLSTM Layer

BiLSTM [19] is good at capturing context information. Since the standard structure of BiL-
STMhas not beenmodified in ourmodel,we briefly introduce its forward calculation process:

⎡
⎢⎢⎣
i i
f i
oi
c̃i

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

σ

σ

σ

tanh

⎤
⎥⎥⎦

(
W

[
eci

hi−1

]
+ b

)
, (2)

ci = c̃i ∗ i i + ci−1 ∗ f i , (3)

hi = oi ∗ tanh(ci), (4)

where σ is the sigmoid function, ∗ is element-wise product,W and b are trainable parameters.
Given a sequence of character embeddings, BiLSTM is applied to exploit hidden expres-

sions of characters from global context:
[−→
h 1,

−→
h 2, . . . ,

−→
h n

]
= −−−−→

LST M
([
ec1, e

c
2, . . . , e

c
n

])
,

[←−
h 1,

←−
h 2, . . . ,

←−
h n

]
= ←−−−−

LST M
([
ec1, e

c
2, . . . , e

c
n

])
,

(5)

where
−−−−→
LST M and

←−−−−
LST M denote the forward and backward LSTMs and eci (i = 1, 2, . . . , n)

are character embeddings. Finally, we get the representation with context information of xi
by concatenating

−→
h i and

←−
h i :

hi =
[−→
h i ,

←−
h i

]
. (6)

3.3 Triple FusionModule

To make the idea of KV-MemNN more suitable for our need of employing triples as the
input, we innovatively change its architecture, fusing information in three steps.
Generating triples. For each character xi in the input sentence X , we first get its matched
words in a lexicon, represented asWi = {wi1, wi2, . . . , wim}. Here, wi · is a sub-sequence of
X that contains xi , i.e.,wi · = {xi−a, . . . , xi , . . . , xi+b}, where 0 ≤ a ≤ i and 0 ≤ b ≤ n− i .
For each word wi j in Wi , a triple is generated by:

ti j = (
xi , pi j , wi j

)
, (7)

which means xi is at the pi j position of wi j . Here, pi j is a position tag and it is an item of
{B, E, S, M1, M2, . . . , Mk−2}, where k is the maximum length of the words in the lexicon.
Specifically, like common sequence labeling tags, B denotes that the character is at the
Beginning position of the word, other labels can be deduced in the same manner. It should
be noted that S is viewed as a position tag which denotes that the word consists of a single
character. Furthermore, we distinguish the middle positions because we believe that different
middle characters are closer to different parts in a word and the detailed character position
information is good for NER inference, e.g., character (labor) and (intelligence)

123

TFM: A Triple Fusion Module for Integrating Lexicon Information... 3431

Fig. 4 An example of generating triples. The triples strung together with lines belong to the same character

are all at the middle positions in (artificial intelligence), but (labor) is
closer to (human) while (intelligence) is closer to (ability) from lexicology.
Consequently, the positions of (labor) and (intelligence) should not be confused.
We use M1 to denote the first Middle position of the word, M2 denotes the second Middle
position of the word and so on.

To show the process of generating triples concretely, we take (arti-
ficial intelligence is interesting) as an example. The character (labor) occurs in three
words, (labor), (artificial) and (artificial intelligence). Then three

triples are generated as , and and they mean
that (labor) is a separate word, (labor) is at the end position of (artifi-
cial) and (labor) is at the first middle position of (artificial intelligence).

Triples belonging to (intelligence) can be produced as , ,

in the same way. The illustration is shown in Fig. 4.
Digitizing triple sets.The triples are digitalized before TFM fusing the information they
contain. For each triple ti j of xi , the word embedding and character position embedding are
mapped as follows:

ew
i j = Word

(
wi j

)
, (8)

epi j = Position
(
pi j

)
, (9)

whereWord(·) and Position(·) are embedding lookup tables for words and character posi-
tions. Also, if the embedding of xi in ti j is represented as exi j , then the triple is updated
as:

eti j =
(
exi j , e

p
i j , e

w
i j

)
. (10)

In this work, since hi can be viewed as the character representation with context information,
we set exi j (j = 1, . . . ,m) as hi .
Fusing information.After getting digitized triples, we fuse the character, word and character
position information. Considering the instability of word frequency calculation caused by
different corpora and following the main idea of KV-MemNN, for each wordwi j in the triple

123

3432 H. Liu et al.

set of xi , its weight is computed by:

qi j =
exp

(
exi j · ew

i j

)

∑m
j=1 exp

(
exi j · ew

i j

) . (11)

Then word information and character position information are concatenated:

e f
i j = W f · ew

i j ⊕ epi j , (12)

where W f is a trainable parameter. The lexicon information of xi will be computed by:

eli =
m∑
j=1

qi j e
f
i j . (13)

Afterwards, eli and hi are concatenated and returned as the fusion information:

vi = hi ⊕ eli . (14)

Here, we still take the former example to describe the details. As is shown in the right
part of Fig. 2, the triples assigned to the three words of character x2 are

(
ex21, e

p
21, e

w
21

)
,(

ex22, e
p
22, e

w
22

)
,
(
ex23, e

p
23, e

w
23

)
. In this step, weights q21, q22, q23 are first calculated by Eq.

11. Then theword and character position embeddings are concatenated as e f
21, e

f
22, e

f
23. Based

on the weights and the concatenating embeddings, the lexicon information el2 is calculated
according to Eq. 13. Finally, fusion information v2 is output by putting el2 together with h2.

3.4 CRF Layer

A standard CRF [20] layer is used at the top of BiLSTM layer and TFM. Given the predicted
tag sequence Y = {y1, y2, . . . , yn} ∈ Vl , where Vl denotes the label set, the probability of
the predicted sequence is

P (Y | X) =
exp

(∑
i

(
W yi

C RFvi + b(yi−1,yi)
CRF

))

∑
Y ′ exp

(∑
i

(
W

y′
i
C RFvi + b

(
y′
i−1,y

′
i

)
CRF

)) , (15)

where Y ′ denotes an arbitrary tag sequence, and W yi
C RF and b(yi−1, yi)

CRF are trainable parame-
ters. We use Viterbi algorithm [11] to get the predicted tag sequence. Given a set of training
data {(Xi , Yi)} |Ni=1, a log-likelihood loss function is used to train the model:

L =
N∑
i=1

log P (Yi |Xi). (16)

4 Experiments

We conduct a series of experiments on public Chinese NER datasets to study the effectiveness
of our model. Standard precision (P), recall (R) and F1-score (F1) are used to evaluate the
performance.

123

TFM: A Triple Fusion Module for Integrating Lexicon Information... 3433

Table 1 Hyper-parameter
settings

Parameter Value

Word emb size 50

LSTM hidden size 300

Dropout 0.5

TFM dropout 0.5

Learning rate 0.0075

Learning rate decay 0.05

LSTM layer 1

Optimizer adam

4.1 Experiment Setup

Preparation.We perform experiments on three public Chinese NER datasets: Resume [48],
Weibo [34] andMSRA [21]. Three datasets are collected fromdifferent domains. Specifically,
Resume is collected from Sina Finance,1 Weibo is collected from SinaWeibo2 and MSRA is
collected from newswire. Gold segmentation is not available for the mentioned datasets. The
lexicon we used is released by [48] and contains 704.4k words. The position lookup table is
randomly initialized and trained. The BERT pre-trained model we use is bert-base-chinese3

and its parameters are fixed. The tagging styles are all transformed to BMES tagging style
for the unity of experiments.
Hyper-parameter settings. The main hyper-parameters we set during experiments are shown
in Table 1. We keep some parameters the same with Lattice-LSTM, including word embed-
ding size, dropout, learning rate decay and so on. Other parameters like LSTM hidden size
and learning rate are adjusted to fit our model.
Models for comparison. Since our model focuses on integrating lexicon information, recent
models which share the same goal with our model are selected as the baselines, i.e.,

1. BERT-tagger [6] fine-tunes the BERT for encoding and uses a classification layer for
decoding.

2. BERT+BiLSTM-CRF is based on BiLSTM-CRF and uses BERT as the encoder.
3. CAN-NER [49] captures the context information with a character-based CNN and a

gated GRU.
4. self-attention+BiLSTM-CRF [4] adds the self-attention mechanism to the BiLSTM-

CRF model, which integrates character and word information.
5. BERT+MFE [22] incorporates semantic, glyph and phonetic features into the character-

based model.
6. Multi-digraph model [8] uses graph neural networks to integrate lexicon information.
7. LGN [15] utilizes a graph neural network to solve word ambiguities by integrating

characters, potential words and sentence semantics.
8. CGN [37] is proposed to integrate self-matched lexical words and nearest contextual

lexical words.
9. Lattice-LSTM [48] is a variant of LSTM which incorporates all potential words into a

character-based model.

1 http://finance.sina.com.cn/stock/index.shtml.
2 http://www.weibo.com/.
3 https://huggingface.co/bert-base-chinese.

123

http://finance.sina.com.cn/stock/index.shtml
http://www.weibo.com/
https://huggingface.co/bert-base-chinese

3434 H. Liu et al.

10. LR-CNN [14] is a CNN-based method that incorporates lexicons using a rethinking
mechanism.

11. WC-LSTM [26] adds word information to the start or the end character of the word,
aiming at solving some problems that have been found in Lattice-LSTM. InWC-LSTM,
there are four words encoding strategy. For each dataset, we pick the strategy which
works best for comparison.

12. HiLSTM [12] is a hierarchical LSTM framework which considers not only words in
lexicon but also words and subwords in sentences.

13. BERT+SoftLexicon [28] follows the idea of Lattice-LSTM, which avoids the complex
structure and improves the performance of model.

14. SLK-NER [18] fuses different second-order lexicon knowledge (SLK) with the global
attention information to alleviate the impact of word boundary conflicts.

15. AM-BiLSTM [46] enhances character embeddings with the multi-word information
feature, which keeps the word information by matching a lexicon.

4.2 Results on Benchmark Datasets

Experimental results on Resume, Weibo and MSRA are respectively shown in Tables 2, 3, 4.
We divide the baselines into four groups, including general models in Chinese NER which
do not integrate any lexicon information, models using different external knowledge, models
utilizing lexicon information by graph neural network and the state-of-the-art Chinese NER
models which focus on integrating lexicon information.

As we can see from the tables, compared with baselines in the first group, our model
outperforms all the models. This proves that integrating lexicon information has a positive
effect on the character-based model.

Table 2 Results on resume Models P R F1

BERT-tagger [28] 94.87 96.50 95.68

BERT+BiLSTM-CRF [28] 95.75 95.28 95.51

CAN-NER [49] 95.05 94.82 94.94

Self-attention+BiLSTM-CRF [4] – – –

BERT+MFE [22] 95.76 95.71 95.73

Multi-digraph model [8] – – –

LGN [15] 95.28 95.46 95.37

CGN [37] – – –

Lattice-LSTM [48] 94.81 94.11 94.46

LR-CNN [14] 95.37 94.84 95.11

WC-LSTM+longest [26] 95.27 95.15 95.21

HiLSTM [12] – – –

BERT+SoftLexicon [28] 96.08 96.13 96.11

SLK-NER [18] 95.20 96.40 95.80

AM-BiLSTM [46] 94.29 95.63 94.95

Our model 96.37 96.01 96.19

123

TFM: A Triple Fusion Module for Integrating Lexicon Information... 3435

Table 3 Results on Weibo Models NE NM All

BERT-tagger [28] 65.77 62.05 63.80

BERT+BiLSTM-CRF [28] 69.65 64.62 67.33

CAN-NER [49] 55.38 62.98 59.31

Self-attention+BiLSTM-CRF [4] – – 61.46

BERT+MFE [22] – – 67.74

Multi-digraph model [8] – – 59.50

LGN [15] 55.34 64.98 60.21

CGN [37] 56.45 68.32 63.09

Lattice-LSTM [48] 53.04 62.25 58.79

LR-CNN [14] 57.14 66.67 59.92

WC-LSTM+longest [26] 52.55 67.41 59.84

HiLSTM [12] 60.94 68.89 63.79

BERT+SoftLexicon [28] 70.94 67.02 70.50

SLK-NER [18] – – 64.00

AM-BiLSTM [46] – - –

Our model 71.29 67.04 71.12

NE, NM and All denote F1-scores for named entities, nominal entities
and both

Table 4 Results on MSRA Models P R F1

BERT-tagger [28] 93.40 94.12 93.76

BERT+BiLSTM-CRF [28] 95.06 94.61 94.83

CAN-NER [49] 93.53 92.42 92.97

Self-attention+BiLSTM-CRF [4] 95.92 94.80 95.36

BERT+MFE [22] 93.32 86.83 89.96

Multi-digraph model [8] 94.60 94.20 94.40

LGN [15] 94.19 92.73 93.46

CGN [37] 94.01 92.93 93.47

Lattice-LSTM [48] 93.57 92.79 93.18

LR-CNN [14] 94.50 92.93 93.71

WC-LSTM+average [26] 94.58 92.91 93.74

HiLSTM [12] 94.83 93.61 94.22

BERT+SoftLexicon [28] 95.75 95.10 95.42

SLK-NER [18] – – –

AM-BiLSTM [46] – – –

Our model 96.29 94.97 95.63

123

3436 H. Liu et al.

Fig. 5 Relative inference speed on three datasets

Baselines in the second group integrate different knowledge, includingword segmentation
information and character feature information. Our model performs better than them, since
there are always some mistakes during word segmentation and character features cannot
provide enough information for NER inference.

When we compare our model with baselines in the third group, we find that the F1-scores
of graph-basedmodels are not better than ourmodel. One of the reasons is that these baselines
do not exploit full lexicon information. Our TFM overcomes this shortcoming very well.

Our model outperforms all the state-of-the-art baselines in the fourth group. We attribute
the improvements to the TFMweproposed because TFM integratesmore lexicon information
and the multiple information are fused in a more proper manner.

In all, our model achieves the best F1 and P, which proves its merits.

4.3 Efficiency Study

In this section, we evaluate the inference speed of our model. The settings follow [28]. We
choose the general BERT+BiLSTM-CRF and three models which integrate lexicon informa-
tion for comparison.

Results are shown in Fig. 5. The inference speed of our model is faster than Lattice-
LSTM and LR-CNN and is more than twice Lattice-LSTM. This proves the improvement
of efficiency. Though TFM is inserted, the inference speed of our model is very close to the
BERT+BiLSTM-CRF model. Moreover, SoftLexicon focuses on integrating lexicon infor-
mationwhile reducing running time.Ourmodel integratesmore information, but the inference
speed does not significantly drop.

4.4 Influence of Different SequenceModeling Layers

Though general sequence labeling model BiLSTM-CRF is used as the backbone of our
model, we still want to explore the influence of different sequence modeling layers. To this
end, we replace BiLSTM with CNN and transformer[43]. The F1-socres are shown in Table
5.

123

TFM: A Triple Fusion Module for Integrating Lexicon Information... 3437

Table 5 F1-scores with different
sequence modeling layers

Layer Resume Weibo MSRA

CNN 94.41 67.10 94.87

Transformer 94.76 67.34 95.01

BiLSTM 96.19 71.12 95.63

Table 6 F1-scores with different
embedding methods

Embedding Resume Weibo MSRA

Fasttext 93.25 56.76 91.80

word2vec 94.00 57.66 92.12

ERNIE 95.83 70.07 95.62

BERT 96.19 71.12 95.63

From the table, we find that ourmodel empirically works best with BiLSTMand F1-socres
drop when applying other sequence modeling layers. Since most models choose BiLSTM,
we also follow them to make comparisons fairer.

4.5 Influence of Different EmbeddingMethods

We try three other embedding methods, i.e., fastText [1], word2vec [29] and ERNIE [38] to
evaluate the influence of different embedding methods. For fastText, we use the pre-trained
model provided by Facebook.4 For word2vec, we use the pre-trained model released by [48].
For ERNIE, we use a PyTorch version5. The results are shown in Table 6.

The F1-socres on fastText and word2vec are lower than BERT and ERNIE, especially on
Weibo dataset. One of the reasons is that Weibo is in informal language environments and
static embeddings cannot express exact meanings of characters. F1-scores with ERNIE are
close to BERT, but BERT is used more widely and our model works better with BERT, so
we choose BERT as our embedding layer.

4.6 Performance on Different Entities

We further analyze F1-scores of different entities to investigate whether the improvement
of our model is general or entity-specific. We compare our model with Lattice-LSTM and
BERT+BiLSTM-CRF. Experimental results are shown in Fig. 6.

The three models perform well on Resume and our model only improves on certain entity
types, such as ORG, TITLE and PRO. On Weibo, the F1-scores of our model on four entity
types exceed Lattice-LSTM. When compared with BERT+BiLSTM-CRF, we find that the
F1-score of our model on ORG entity drops. The drop, however, does not affect the overall
improvement, since the F1-scores of other entity types rise. Finally, our model has slight F1-
score increases on three entity types in MSRA and this contributes to the overall advantages.

4 https://fasttext.cc/docs/en/crawl-vectors.html.
5 https://github.com/nghuyong/ERNIE-Pytorch.

123

https://fasttext.cc/docs/en/crawl-vectors.html
https://github.com/nghuyong/ERNIE-Pytorch

3438 H. Liu et al.

Fig. 6 F1-scores of different entity types on three datasets

Table 7 An example from Weibo

The suffixes “.NAM” in the entity labels andwords consist of single character are omitted for brevity. “Matched
words” denotes the matched words from lexicon

4.7 Case Study

In this section, we analyze a sentence from Weibo dataset, i.e.,
(Amazon’s official WeChat package tracking service launched). The design of this exper-
iment is following [26]. Experimental results are shown in Table 7. Even with the help of
lexicon knowledge, Lattice-LSTMmodel fails to recognize the organization entity
(Amazon). Different from Lattice-LSTM, our model correctly makes the predictions. Later,
we check the lexicon for experiment and find that almost every word that ends with the
character is an entity, e.g., (Robinson), (Tao Xun) and
(Nelson). In this situation, the position information of in the word plays an important
role in recognizing named entity. The TFM fuses the character position information of
in (Amazon) which contributes to the right inference of our model.

During the lexicon matching process, many words can be assigned to a character. In
fact, most of the words are useless. Though all matched words are fused, we still hope that
TFM pays more attention to latent right words. We record the weights of the words for each
character in TFM and get the heatmap shown in Fig. 7. As we can see from the heatmap,
right words like (Amazon), (official) are assigned greater weights. This
proves that TFM can automatically diminish the disturbance of useless words.

123

TFM: A Triple Fusion Module for Integrating Lexicon Information... 3439

Fig. 7 Heatmap of the word weights for the example (Amazon’s
official WeChat package tracking service launched). We truncate the sentence for brevity. The darker the
color, the greater the weight

Table 8 An ablation study on our
model

Models Resume Weibo MSRA

Our model 96.19 71.12 95.63

- TFM 95.51 67.33 94.83

- Position 95.97 69.59 94.56

- Word 95.65 68.97 94.54

- “M” distinction 95.89 69.10 94.90

“-TFM” denotes that TFM is not included. “-position” denotes that TFM
does not fuse character position information. “-word” denotes that TFM
does not fuse word information. “- ‘M’ distinction” denotes that middle
positions are not distinguished in TFM

4.8 Ablation Study

To investigate different factors that affect the performance of our model, we conduct ablation
study on three datasets and the results are shown in Table 8.

1. In the “- TFM” experiment, we remove the proposed TFM. In this case, the model turns
to the BERT+BiLSTM-CRF model. We find that the performance of the model drops,
which demonstrates the effectiveness of our proposed module.

2. By “-position” and “-word” experiment, we study the influence of different information
combinations. When only one kind of information from lexicon is fused, the F1-scores
drop. This proves that our model works best when combining the word and character
position information.

3. Affected by the labeling paradigm in sequence labeling,models like SoftLexicon overlook
the distinction of different middle positions and put them in the same group. In the “- ‘M’
distinction” experiment, we do not distinguish any middle positions and the performance

123

3440 H. Liu et al.

of model declines. This proves that emphasizing different middle positions during fusing
process has a positive effect on the performance of our model.

5 Conclusion

In this paper, we notice the character position information from lexicon which is ignored by
other models. Then TFM is proposed to integrate lexicon knowledge into the character-based
model. TFM effectively handles the situation that word information is lost in the character-
based model and enhances the ability to understand the relationship between a word and its
characters by the character position information. Experiments on public datasets show that
our model achieves ideal performance in terms of efficiency and F1-score.

In the end, we describe our future work. The model we propose works well when the
training data is sufficient. But it will overfit under the circumstances of extremely scarce
training examples, i.e., few-shot settings [17]. So, we plan to explore how to integrate external
knowledge into few-shot NER models.

Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant
Nos. 61877004 and 62007004), the Major Program of National Social Science Foundation of China (Grant
No. 18ZDA295) and the Doctoral Interdisciplinary Foundation Project of Beijing Normal University (Grant
No. BNUXKJC2020).

References

1. Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching word vectors with subword information.
Trans Assoc Comput Linguist 5:135–146

2. Cai Q, Pan Y, Yao T, Yan C, Mei T (2018) Memory matching networks for one-shot image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4080–4088

3. Cao P, Chen Y, Liu K, Zhao J, Liu S (2018) Adversarial transfer learning for chinese named entity
recognition with self-attention mechanism. In: Proceedings of the 2018 conference on empirical methods
in natural language processing, pp 182–192

4. Chang N, Zhong J, Li Q, Zhu J (2020) Amixed semantic features model for Chinese NERwith characters
and words. Adv Inf Retr 12035:356

5. Chiu JP, Nichols E (2016) Named entity recognition with bidirectional LSTM-CNNS. Trans Assoc Com-
put Linguist 4:357–370

6. Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: pre-training of deep bidirectional transformers
for language understanding. arXiv:1810.04805

7. Dhole KD, Manning CD (2020) Syn-qg: syntactic and shallow semantic rules for question generation.
arXiv:2004.08694

8. Ding R, Xie P, Zhang X, Lu W, Li L, Si L (2019) A neural multi-digraph model for chinese ner with
gazetteers. In: Proceedings of the 57th annual meeting of the association for computational linguistics,
pp 1462–1467

9. DongC, Zhang J, ZongC,HattoriM,DiH (2016) Character-based LSTM-CRFwith radical-level features
for Chinese named entity recognition. In: Natural language understanding and intelligent applications.
Springer, pp 239–250

10. Elhammadi S, Lakshmanan LV, Ng R, Simpson M, Huai B, Wang Z, Wang L (2020) A high precision
pipeline for financial knowledge graph construction. In: Proceedings of the 28th international conference
on computational linguistics, pp 967–977

11. Forney GD (1973) The viterbi algorithm. Proc IEEE 61(3):268–278
12. GongC, Li Z,XiaQ,ChenW,ZhangM (2020)Hierarchical LSTMwith char-subword-word tree-structure

representation for Chinese named entity recognition. Sci China Inf Sci 63(10):1–15
13. Goyal A, Gupta V, Kumar M (2021) A deep learning-based bilingual hindi and punjabi named entity

recognition system using enhanced word embeddings. Knowl Based Syst, 107601

123

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2004.08694

TFM: A Triple Fusion Module for Integrating Lexicon Information... 3441

14. Gui T, Ma R, Zhang Q, Zhao L, Jiang YG, Huang X (2019) CNN-based Chinese ner with lexicon
rethinking. In: IJCAI, pp 4982–4988

15. Gui T, Zou Y, Zhang Q, Peng M, Fu J, Wei Z, Huang XJ (2019) A lexicon-based graph neural network
for Chinese NER. In: Proceedings of the 2019 conference on empirical methods in natural language
processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP),
pp 1039–1049

16. Gui T, Ye J, Zhang Q, Zhou Y, Gong Y, Huang X (2020) Leveraging document-level label consistency
for named entity recognition. In: IJCAI, pp 3976–3982

17. Hofer M, Kormilitzin A, Goldberg P, Nevado-Holgado A (2018) Few-shot learning for named entity
recognition in medical text. arXiv:1811.05468

18. Hu D, Wei L (2020) SLK-NER: exploiting second-order lexicon knowledge for Chinese NER.
arXiv:2007.08416

19. Huang Z, XuW, Yu K (2015) Bidirectional LSTM-CRF models for sequence tagging. arXiv:1508.01991
20. Lafferty J, McCallum A, Pereira FC (2001) Conditional random fields: probabilistic models for segment-

ing and labeling sequence data
21. Levow GA (2006) The third international chinese language processing bakeoff: Word segmentation and

named entity recognition. In: Proceedings of the Fifth SIGHAN workshop on Chinese language process-
ing, pp 108–117

22. Li J, Meng K (2021) MFE-NER: multi-feature fusion embedding for chinese named entity recognition.
arXiv:2109.07877

23. Li X, Yan H, Qiu X, Huang X (2020) Flat: Chinese NER using flat-lattice transformer. arXiv:2004.11795
24. Lin BY, Lee DH, Shen M, Moreno R, Huang X, Shiralkar P, Ren X (2020) Triggerner: learning with

entity triggers as explanations for named entity recognition. arXiv:2004.07493
25. Liu T, Yao JG, Lin CY (2019) Towards improving neural named entity recognition with gazetteers. In:

Proceedings of the 57th annual meeting of the association for computational linguistics, pp 5301–5307
26. Liu W, Xu T, Xu Q, Song J, Zu Y (2019) An encoding strategy based word-character LSTM for Chinese

NER. In: Proceedings of the 2019 conference of the North American chapter of the association for
computational linguistics: human language technologies, vol. 1 (Long and Short Papers), pp 2379–2389

27. Luo Y, Xiao F, Zhao H (2020) Hierarchical contextualized representation for named entity recognition.
In: Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 8441–8448

28. Ma R, Peng M, Zhang Q, Huang X (2019) Simplify the usage of lexicon in Chinese NER.
arXiv:1908.05969

29. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J (2013) Distributed representations of words and
phrases and their compositionality. arXiv:1310.4546

30. Miller A, Fisch A, Dodge J, Karimi AH, Bordes A, Weston J (2016) Key-value memory networks for
directly reading documents. arXiv:1606.03126

31. Misawa S, Taniguchi M, Miura Y, Ohkuma T (2017) Character-based bidirectional lstm-crf with words
and characters for japanese named entity recognition. In: Proceedings of the first workshop on subword
and character level models in NLP, pp 97–102

32. Nie Y, Tian Y, Song Y, Ao X, Wan X (2020) Improving named entity recognition with attentive ensemble
of syntactic information. arXiv:2010.15466

33. Nie Y, TianY,WanX, SongY,Dai B (2020) Named entity recognition for social media texts with semantic
augmentation. arXiv:2010.15458

34. Peng N, Dredze M (2016) Improving named entity recognition for Chinese social media with word
segmentation representation learning. arXiv:1603.00786

35. Peshterliev S, Dupuy C, Kiss I (2020) Self-attention gazetteer embeddings for named-entity recognition.
arXiv:2004.04060

36. Prakash A, Zhao S, Hasan SA, Datla V, Lee K, Qadir A, Liu J, Farri O (2017) Condensed memory
networks for clinical diagnostic inferencing. In: Thirty-first AAAI conference on artificial intelligence

37. Sui D, Chen Y, Liu K, Zhao J, Liu S (2019) Leverage lexical knowledge for Chinese named entity
recognition via collaborative graph network. In: Proceedings of the 2019 conference on empiricalmethods
in natural language processing and the 9th international joint conference on natural language processing
(EMNLP-IJCNLP), pp 3821–3831

38. Sun Y, Wang S, Li Y, Feng S, Chen X, Zhang H, Tian X, Zhu D, Tian H, Wu H (2019) Ernie: enhanced
representation through knowledge integration. arXiv:1904.09223

39. Tian Y, Shen W, Song Y, Xia F, He M, Li K (2020) Improving biomedical named entity recognition with
syntactic information. BMC Bioinform 21(1):1–17

40. Tian Y, Song Y, Xia F, Zhang T, Wang Y (2020) Improving chinese word segmentation with wordhood
memory networks. In: Proceedings of the 58th annual meeting of the association for computational
linguistics, pp 8274–8285

123

http://arxiv.org/abs/1811.05468
http://arxiv.org/abs/2007.08416
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/2109.07877
http://arxiv.org/abs/2004.11795
http://arxiv.org/abs/2004.07493
http://arxiv.org/abs/1908.05969
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1606.03126
http://arxiv.org/abs/2010.15466
http://arxiv.org/abs/2010.15458
http://arxiv.org/abs/1603.00786
http://arxiv.org/abs/2004.04060
http://arxiv.org/abs/1904.09223

3442 H. Liu et al.

41. Tong M, Xu B, Wang S, Cao Y, Hou L, Li J, Xie J (2020) Improving event detection via open-domain
trigger knowledge. In: Proceedings of the 58th annual meeting of the association for computational
linguistics, pp 5887–5897

42. Tu Z, Liu Y, Shi S, Zhang T (2018) Learning to remember translation history with a continuous cache.
Trans Assoc Comput Linguist 6:407–420

43. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017)
Attention is all you need. arXiv:1706.03762

44. WuF, Liu J,WuC,HuangY,XieX (2019)Neural Chinese named entity recognition viaCNN-LSTM-CRF
and joint training with word segmentation. In: The World Wide Web conference, pp 3342–3348

45. Wu J, Harris I, Zhao H (2021) Spoken language understanding for task-oriented dialogue systems with
augmented memory networks. In: Proceedings of the 2021 conference of the North American chapter of
the association for computational linguistics: human language technologies, pp 797–806

46. Xu H, Chen Z, Wang S, Jiang X (2021) Chinese NER using Albert and multi-word information. In: ACM
turing award celebration conference-China (ACM TURC 2021), pp 141–145

47. Yan R, Jiang X, Dang D (2021) Named entity recognition by using XLNet-BILSTM-CRF. Neural Process
Lett 53:1–18

48. Zhang Y, Yang J (2018) Chinese Ner using lattice LSTM. arXiv:1805.02023
49. Zhu Y, Wang G, Karlsson BF (2019) Can-ner: convolutional attention network for Chinese named entity

recognition. arXiv:1904.02141

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1805.02023
http://arxiv.org/abs/1904.02141

	TFM: A Triple Fusion Module for Integrating Lexicon Information in Chinese Named Entity Recognition
	Abstract
	1 Introduction
	2 Related Work
	2.1 NER with Lexicon Information
	2.2 Key-Value Memory Network

	3 Method
	3.1 Embedding Layer
	3.2 BiLSTM Layer
	3.3 Triple Fusion Module
	3.4 CRF Layer

	4 Experiments
	4.1 Experiment Setup
	4.2 Results on Benchmark Datasets
	4.3 Efficiency Study
	4.4 Influence of Different Sequence Modeling Layers
	4.5 Influence of Different Embedding Methods
	4.6 Performance on Different Entities
	4.7 Case Study
	4.8 Ablation Study

	5 Conclusion
	Acknowledgements
	References

