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Abstract
Performance metrics are usually evaluated only after the neural network learning process
using an error cost function. This procedure can result in suboptimal model selection, par-
ticularly for imbalanced classification problems. This work proposes the direct use of these
metrics as cost functions, which are often derived from the confusionmatrix. Commonly used
metrics are covered, namely AUC, G-mean, F1-score and AG-mean. The only implementa-
tion change for model training occurs in the backpropagation error term. The results were
compared to the standardMLP using the Rprop learning algorithm, SMOTE, SMTTL,WWE
and RAMOBoost. Sixteen classical benchmark datasets were used in the experiments. Based
on average ranks, the proposed formulation outperformed Rprop and all sampling strategies,
namely SMOTE, SMTTL and WWE, for all metrics. These results were statistically con-
firmed for AUC and G-mean in relation to Rprop. For F1-score and AG-mean, all algorithms
were considered statistically equivalent. The proposal was also superior to RAMOBoost for
G-mean given average ranks. However, it was statistically faster than RAMOBoost for all
metrics. It was also faster than SMTTL and statistically equivalent to Rprop, SMOTE and
WWE. More, the solutions obtained are generally non-dominated ones compared to all other
techniques, for all metrics. The results showed that the direct use of performance metrics as
cost functions for neural network training favors generalization capacity and also computa-
tion time in imbalanced classification problems. Its extension to other performance metrics
derived directly from the confusion matrix is straightforward.

Keywords Classification · Imbalanced problem · Cost-sensitive function · Multi-Layer
perceptron · Back-propagation · Confusion matrix

1 Introduction

Imbalanced classification problems have been a major challenge for neural network learning
in recent decades. Since most learning methods are based on global error objective functions,
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inducedmodels tend to inherit imbalance that is contained in the data. There aremanymethods
for dealing with this problem, which can be grouped into three categories, namely sampling
procedures, ensemble learning and cost-sensitive functions. Reviews on them can be found
in [1–10], to mention a few. Sampling methods refer mainly to the under-/over-sampling of
the imbalanced data set, having Synthetic Minority Over-sampling Technique (SMOTE) [9],
Weighted Wilson’s Editing (WWE) [11] and Adaptive Synthetic Sampling (ADASYN) [12] as
their most popular representatives. Ensemble learning consists of a combination of learning
algorithms [13, 14], which also appear in other contexts, but in this case aim to compensate
performance on individual classes by aggregating classifiers. The work presented in this
paper refer to a cost-sensitive method [1, 2, 5, 15, 16], since it is based on new cost functions
that aim to compensate for the imbalance in the data.

Classifier evaluation, after learning with error functions, is given by additional perfor-
mance metrics that estimate the response among all classes [17, 18]. Perhaps the greatest
difficulty with the class imbalance problem is that such metrics are only evaluated after
training, despite being the ultimate learning goal. Learned models that do not satisfy the
performance metric for the imbalanced class are often retrained. This situation is due to the
fact that most learning algorithms are based on the inductive principle of global error min-
imization, which are easier to implement and manipulate analytically. This situation prints
an empirical component in the entire learning process, since the learned models can not be
changed by the performance metric after obtaining its parameters. It seems reasonable, there-
fore, that metrics should also be considered to induce the set of parameters in the learning
phase, aiming for models closer to the final performance goal without the need for retraining.

The following are examples of works related to strategies for dealing with the imbalanced
classification problem. Durden et al. [19] investigated the impact of the sizes of the training
and validation datasets on the performance of a convolutional neural network classifier given
the imbalance problem. This application refereed to the classification ofmarine fauna images.
Using a residual neural network, Langenkämper et al. [20] showed that the problemof concept
drift in seafloor fauna imageswas less important than the amount of training data in the context
of imbalance. Slightly shifted visual characteristics in images of the same class occur, for
example, due to the use of different imaging systems. In another work, Langenkämper et al.
[21] investigated the use of over-/under-sampling methods combined with data augmentation
for the class imbalance problem in marine image data using convolutional neural networks.
Mellor et al. [22] analyzed the effect of data imbalance on classification accuracy for land
cover classification. The authors employed an ensemble learning classifier based on random
forests using a margin criteria in the confusion matrix.

The main contribution of this work is to shed light on how performance metrics can be
used not only in the evaluation of already trained classifiers, but also as loss functions for
training [2]. In other words, instead of considering themetric just as a post-training validation
criterion, it is considered as the objective function and is effectively used in the training phase.
As performance metrics are often drawn from the confusion matrix, we show how to con-
sider them as loss functions and also how to implement them with gradient descent learning.
Instead of using accuracy as a performance metric, which may favor the majority class, other
metrics, also often used as post-learningmetrics, were adopted in this work [23–26]. Namely,
AUC (area under the ROC curve) [27], Kubat’s G-mean (Geometric mean) [28], F1-score
[29] and AG-mean (Adjusted Geometric-mean) [30]. This approach is capable of compen-
sating for performance and computation time when compared to classical algorithms. The
following algorithms, which are representative of themost common strategies to deal with the
imbalanced classification problem, were considered for comparison purposes: SMOTE (Syn-
thetic Minority Oversampling Technique) [9], an oversampling method; SMTTL (SMOTE
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Table 1 Confusion matrix Predicted Positive Predicted Negative

Positive label True Positive (T P) False Negative (F N )

Negative label False Positive (F P) True Negative (T N )

Table 2 Approximate confusion
matrix

Predicted Positive Predicted Negative

Positive label
∑n

i=1 yi · ŷi
∑n

i=1 yi · (1 − ŷi )

Negative label
∑n

i=1(1 − yi ) · ŷi
∑n

i=1(1 − yi ) · (1 − ŷi )

y = 0: Positive class label
y = 1: Negative class label

+ Tomek Links) [31], an oversampling method with pruning; WWE (Weighted Wilson’s
Editing) [11], an undersampling method; RAMOBoost (Rated Minority Oversampling in
Boosting) [32], an ensemble method; and the Rprop [33], an error minimization learning
algorithm for training MLPs, with the cross-entropy loss function.

Section 2 describes the formulation of objective functions based on performance metrics,
which are derived from the confusion matrix. Section 3 shows the corresponding derivation
of the backpropagation error term to be used during network training. Section 4 presents
the results obtained for a series of classical benchmark datasets, which are compared to
commonly used methods for imbalanced data. Final considerations are given in Sect. 5.

2 Approximate PerformanceMetrics

This section presents a general formulation for directly using performance metrics as cost-
sensitive objective functions. The starting point for this is the confusion matrix, shown in
Table 1, from which most metrics are obtained. The formulation is shown for AUC, G-
mean, F1-score and AG-mean, which are widely used to evaluate imbalanced classification
problems [23–26]. This formulation can readily be extended to any performancemetric based
on the confusion matrix.

Considering a binary classification problem, for which targets y ∈ Y = {0, 1} and model
estimates ŷ ∈ R = [0, 1], the confusion matrix can be approximated in terms of y and ŷ
according to Table 2, where n is the number of samples.

In sequence, each performance metric is rewritten using the elements from the previous
approximate confusion matrix. Table 3 shows the resulting representation for them. Next
section shows how to obtain the corresponding backpropagation error terms.

3 Backpropagation Error Term for the Approximate Performance
Metrics

Backpropagation equations can be obtained directly from the cost functions presented in
Table 3. In fact, the change in the objective function only affects the backpropagation error
term (δn), since the other weight update terms remain unaltered. The update equation can be
obtained by applying the gradient descent algorithm to ∂ J (θ)/∂θn−1) and ∂ J (θ)/∂zn−1 as
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Table 3 Performance metrics in terms of the approximate confusion matrix

Metrics Representation

Formula Approximate Confusion Matrix

AUC [34] 1
2 · (1 + T Pr − F Pr) 1

2 ·
(

1 +
∑n

i=1 yi ·ŷi
Np

−
∑n

i=1(1−yi )·ŷi
Nn

)

G-mean
√

T Pr · T Nr

√∑n
i=1 yi ·ŷi

Np
·

∑n
i=1(1−yi )·(1−ŷi )

Nn

F1-score 2T P
2T P+F P+F N

2
∑n

i=1 yi ·ŷi
2

∑n
i=1 yi ·ŷi +

∑n
i=1(1−yi )·ŷi +

∑n
i=1 yi ·(1−ŷi )

AG-mean (
√

T Pr ·T Nr)+(T Nr ·Pn )
1+Pn

(√ ∑n
i=1 yi ·ŷi

N p
·
∑n

i=1(1−yi )·(1−ŷi )
Nn

)

+
( ∑n

i=1(1−yi )·(1−ŷi )
Nn

·Pn

)

1+Pn

Np : Number of positive samples (
∑n

i=1 yi )
Nn : Number of negative samples (

∑n
i=1(1 − yi ))

T Pr : True Positive rate (T P/Np)
T Nr : True Negative rate (T N/Nn )

shown in Eqs. 1 and 2, respectively. The resulting backpropagation error term is given in Eq.
3. Rprop [33] was used for implementing gradient descent.

∂ J (θ)

∂θ(n−1)
= δna(n−1) (1)

∂ J (θ)

∂z(n−1)
= δ(n)θ (n−1)g(z(n−1))(1 − g(z(n−1))) = δ(n−1) (2)

δn = ∂ J (θ)

∂ ŷ
= ∂ J (θ)

∂g(z(n))
(3)

where:

θ : Network weights
J (θ): Loss function
n: Layer number
a: Neuron ouput
g(·): Activation function
z: Neuron input

The metrics considered in this work (AUC, G-mean, F1-score and AG-mean) are in the
range [0, 1], where 1 represents the best performance, therefore, the derived functions (Table
3) should all be maximized. Also, although they are differentiable, there can be gradient
convergence problems, hence, the negative logarithm should be used instead (Eq. 4).

δn = ∂[−log(J (θ))]
∂ ŷ

(4)

Equations 5, 6, 7 and 8 show how to obtain the error term for the loss functions proposed in
Table 3. Sigmoid functions were used as activation of output neurons, that is, ŷi = g(z(n)

i ) =
1/(1+ exp−z(n)

i ). The formulation is general and other activation functions can also be used.
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δn =
∂

[
−log ·

(
1
2 ·

(
1 +

∑n
i=1 yi ·ŷi

Np
−

∑
i=1n(1−yi )·ŷi

Nn

))]

∂ ŷi
(5)

δn =
∂

[

−log ·
(√∑n

i=1 yi ·ŷi
Np

·
∑

i=1n(1−yi )·(1−ŷi )

Nn

)]

∂ ŷi
(6)

δn =
∂

[
−log ·

(
2

∑n
i=1 yi ·ŷi

2
∑

i=1n yi ·ŷi+∑
i=1n(1−yi )·ŷi+∑

i=1n yi ·(1−ŷi )

)]

∂ ŷi
(7)

δn =

∂

⎡

⎢
⎢
⎣−log ·

⎛

⎜
⎜
⎝

(√ ∑n
i=1 yi ·ŷi

N p
·
∑

i=1n (1−yi )·(1−ŷi)
Nn

)

+
( ∑

i=1n (1−yi )·(1−ŷi )
Nn

·Pn

)

1+Pn

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

∂ ŷi
(8)

Next step refers to obtaining the derivative of the negative logarithm of the loss functions.
The resulting backpropagation error terms associated with AUC, G-mean, F1-score and AG-
mean are shown in the following sections.

3.1 AUC

One of the most important goals in imbalanced classification problems concerns the correct
classification of the minority class without compromising the performance of the majority
class. This is the case, for example, with the medical diagnosis of rare events. The AUC
(area under the ROC curve) metric is extremely useful for this purpose, as it equates to the
probability of labeling a positive instance (rare event) with greater confidence than a negative
one [27]. Due to its importance, thismetric has beenwidely used to evaluate classifiersmainly
in case of unbalanced data. Differentiable approximations of the Wilcoxon-Mann-Whitney
statistic, which is equivalent to AUC, were developed in previous works [35–37]. In this
work, the objective function associated with this metric is based on the confusion matrix as
shown in Table 3. Equation 9 presents the corresponding backpropagation error term.

δn = −
yi
Np

− 1−yi
Nn

1 +
∑n

i=1 yi ·ŷi
Np

−
∑n

i=1(1−yi )·ŷi
Nn

(9)

3.2 G-mean

Obtaining satisfactory scores for minority and majority classes simultaneously is a challenge
in binary classification. The geometric mean metric (G-mean) appeared in this context taking
into account the accuracy of both classes [28, 38]. This metric has been widely applied to
imbalanced classification problemswith themain objective of finding a good balance between
TP and TN rates [34, 39–43]. The resulting backpropagation error term for the loss function
associated with G-mean (Table 3) is given in Eq. 10.

δn = −1

2

(
yi

∑n
i=1 yi · ŷi

+ yi − 1
∑n

i=1(1 − yi ) · (1 − ŷi )

)

(10)
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3.3 F-score

When negative cases are not in the center of a classifier’s performance, precision and recall
are often used measures. The F1-score metric combines the two [39] (Eq. 11). This metric
appeared in the context of information retrieval, where samples are positive if they contain
attributes of interest [38], in order to compensate for precision and recall [44, 45]. The β

parameter controls the balance between them, with β > 1 favoring recall, and otherwise,
precision [46].

F-score = (1 + β2) · recall · precision
β2 · precision + recall

(11)

A commonly used value for β is 1, which results in the harmonic mean between precision
and recal [45] (Eq. 12). In this particular case, it is called F1-score or F1-measure. This metric
has been applied to many imbalanced classification problems with different classifiers like
SVM [47] and logistic regression [48]. The Empirical Utility Maximization (EUM) [49] and
the General F-measure Maximize (GFM) [50] algorithms were used in previous works to
approximate and maximize F-score. The corresponding backpropagation error term for the
loss function associated with F1-score (Table 3) is given in Eq. 13.

F1-score = 2 · recall · precision
precision + recall

(12)

δn = − yi
∑n

i=1 yi · ŷi
+ 1 − yi

∑n
i=1(1 − yi ) · ŷi + ∑n

i=1 yi · ŷi + ∑n
i=1 yi · (1 − ŷi )

(13)

3.4 AG-mean

Many practical situations require maximizing the classification of positive samples as much
as possible while keeping the majority class rating to a minimum. This is the case with
medical diagnosis, where false positives can be very undesirable. However, increasing the
scores of both classes simultaneously are conflicting goals [51]. The adjusted G-mean metric
(AG mean) was proposed in this context, focusing on the positive class, through the balance
between sensitivity (SE) and specificity (SP) [30]. Given its importance for class imbalanced
problems, this work proposes its direct use as a loss function for MLP training (Table 3).
Equation 14 shows the corresponding backpropagation error term.

δn =

(yi −1)·Pn
Nn

+
yi

N p
·
∑n

i=1(1−yi )·(1−ŷi )
Nn

+ (yi −1)
Nn

·
∑n

i=1 yi ·ŷi
N p

2·
√ ∑n

i=1 yi ·ŷi
N p

·
∑n

i=1(1−yi )·(1−ŷi )
Nn

√∑n
i=1 yi ·ŷi

Np
·

∑n
i=1(1−yi )·(1−ŷi )

Nn
+ Pn ·

∑n
i=1(1−yi )·(1−ŷi )

Nn

(14)

4 Results and Discussions

This section presents the results of directly considering AUC, G-gmean, F1-score and AG-
mean as cost functions for training MLPs. These metrics were considered given the focus
of this work on imbalanced classification problems. To make this analysis broader, sixteen
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Table 4 Datasets characteristics

Database Alias Number of n1 n2 n1/(n1 + n2)
features

Ionosphere iono 34 126 225 0.359

Pima Indians Diabetes pid 08 268 500 0.349

German Credit gmn 24 300 700 0.300

WP Breast Cancer wpbc 33 47 151 0.237

Vehicle (4 versus all) veh 18 199 647 0.235

SPECTF Heart hrt 44 55 212 0.206

Segmentation (1 versus all) seg 19 30 180 0.143

Glass (7 versus all) gls7 10 29 185 0.136

Euthyroid (1 versus all) euth 24 238 1762 0.119

Satimage (4 versus all) sat 36 626 5809 0.097

Vowel (1 versus all) vow 10 90 900 0.091

Abalone (18 versus 9) a18-9 08 42 689 0.057

Yeast (9 versus 1) y9-1 08 20 463 0.041

Car (3 versus all) car 06 69 1659 0.040

Yeast (5 versus all) y5 08 51 1433 0.034

Abalone (19 versus all) a19 08 32 4145 0.008

n1: Number of samples in minority class
n2: Number of samples in majority class
n1/(n1 + n2): Imbalance ratio

classical datasets presenting different imbalance ratios were used [52]. They are summarized
in Table 4. All were preprocessed according to [1]. For example, the first dataset, called
Ionosphere, has two classes, one with 126 (n1) and one with 225 (n2) samples, which results
in an imbalance ratio (n1/(n1 + n2)) of 0.359.

Since MLPs are not based on explicit class density estimation for learning, margin infor-
mation is more relevant than sample size. Considering that network training in this work is
based on metrics that are less sensitive to imbalance, the neural network is able to learn even
with small sample sizes. This is also due to the properties of the cost functions used (AUC,
G-mean, F1-score and AG-mean), that are capable to balance majority and minority classes,
regardless of their sizes.

About neural network topology, activation functions for all network units were sigmoidal
[1]. Given the binary classification approach using the OvA (one-versus-all) procedure, the
cutoff value between classes was equal to 0.5. Rprop was used to implement gradient descent
as the learning algorithm in all cases [33]. The number of hidden units was defined by means
of a cross validation procedure as follows. Each dataset was initially divided into ten subsets,
which were subdivided into ten training (70%) and test (30%) sets. These sets were used
for model selection, that is, to define the number of hidden units, through a 5−fold cross-
validation procedure. Next, they were then combined for model re-identification, given the
selected number of hidden units. Model performance was evaluated with the previous ten
test sets.

Our proposal was then compared with commonly used methods for handling imbalanced
classes: Rprop [33], SMOTE [9], SMTTL (SMOTE + Tomek Links) [31], WWE (Weighted
Wilson’s Editing) [11], RAMOBoost (Ranked Minority Oversampling in Boosting) [32].
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Table 5 Average AUC values (in %)

Base Rprop SMOTE SMTTL WWE RAMOBoost AUC-MLP

iono 85.66 87.66 88.56 89.15 89.62 80.40

pid 66.26 69.01 70.44 71.98 72.38 74.34

gmn 60.02 62.40 65.64 63.64 64.99 69.36

wpbc 56.25 59.52 56.55 52.48 60.61 60.51

veh 95.26 96.16 97.36 96.79 97.72 96.43

hrt 61.32 60.53 63.66 70.08 65.46 69.86

seg 99.57 99.72 99.69 99.55 99.80 98.71

gls7 88.69 91.64 91.28 92.99 92.45 91.24

euth 84.80 89.15 86.83 88.23 88.75 90.87

sat 76.66 78.16 78.09 79.80 77.71 77.21

vow 98.72 97.39 95.88 95.43 99.39 96.77

a18-9 71.83 82.12 81.69 70.80 78.39 82.03

y9-1 72.32 67.31 73.01 69.88 71.90 78.07

car 93.25 90.78 91.71 97.09 94.05 95.73

y5 61.21 71.85 71.17 71.35 65.85 79.34

a19 53.80 76.91 76.90 57.57 73.73 83.06

Average rank 5.06 3.56 3.50 3.50 2.63 2.75

Cross-entropy was used as the loss function in all cases. The comparative analysis employed
the classical non-parametricNemenyi andBonferroni-Dunn tests, which allows a comparison
considering all datasets at once, given a performance metric [53–55].

Tables 5, 7, 9 and 11 show the average performance for AUC, G-mean, F1-score and AG-
mean, respectively. The average computation time (in seconds) involving training and testing
is presented respectively in Tables 6, 8, 10 and 12. The results for MLP, SMOTE, SMTTL,
WWE and RAMOBoost, are also shown for comparison purposes. The results related to the
proposed objective functions are referred to as AUC-MLP, G-MLP, F-MLP and AG-MLP,
respectively. The best performance in each experiment is highlighted in bold.

4.1 Non-parametric Tests

The Wilcoxon statistical test is applied to compare pairs of classifiers [55, 56], while the
Nemenyi post-hoc test (Eq. 15), based on Friedman statistic (Eq. 16) [57], is used in case
there are multiple classifiers. The Friedman statistic considers applying L classifiers to M
datasets. Its is based on average ranks (R j ), where R j = 1

M

∑M
i=1 r j

i , 1 ≤ j ≤ L , is the
average rank of the j th classifier given all datasets. The null hypothesis (H0) of the Nemenyi
test states that all classifiers perform similarly, that is, their average ranks are close. Such
values are shown in the last row of Tables 5, 7, 9 and 11, which are relative to the performance
metric, and of Tables 6, 8, 10 and 12, for the computation time. When the null hypothesis is
rejected, another statistical test should be performed to quantify the difference between the
classifiers [55]. Themost used test in this case is the Bonferroni-Dunn post-hoc test [58]. Two
classifiers are not considered similar if the difference between their average ranks is greater
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Table 6 Average computation time (in seconds) for AUC

Base Rprop SMOTE SMTTL WWE RAMOBoost AUC-MLP

iono 1.370 1.608 2.039 1.334 36.793 1.376

pid 1.359 1.966 1.984 1.740 37.806 1.323

gmn 2.022 2.089 2.380 2.403 50.548 1.924

wpbc 1.141 1.150 1.073 0.980 24.202 1.141

veh 1.446 1.785 3.862 2.103 56.437 1.867

hrt 1.387 2.190 3.197 1.292 73.011 1.246

seg 2.393 3.817 16.486 5.881 176.462 3.238

gls7 1.023 1.053 1.007 1.022 22.875 1.042

euth 2.662 2.868 6.353 4.193 101.608 2.895

sat 11.051 12.379 16.490 31.102 531.254 6.542

vow 1.765 1.771 1.975 1.962 58.863 1.941

a18-9 1.050 1.059 1.379 1.257 27.063 1.353

y9-1 1.218 1.540 2.104 1.228 32.348 1.402

car 2.297 3.883 7.565 2.974 311.684 1.872

y5 2.528 1.647 2.306 2.879 57.395 2.213

a19 4.534 2.767 18.052 11.981 147.837 4.002

Average rank 2.06 3.00 4.31 3.25 6.00 2.37

Table 7 Average G-mean values (in %)

Base Rprop SMOTE SMTTL WWE RAMOBoost G-MLP

iono 83.86 89.19 88.14 86.14 90.57 78.84

pid 72.07 76.17 76.00 76.45 74.23 76.37

gmn 67.16 70.97 69.37 67.28 67.13 68.77

wpbc 54.10 50.23 62.26 56.46 61.35 59.07

veh 95.53 96.72 97.41 96.71 97.27 97.07

hrt 55.97 65.57 66.06 76.21 66.03 70.31

seg 99.57 99.44 99.54 99.57 99.95 98.93

gls7 92.19 90.31 93.01 91.39 92.45 91.40

euth 90.67 90.20 90.46 91.08 88.07 91.43

sat 73.16 76.36 76.21 79.22 74.27 85.96

vow 99.11 98.13 98.81 98.48 100.00 99.55

a18-9 71.91 82.54 82.48 80.85 74.01 82.91

y9-1 64.78 67.70 54.79 68.08 71.10 73.86

car 94.58 97.62 92.98 98.08 94.58 97.52

y5 54.44 80.91 81.11 70.64 61.96 78.85

a19 10.49 84.49 84.46 25.26 34.48 80.32

Average rank 4.88 3.56 3.06 3.25 3.50 2.75
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Table 8 Average computation time (in seconds) for G-mean

Base Rprop SMOTE SMTTL WWE RAMOBoost G-MLP

iono 1.427 1.575 1.746 1.281 39.170 1.192

pid 1.106 1.076 1.437 1.201 31.527 1.147

gmn 1.270 1.379 1.888 1.642 31.603 1.872

wpbc 1.054 1.199 1.036 1.061 25.348 1.073

veh 1.273 1.472 3.595 1.917 53.847 1.658

hrt 1.200 2.376 3.153 1.133 33.443 1.214

seg 2.518 4.799 14.498 5.221 172.374 1.672

gls7 0.985 0.842 1.021 0.910 22.144 0.912

euth 1.638 2.301 5.805 3.471 83.363 2.694

sat 9.541 11.872 14.135 29.844 428.639 9.858

vow 1.956 1.840 2.161 1.964 54.982 1.853

a18-9 1.134 1.104 1.484 1.233 31.856 1.043

y9-1 1.226 1.376 1.739 1.241 23.452 1.049

car 1.990 2.809 5.658 3.431 232.341 2.199

y5 2.237 1.289 1.825 2.734 47.847 1.972

a19 3.337 2.805 18.315 11.947 522.545 2.863

Average rank 2.19 2.44 4.44 3.50 6.00 2.44

Table 9 Average F1-score values (in %)

Base Rprop SMOTE SMTTL WWE RAMOBoost F-MLP

iono 83.51 85.95 83.06 85.20 88.60 77.91

pid 65.11 69.17 69.65 68.98 64.11 66.42

gmn 55.58 59.51 60.07 57.16 53.19 57.66

wpbc 30.36 36.90 39.74 31.87 46.49 42.03

veh 92.09 92.44 92.55 92.02 94.29 92.30

hrt 47.33 43.43 42.20 52.40 54.00 52.17

seg 97.89 98.51 99.40 98.20 99.70 98.47

gls7 87.67 76.88 77.63 75.50 79.27 80.13

euth 80.56 76.08 77.97 80.16 79.86 82.59

sat 57.93 56.22 56.91 57.48 64.30 62.43

vow 95.27 91.94 96.74 93.04 99.44 95.01

a18-9 68.49 45.24 38.29 68.10 51.80 64.35

y9-1 46.97 37.04 35.62 45.69 53.33 58.89

car 91.61 86.11 82.00 71.87 89.22 84.47

y5 22.76 34.34 35.82 30.10 46.16 40.22

a19 4.17 10.46 4.64 9.81 5.02 6.36

Average rank 3.81 3.88 3.81 4.06 2.44 3.00
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Table 10 Average computation time (in seconds) for F1-score

Base Rprop SMOTE SMTTL WWE RAMOBoost F-MLP

iono 2.238 2.635 2.896 2.262 63.497 1.968

pid 1.680 1.764 2.108 1.831 55.017 1.947

gmn 2.076 2.301 2.753 2.394 67.442 2.434

wpbc 1.856 1.898 1.606 1.691 37.363 1.771

veh 2.695 3.546 4.877 2.775 102.566 3.080

hrt 2.172 4.297 5.158 1.976 95.999 2.049

seg 3.397 7.898 17.590 6.072 228.785 2.806

gls7 1.730 1.514 1.598 1.610 39.222 1.481

euth 2.689 3.401 7.896 4.341 180.492 3.986

sat 15.741 16.405 19.713 34.682 707.848 18.664

vow 3.285 3.211 3.371 3.305 75.572 3.159

a18-9 1.988 2.120 2.747 1.823 64.545 1.953

y9-1 1.587 2.843 2.741 1.582 76.564 1.911

car 3.538 6.751 10.312 5.039 511.339 3.055

y5 3.543 2.643 3.442 4.137 88.564 3.071

a19 5.857 10.774 24.958 15.174 507.426 3.810

Average rank 2.31 3.13 4.38 3.00 6.00 2.19

Table 11 Average AG-mean values (in %)

Base Rprop SMOTE SMTTL WWE RAMOBoost AG-MLP

iono 90.32 90.71 90.35 89.91 92.38 86.85

pid 75.10 70.94 73.14 75.53 71.71 76.92

gmn 69.03 67.45 68.99 72.90 70.94 73.12

wpbc 65.99 66.31 66.14 65.17 70.28 69.69

veh 96.95 96.60 96.46 96.23 97.48 96.73

hrt 73.42 71.87 70.04 73.17 74.19 69.57

seg 99.60 99.56 99.84 99.51 99.86 99.50

gls7 92.73 93.06 92.65 92.96 93.89 93.73

euth 92.96 92.43 92.35 93.39 92.39 93.38

sat 84.89 84.41 85.15 86.57 85.46 85.72

vow 98.59 99.00 98.81 98.43 99.86 96.22

a18-9 87.50 89.26 89.16 89.84 82.88 87.48

y9-1 83.05 76.97 79.02 80.45 82.42 85.80

car 94.56 96.65 95.94 96.01 97.67 97.52

y5 72.84 83.94 84.19 78.14 76.55 83.78

a19 52.55 76.35 76.63 62.39 69.45 77.41

Average rank 4.00 3.75 3.94 3.63 2.63 3.06
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Table 12 Average computation time (in seconds) for AG-mean

Base Rprop SMOTE SMTTL WWE RAMOBoost AG-MLP

iono 0.954 1.199 1.507 0.863 26.710 0.900

pid 0.843 0.925 1.347 0.923 25.072 1.131

gmn 1.075 1.297 2.112 1.324 34.804 1.223

wpbc 0.973 0.930 0.937 0.714 17.089 0.883

veh 1.279 1.696 4.452 1.814 45.801 1.329

hrt 0.956 1.710 2.880 0.810 53.612 0.918

seg 2.633 4.311 14.145 4.765 126.171 1.572

gls7 0.700 0.689 0.731 0.712 16.568 0.681

euth 1.218 1.890 5.682 2.941 66.049 1.556

sat 9.280 9.431 14.688 29.389 469.620 7.745

vow 1.762 2.042 2.083 2.528 40.000 1.368

a18-9 0.724 0.743 1.057 0.892 27.726 0.926

y9-1 1.023 1.400 2.009 1.141 39.244 1.022

car 1.705 2.534 6.423 2.722 220.024 1.280

y5 1.648 1.049 1.875 2.709 70.839 2.021

a19 2.775 2.427 18.402 11.711 250.892 2.455

Average rank 2.13 2.81 4.69 3.38 6.00 2.00

than a critical difference C D (Eq. 17), where qα is the critical value at the significance level
given the Student statistic.

FF = (M − 1)χ2
F

M(L − 1) − χ2
F

(15)

χ2
F = 12M

L(L + 1)

⎛

⎝
L∑

j=1

R2
j − L(L + 1)2

4

⎞

⎠ (16)

C D = qa

√
L(L + 1)

6M
(17)

Given the average rank values, M = 16 (number of datasets) and L = 6 (number of
classifiers), the Friedman statistic (FF ) is equal to 4.1235, 2.7496, 1.9697 and 1.3823, for
Tables 5, 7, 9 and 11 (for performance metric), respectively, and to 22.7953, 26.0758,
22.7104 and 35.3748, for Tables 6, 8, 10 and 12 (for computation time), respectively. The
critical value for the Nemenyi statistic is given by FF ((L − 1) = 5; (L − 1)(M − 1) =
75;α = 0.01) = 1.9256 [59]. Thus, the null hypothesis was rejected for all metrics except
for AG-mean1, and for all computation times. Next, the Bonferroni-Dunn post-hoc test was
applied to verify the performance of the proposed approaches in relation to all other classifiers
(strategy one-versus-all). Tables 13, 14, 15 and 16 show the differences between the average
rank values for AUC, G-mean, F1-score and AG-mean, respectively. They also show the
results for computation time. The critical difference (C D) is equal to 1.7125. Differences
beyond this critical value, which point out to different performances, are highlighted in bold.

1 Still, the post-hoc test was also computed for AG-mean.
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Table 13 Classifiers comparison
with AUC-MLP (using the
Bonferroni-Dunn post-hoc test)

AUC-MLP versus

Rprop SMOTE SMTTL WWE RAMOBoost

AUC 2.3125 0.8125 0.7500 0.7500 0.1250

Time 0.3125 0.6250 1.9375 0.8750 3.6250

Table 14 Classifiers comparison
with G-MLP (using the
Bonferroni-Dunn post-hoc test)

G-MLP versus

Rprop SMOTE SMTTL WWE RAMOBoost

G-mean 2.1250 0.8125 0.3125 0.5000 0.7500

Time 0.2500 0.0000 2.0000 1.0625 3.5625

Table 15 Classifiers comparison
with F-MLP (using the
Bonferroni-Dunn post-hoc test)

F-MLP versus

Rprop SMOTE SMTTL WWE RAMOBoost

F1-score 0.8125 0.8750 0.8125 1.0625 0.5625

Time 0.1250 0.9375 2.1875 0.8125 3.8125

Table 16 Classifiers comparison
with AG-MLP (using the
Bonferroni-Dunn post-hoc test)

AG-MLP versus

Rprop SMOTE SMTTL WWE RAMOBoost

AG-mean 0.9375 0.6875 0.8750 0.5625 0.4375

Time 0.1250 0.8125 2.6875 1.3750 4.0000

4.2 Discussions

The results for AUC-MLP are summarized in Tables 5 (metric performance) and 6 (compu-
tation time), with average rank values equal to 2.75 and 2.37, respectively. It can be seen that
its performance is very close to that of RAMOBoost, which had the best average rank value
(2.63), and mainly surpass the standard Rprop (5.06). Regarding computation time, AUC-
MLP is comparable to Rprop, which presented the best average rank value (2.06), and much
higher than RAMOBoost (6.00). According to the Bonferroni-Dunn post-hoc test (Table 13),
its performance is statistically comparable to RAMOBoost and sampling strategies, namely
SMOTE, SMTTL and WWE, and superior to Rprop. Furthermore, its computation time is
competitive with Rprop, SMOTE and WWE, and statistically better than RAMOBoost and
SMTTL. In summary, AUC-MLP is statistically equivalent to SMOTE and WWE, but has
higher average ranks for performance and computation time.

The results for G-MLP are presented in Tables 7 and 8. They show that it is best for
performance and second best for computation time, with average rank values of 2.75 and
2.44, respectively. The best computation times were obtained by Rprop and SMOTE, with
average ranks of 2.19 and 2.44, respectively. The Bonferroni-Dunn post-hoc test (Table 14)
indicates that G-MLP outperforms Rprop and is similar to SMOTE, SMTTL, WWE and
RAMOBoost. In terms of computation time, it is faster than STMTTL and RAMOBoost,
and equivalent to Rprop, SMOTE and WWE. G-MLP is statistically similar to SMOTE and
WWE, however when ranks are considered, it performs slightly better than both. Also, its
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(a) For AUC. (b) For Gmean.

(c) For F1-score. (d) For AG-mean.

Fig. 1 Average rank plots considering computation time (x-axis) versus performance metric (y-axis) simulta-
neously. (♦: Rprop, �: SMOTE, �: SMTTL, ×: WWE, +: RAMOBoost, ◦: This work)

computation time is equivalent to that of SMOTE, and slightly better than that of WWE,
despite being statistically equivalent.

It can be observed that the performance of the F-MLP is competitive with the other
classifiers (Table 9), as it presents the second best average rank, equal to 3.00. The best
value, for RAMOBoost, is 2.44. Regarding the computation time (Table 10), it proved to be
advantageous, as it presented the best average rank value, equal to 2.19. From the Bonferroni-
Dunn post hoc test (Table 15), it can be seen that the proposal is statistically equivalent to all
other classifiers in terms of model performance. This may be due to the fact that F1-score is
a difficult convergence function [48–50, 60]. The number of iterations during model training
may also have influence. Regarding computation time, it was similar to Rprop, SMOTE and
WWE, and faster than SMTTL and RAMOBoost.

AG-MLP resulted in the second best performance, after RAMOBoost, with average rank
values of 3.06 and 2.63, respectively (Table 11). RAMOBoost, however, had the highest com-
putation time than all other classifiers (Table 12), in contrast with AG-MLPwhich resulted in
the shortest computation timewith an average rank equal to 2.00. Rprop comes nextwith 2.13,
while RAMOBoost comes with 6.00. According to the Nemenyi post-hoc test, all classifiers
performed similarly, as the null hypothesis was not rejected. This result can also be seen in
Table 16. Despite the statistically equivalent performance of AG-MLP to Rprop, it can be
observed that the proposed approach performs better in 10 out of the 16 datasets (Table 11)
and presents a better average rank, 2.63 against 4.00. Regarding computation time, AG-MLP
has similar to Rprop, SMOTE andWWE, and is faster than SMTTL and RAMOBoost (Table
12).

To summarize the results previously discussed, Figure 1 presents plots of the average
ranks of the computation time against the performance metric, according to Tables 5 to 12.
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Each refers to a specific metric. For instance, Figure 1(a) shows the average ranks obtained
for the computation time (x axis; Table 12) and performance metric (y axis; Table 5) for AUC
metric. Since both time and performance rank values should be minimized, the resulting
problem actually involves a trade-off between them, since one objective affects the other.
For example, to reduce computation time, performance can be degraded. The optimality of
the corresponding bi-objective problem is evaluated according to the non-dominated solu-
tions given the Pareto frontier. The objective in this case, given the formulated optimization
problem, is to obtain a good compromise between them. It can be observed that the results
of the methods presented in this work are not dominated by the others, as they generally
provided lower average rank values in both objectives. For example, considering AUC-MLP
(Figure 1a), Rprop has less computation time, however, at the cost of a lower performance
(that is, a higher average rank value), and RAMOBoost has slightly higher performance with
much higher computation time. This is also the case for G-mean. That is, Rprop had the
smallest computation time (lower rank value), but with the worst performance (higher rank
value). In contrast, RAMOBoost showed a satisfactory performance, however, at the expense
of more computation time. The proposal of this work for G-mean presented a relatively small
computation time, with the best performance. For F1-score and AG-mean, RAMOBoost had
the best performance, but with the worst computation time. Rprop presented a satisfactory
computation time, however, with a worse performance in relation to the best results. The
proposals of this work for F1-score and AG-mean presented the best computation time, and
the second best performance, only behind RAMOBoost, which, however, presented the high-
est computation time. These results show that the direct use of performance metrics as loss
functions results in well-balanced classifiers between performance and computation time.

5 Conclusions

This work proposes the direct use of performance metrics as cost functions for training MLP
neural networks in imbalanced classification problems. Usual performance metrics, namely
AUC, G-mean, F1-score and AG-mean, were addressed. The formulation is derived directly
from the commonly used confusion matrix and implemented with standard backpropagation,
for which the only change is to the error term.

A general experiment, employing average rank values, showed that the use of cost func-
tions based on performance metrics outperformed both the standard RProp and all sampling
strategies, namely SMOTE, SMTTL and WWE, for all metrics. These results were statisti-
cally corroborated for the AUC and the G-mean in relation to the Rprop. For F1-score and
AG-mean, all algorithms were considered statistically equivalent. Also, it was superior to
RAMOBoost for G-mean, given the average rank values. However, it was statistically faster
than this oversampling procedure for all metrics. The proposal also showed faster computa-
tion than SMTTL andwas equivalent to Rprop, SMOTE andWWE. Furthermore, it presented
non-dominated solutions for the bi-objective problem when performance and computation
time are evaluated simultaneously, even considering the standard Rprop. In short, the pro-
posal generally showed higher performance for all metrics under relatively high imbalance
ratios. Other methods, such as DEBOHID [61], as well as other performance metrics consid-
ering the confusion matrix, can be used. Implementations of more efficient gradient descent
learning algorithms are also possible.

In conclusion, this work presented a new perspective for the imbalanced learning problem,
which is usually treated as a two-step problem, as it is first trained with an objective function,
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such as a global error, and then evaluated with a different metric. Direct use of performance
metrics as objective functions allows to approach the problem from a single-step perspec-
tive, avoiding retraining. Lastly, the methodology proposed in this work can be extended to
multiclass classification problems.
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