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Abstract
This problem addresses the fractional order lag synchronization for multi-weighted complex
dynamical networks with coupling delays via non-fragile control. Establishing a general
multi-weighted complex network model including the coupling delays with external distur-
bances and investigates the lag synchronization criteria using the state feedback non-fragile
control. Based on the Lyapunov stability theorem and comparison principle, we ensured
our model guarantees the lag synchronization under the controller. The effectiveness of the
proposed work is shown in numerical simulations with examples.

Keywords Lag synchronization · Non-fragile control · Coupling delays · Multi-weighted
complex dynamical network (CDN ) · Comparison principle

1 Introduction

Very recently, due to their future real-life uses in neural networks, social networks, ecological
networks, communications networks, information technology, and smart power grids, etc.,
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complex dynamical networks have now become an interesting area of study for different
fields such as mathematics, biology, and sociology. These networks contain several nodes
that on some connections interact with each other. It is increasingly clear that it is possible to
view some aspects of our culture as a networked world. Through information networks itself
(internet, cable networks, telecommunications networks, etc.) to the global ecosystem, from
road transportation systems to financial exchanges, frombiological and evolutionary systems,
which are massively interconnected and dynamic components, make up fairly important pro-
cesses in the world. A series of interconnected nodes comprises complex dynamic networks,
where each node is a specific dynamic system and connects to its neighbors through a cer-
tain topological connection. CDN’s are fundamentally difficult to analyse and synthesize
compound networks. In recent decades, the interest in control and system sciences has been
highly inspired and special emphasis was placed on the question of synchronization analyses
for complex dynamic networks and numerous findings were published in the literature.

In comparison to the traditional integer order systems, the fractional model provides
excellent methods for describing the memory and properties of different materials and pro-
cedures. If more functional challenges were specified by fractional-order dynamic systems
rather than integral-order ones, it would have been much safer. In addition, over the past few
decades, dynamics of delayed systems have become a very popular research subject, and
various applications have been found in different fields, including artificial neural networks
[30], signal processing [11], image recognition, physics engineering, secure communications
[15,18], or computer systems. Nowadays, the research on fractional-order delayed dynam-
ical systems brought about numerous fruitful achievements due to the fact a few scholars
and researchers were contributed to this area. In the application perspective, fractional order
calculus is applied in many fields [1], The resulting rapid data transfer rates make the time
delay unavoidable in the digital application of biological neural network complex behaviors.
Time delays of different kinds have also been established, such as persistent time delays,
time-varying delays [27], random coupling dealy [25], scattered delays, and leakage delays,
whichmay also influence the overall degradation of dynamic service in the sense of fractional
order in a complex network. One of its most common and crucial collaborative processes in
complex dynamic networks has been synchronization. Due to this importance in the field of
analysis, numerous forms of synchronization have been developed by researchers, including
adaptive impulsive synchronization [5], lag synchronization, exponential synchronization
[32] asymptotic synchronization, fixed-time synchronization [13,14], projective synchro-
nization [6], quasi synchronization [3], composite synchronization [8], synchronization of
finite time [4], etc. In addition, in everyday life, control systems play a crucial function. The
basic aim of control is to establish engineering process planning concepts and techniques
that naturally respond to ecological changes in order to safeguard attractive productivity. It
should be recalled that it is not feasible to organize any networks directly. For synchronizing
complex networks, efficient control systems, such as sample data control [31], delayed feed-
back control [41], impulsive control [24], pinning control, adaptive control, hybrid control
or bifurcation control, non-fragile control, have been programmed.

There are some results reported regarding the fractional order multi-weighted complex
dynamical networks. In [26] investigates the observer based synchronization for FMCDN
with time varying delays. In [2] studied the multi-weighted complex structure on fractional
order neural network with linear coupling delays. In [40] addressed the finite time syn-
chronization for fractional order multi-weighted complex dynamical network via non-fragile
control with uncertain inner couplings. In [38] investigated the new complex network model
for synchronization control of fractional order with time delays. In [29] studied the finite time
synchronization for multi-weighted complex networks with and without coupling delays. In
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[38] discussed the passivity analysis of multi-weighted complex networks with fixed switch-
ing topologies. In [12] investigated the H∞ synchronization for multi-weighted complex
delayed dynamical networks with fixed switching topologies and time delays. In [39] dis-
cussed the anti lag synchronization for delayed coupled neural networks in reaction-diffusion
terms with multi-weights. In [23] studied the event triggered multi-weighted networks with
delays using distributed dynamic output dissipative control. In [9] studied the exponential
synchronization for stochastic complex networks using graph theoretic approach with multi-
weights.

Lag synchronization is of major interest, in which the coupled systems have identical
state space trajectories but are time shifted relative to each other. It is simple to achieve by
coupling the response system to a previous state of the drive system or by mismatching the
system parameters. It has been observed in lasers, neuronal models, and electronic circuits, it
may hold fascinating potential for technological applications. In [33] the author studied and
investigated the lag synchronization in complexnetworks byusing the pinning controlwithout
considering the delays. In [10], the author investigated chaotic lag synchronization of coupled
time delayed systems and gives application to secure communications without considering
any external disturbances. In [34] the author studied the lag and adaptive synchronization of
time delayed uncertain dynamical system based on parameter identification. Since most of
the existing results on complex networks, by investigating lag synchronization criteria are
discussed on integer order only. To fill this gap, we considered the more general fractional
order multi-weighted complex network with external disturbances and derive its lag synching
criteria by algebraic method under the suitable controller.

The key contributions of our proposed work are described as below:

(1) We established a more general model for FMCDN with external disturbances. As there
are no works done while considering this type of model in a previous literature.

(2) Next, we analyze by adding constant delays in both internal and coupling terms for the
multi-weighted complex network and for the first time evaluating its lag synchronization
criteria by using non-fragile controller.

(3) The theory of fractional order differential equations and several modern analytical meth-
ods are used to achieve adequate novel conditions.

(4) We present numerical example of our proposed model in order to demonstrate efficiency.

The paper is relaxed in the following way. The preliminaries, definition, lemmas and
problem formulation are presented in Section 2 for the considered FMCDN. The analysis
of lag synchronization for FMCDN was examined in Sect. 3. Section 4 reveals the example
with numerical simulations to demonstrate the performance regarding our proposal.The paper
ends with conclusion in Sect. 5.

Notations. Rn denotes the n-dimensional Euclidean space throughout this paper, and
R
n×m be set of real n × m matrices. λmax and λmin denotes the maximum and minimum

eigen values respectively.

2 Problem Statement and Description

In general, it is possible to consider the multi-weighted complex dynamical network com-
posed of K identical nodes in a general fractional order where each node is n-dimensional
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system can be given as:

Dζ
t ςp(t) = Aςp(t) + B f (ςp(t)) + C f (ςp(t − χ1)) +

K∑

q=1

� 1
pq�1ςq(t)

+
K∑

q=1

� 2
pq�2ςq(t) + ... +

Z∑

h=1

K∑

q=1

� h
pq�hςq(t)

+
K∑

q=1

π1
pq	1ςq(t − χ2) +

K∑

q=1

π2
pq	2ςq(t − χ2) + ...

+
Z∑

h=1

K∑

q=1

πh
pq	hςq(t − χ2). p = 1, 2, 3, ..., K . (1)

Where 0 < ζ < 1. ςp(t) = [ςp1, ςp2, ..., ςpn]T be the state variables of the pth node. Let
A, B, C be the known matrices with appropriate dimension of the state vectors. χ1 and χ2 are
the different delays representing the internal and coupling delays respectively. �h and	h are
the inner coupling matrices which interconnect the subsystems of the network. (� h

pq)N×N ,

and (πh
pq)N×N are the non-delayed and delayed outer coupling structure matrix expressing

the coupling strength and topological structure of complex dynamic networks with different
weights in the hth coupling form in which �pq > 0, and πpq > 0, if there is connection
between node p to node q, and (p �= q),�pq = 0,πpq = 0 otherwise. The diagonal elements
of �pq and πpq are given by �pp + ∑K

q=1,q �=p �pq = 0, and πpp + ∑K
q=1,q �=p πpq = 0.

Let f : Rn × R
n → R

n is a nonlinear vector function.
Now the controlled response system can be given by

Dζ
t φp(t) = Aφp(t) + B f (φp(t)) + C f (φp(t − χ1)) +

K∑

q=1

� 1
pq�1φq(t)

+
K∑

q=1

� 2
pq�2φq(t) + ... +

Z∑

h=1

K∑

q=1

� h
pq�hφq(t)

+
K∑

q=1

π1
pq	1φq(t − χ2) +

K∑

q=1

π2
pq	2φq(t − χ2) + ...

+
Z∑

h=1

K∑

q=1

πh
pq	hφq(t − χ2) + ϑp(t) + u p(t) p = 1, 2, 3, ..., K , (2)

where ϑp(t)is the external disturbances which satisfy some bounded condition which to be
designed later and u p(t) is the control input. The remaining parameters are all same as the
drive system which was mentioned earlier.

Remark 2.1 In [17] the author studied the Mittag-Leffler lag quasi synchronization for
memristor-based neural networks via linear feedback pinning control in a fractional order
case. In [21], the author studied the projective lag synchronization in fractional order
chaotic(hyperchaotic) systems and in [22] investigated the lag synchronization for fractional
order memristive neural networks considering the time delays via switching jumps. In [35]
investigated the lag projective synchronization of fractional order delayed chaotic systems. In
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[10], the author investigated chaotic lag synchronization of coupled time delayed systems and
gives application to secure communications without considering any external disturbances.
In [34] the author studied the lag and adaptive synchronization of time delayed uncertain
dynamical system based on parameter identification. By comparing with the existing results,
most of the researchers investigated the lag synchronization criteria in integer order cases
and few in fractional order cases. But while we consider in a fractional order cases, its a
new challenging task to investigate the lag synchronization for complex networks. Also,
we incorporate the external disturbances and constant delays in both internal and coupling
terms which will become more complicated in a fractional order cases. To fill this gap, we
considered the more general fractional order multi-weighted complex network with external
disturbances and derive its lag synching criteria by algebraic method under the Non-Fragile
controller.

3 Preliminaries

Some fundamental knowledge of fractional calculus, model formulation and lemmas have
been illustrated in this part.

3.1 Basic Tools

Definition 3.1 [19] The fractional order integral of order α for an integral function h(t) :
[0,+∞) −→ R is defined as

Iαh(t) = 1

�(α)

∫ t

0
(t − ν)α−1h(ν) dν,

where α ∈ (0, 1) and �(·) is the gamma function,is defined by

�(z) =
∫ +∞

0
exp (−s)t z−1 ds,

Definition 3.2 [19] The Caputo fractional order derivative α for a function h(t) ∈
C
n([t0,+∞)) is defined as

Dαh(t) = 1

�(n − α)

∫ t

0

h(n)(τ )

(t − τ)α−n+1 dτ,

where t ≥ 0 and n is the positive integer such that n − 1 < α < n. Particularly, when
0 < α < 1,

Dαh(t) = 1

�(1 − α)

∫ t

0

h′(τ )

(t − τ)α
dτ.

To go further, we need the following helpful assumptions and lemmas to solve the problem
theoretically.

Lemma 3.3 [7] If M is a an x × y matrix with i j th element mi j for i = 1, 2, ..., x and j = 1, 2,
..., y and N is any t × x matrix, then the Kronecker product of M and N, denoted by M ⊗ B is
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the xt × yv matrix formed by multiplying each mi j denoted by the entire matrix N. That is

M ⊗ N =

⎛

⎜⎜⎝

m11N m12N ... m1y N
m21N m22N ... m2y N

... ... ... ...

mx1N mx2N ... mxyN

⎞

⎟⎟⎠

Lemma 3.4 [20] Let ε ∈ R, L, N , M, P be the matrices that have the appropriate dimen-
sions. Then the characteristics of Kronecker product come up with:

(1) (εM) ⊗ P = M ⊗ (εP);
(2) (M + P) ⊗ L = (M ⊗ L) + (P ⊗ L);
(3) (M ⊗ P)T = (MT ⊗ PT );
(4) (M ⊗ P)(L ⊗ N ) = (ML ⊗ PN ).

Lemma 3.5 [16] Let a, b ∈ R
n, then for any ε > 0

2aT b ≤ εaT a + 1

ε
bT b.

Lemma 3.6 [37] Let U, V, W and the M be the real matrices of appropriate dimensions with
M satisfying M = MT , then

M +UVW + WT V TUT < 0

if and only if there exists ε > 0,

M + ε−1UUT + εWWT < 0

Lemma 3.7 [28] Let us consider the following fractional order delayed systems
{
Dζ
t v(x(t)) ≤ −bv(x(t)) + ∑n

j=1 c jv(x(t − τ j )), 0 < ζ < 1;
v(x(t)) = h(t) ≥ 0 t ∈ [−τ, 0], 1 ≤ j ≤ n.

and
{
Dζ
t v(y(t)) ≤ −bv(y(t)) + ∑n

j=1 c jv(y(t − τ j )), 0 < ζ < 1;
v(y(t)) = h(t) ≥ 0 t ∈ [−τ, 0], 1 ≤ j ≤ n.

where x(t) and y(t) ∈ R
n, τ = max{τ1, τ2, ..., τn}, v(x(t)) ∈ R and v(y(t)) ∈ R are the

functions of x(t) and y(t). x(t) and y(t) are continuous in (0,∞) and h(t) is continuous
in [−τ, 0], respectively. If b > 0, c j > 0, and τ j > 0, then v(x(t)) ≤ v(y(t)), for all
t ∈ [0,∞).

The following assumption is mainly needed in this paper,
Assumption [A1]: There exists matrices 0 < Wi = diag{wi1, wi2, ..., wini } ∈ R

n×n and
�i = diag{λi1, λi2, ..., λin} ∈ R

n×nsuch that gi (.) satisfies the following inequality

(ξ1 − ξ2)
T Wi [gi (ξ1) − gi (ξ2) − �i (ξ1 − ξ2)] ≤ −ρi (ξ1 − ξ2)

T (ξ1 − ξ2)

for some 0 < ρi ∈ R and any ξ1 and ξ2 ∈ R
n .

Assumption [A2]: The non linear activation function gk(·) satisfies the Lipschitz continuous
if there exists a constants Kk > 0 such that

∣∣gk(χ1) − gk(χ2)
∣∣ ≤ Kk

∣∣χ1 − χ2
∣∣, k = 1, 2, ...., n, χ1, χ2 ∈ R.
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where
∣∣(·)∣∣ is the absolute value.

Assumption [A3]:Let us assume that the external disturbances is bounded and there exists
a positive constant dp > 0 such that |ϑp| ≤ dpsign(ϕ(t)), p = 1, 2,..., K.

Remark 3.8 A synchronization network is a network of connected dynamical systems. It is
made up of a network that connects oscillators, where oscillators are nodes that generate a
signal with a somewhat in a regular frequencywhich it be in a same state andmay also receive
a signal. while the Lag synchronization refers to the coincidence of the states between two
coupled dynamical networks (systems)i.e (Drive andResponse system),where one dynamical
network is delayed by a finite time. Lag synchronization normally appears as a convergence
of shifted-in-time states of two systems, i.e y(t) ≈ xτ (t) ≡ x(t − τ) with positive τ , here τ

is the positive finite delay.

The error vector can be defined by

ϕp(t) = φ(t) − ς(t − ρ) (3)

where ρ is the propagation delay.

ϕp(t) = Aφp(t) + B f (φp(t)) + C f (φp(t − χ1)) +
Z∑

h=1

K∑

q=1

� h
pq�hφh(t)

+
Z∑

h=1

K∑

q=1

πh
pq	hφh(t − χ2) + ϑp(t) + u p(t)

−
{
Aςp(t − ρ) + B f (ςp(t − ρ)) + C f (ςp(t − χ1 − ρ))

+
Z∑

h=1

K∑

q=1

� h
pq�hςh(t − ρ)

Z∑

h=1

K∑

q=1

πh
pq	hςh(t − χ2 − ρ)

}

Dζ ϕp(t) = Aϕp(t) + B f (φp(t)) − B f (ςp(t − ρ)) + C f (φp(t − χ1))

−C f (ςp(t − χ1 − ρ))

+
Z∑

h=1

K∑

q=1

� h
pq�hϕh(t) +

Z∑

h=1

K∑

q=1

πh
pq	hϕh(t − χ2) + ϑp(t) + u p(t).

Dζ ϕp(t) = Aϕp(t) + B( f (φp(t)) − f (ςp(t − ρ))) + C( f (φp(t − χ1))

− f (ςp(t − χ1 − ρ)))

+
Z∑

h=1

K∑

q=1

� h
pq�hϕh(t) +

Z∑

h=1

K∑

q=1

πh
pq	hϕh(t − χ2) + ϑp(t) + u p(t).

The non-fragile controller can be chosen as follows,

u p(t) = −(Y + �Y )(φp(t) − ςp(t − ρ)) −
K∑

p=1

dpϕ
T
p (t)ϕp(t); (4)

where �Y = H1�1(t)T1; Y = diag{θ1, θ2, ..., θn} ∈ R
n represents the control gain matrix

which is to be defined. Therefore , the controlled error system can be given by,

Dζ ϕp(t) = Aϕp(t) + B( f (φp(t)) − f (ςp(t − ρ))) + C( f (φp(t − χ1))
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− f (ςp(t − χ1 − ρ)))

+
Z∑

h=1

K∑

q=1

� h
pq�hϕh(t) +

Z∑

h=1

K∑

q=1

πh
pq	hϕh(t − χ2) + ϑp(t)

−(Y + �Y )(φp(t) − ςp(t − ρ)) −
K∑

p=1

dp(t)ϕp(t).

Dζ ϕp(t) = Aϕp(t) + B( f (φp(t)) − f (ςp(t − ρ))) + C( f (φp(t − χ1))

− f (ςp(t − χ1 − ρ)))

+
Z∑

h=1

K∑

q=1

� h
pq�hϕh(t) +

Z∑

h=1

K∑

q=1

πh
pq	hϕh(t − χ2)

+ϑp(t) − (Y + �Y )ϕp(t) −
K∑

p=1

dpϕp(t) (5)

Remark 3.9 As we know, for example, a satellite transmission system is an example of the
dynamic complexity of multi-weighted systems. Propagation delay (lag) thus plays a critical
role in the interaction between the different satellites. The time it takes for the signal to travel
from the transmitter node to the receiver node onEarth, where the signal follows an uplink and
downlink phase, is considered to be the propagation delay. And also, many real-life systems
have a delay in propagation, such as electronic networks, laser networks, etc. Hence, it is
necessary and important to analyze about the propagation delay in multi-weighted complex
network systems

4 Main Results

Theorem 4.1 Under the assumptions [A1], [A2] and [A3] holds, and for a given Y > 0 the
drive system is synchronized with the response system, if the following condition is satisfied

� > C
K1

ε
+ 1

2ε
, (6)

where −� = λmax (p), where η = λmin(
W�+WT

�

2 ), W� = ∑Z
h=1 �h, ηo = ∑Z

h=1 ‖�h‖,
P̃ = ∑Z

h=1
∑K

p=1 diag{� h
11,�

h
22, ...,�

h
NN }, Pi = ∑Z

h=1
∑K

q=1,q �=p � h
pq ,E = ∑K

p=1
∑Z

h=1 πh
pq , Ẽ = ∑Z

h=1 	h, P = 2A + 2B(Wp�p − ρp In p ) + 2((η − ηo)P̃ + ηo
Pi+PT

i
2 ) −

4Y − 4Z1 − 4Z2 + 2( ε
2λmax (EET )λmax (Ẽ ẼT )), Z1 = ε1

2 H1HT
1 ;Z2 = ε−1

1
2 T1T T

1 ; p =
1,2,...,K.

Proof According to the error system, Lyapunov function can be designed by

V (ϕ(t)) = 1

2
ϕT
p (t)ϕp(t)

DζV (ϕp(t)) =
K∑

p=1

ϕT
p (t)Dζ ϕp(t)
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=
K∑

p=1

ϕT
p (t)[Aϕp(t) + B( f (φp(t)) − f (ςp(t − ρ)))

+C( f (φp(t − χ1)) − f (ςp(t − χ1 − ρ)))

+
Z∑

h=1

K∑

q=1

� h
pq�hϕh(t) +

Z∑

h=1

K∑

q=1

πh
pq	hϕh(t − χ2) + ϑp(t)

−(Y + �Y )ϕp(t) −
K∑

p=1

dpϕ
T
p (t)ϕp(t)].

DζV (ϕp(t)) =
K∑

p=1

ϕT
p (t)Aϕp(t) +

K∑

p=1

ϕT
p (t)B( f (φp(t))

− f (ςp(t − ρ))) +
K∑

p=1

ϕT
p (t)C( f (φp(t − χ1))

− f (ςp(t − χ1 − ρ))) +
K∑

p=1

ϕT
p (t)

Z∑

h=1

K∑

q=1

� h
pq�hϕh(t)

+
K∑

p=1

ϕT
p (t)

Z∑

h=1

K∑

q=1

πh
pq	hϕh(t − χ2) +

K∑

p=1

ϕT
p (t)ϑp(t)

−
K∑

p=1

ϕT
p (t)(Y + �Y )ϕp(t) −

K∑

p=1

ϕT
p (t)

K∑

p=1

dpϕ
T
p (t)ϕp(t) (7)

Applying Assumption [A1] to the (7), we can deduce as follows,

B
K∑

p=1

ϕT
p (t)( f (φp(t)) − f (ςp(t − ρ))) ≤

K∑

p=1

(φ(t) − ς(t − ρ))T B( f (φp(t))

− f (ςp(t − ρ)))

≤
K∑

p=1

ϕT
p (t)(Wp�p − ρp In p )ϕp(t) (8)

By using [A2] and Lemma (3.4) we have,

K∑

p=1

ϕT
p (t)C( f (φp(t − χ1)) − f (ςp(t − χ1 − ρ)))

≤
K∑

p=1

K1CϕT
p (t)ϕp(t − χ1) =

K∑

p=1

ε

2
ϕT
p (t)K1Cϕp(t)

+
K∑

p=1

1

2ε
K1CϕT

p (t − χ1)ϕp(t − χ1) (9)

DζV (ϕp(t)) =
K∑

p=1

ϕT
p (t)Aϕp(t)
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+
K∑

p=1

ϕT
p (t)B(Wp�p − ρp In p )ϕp(t)

+
K∑

p=1

1

2ε
K1CϕT

p (t − χ1)ϕp(t − χ1)

+
K∑

p=1

ϕT
p (t)

Z∑

h=1

K∑

q=1

� h
pq�hϕh(t)

+
K∑

p=1

ϕT
p (t)

Z∑

h=1

K∑

q=1

πh
pq	hϕh(t − χ2)

+
K∑

p=1

ϕT
p (t)ϑp(t) −

K∑

p=1

ϕT
p (t)(Y + �Y )ϕp(t)

−
K∑

p=1

ϕT
p (t)

K∑

p=1

dpϕ
T
p (t)ϕp(t) (10)

Now from (10),

K∑

p=1

ϕT
p (t)

Z∑

h=1

K∑

q=1

� h
pq�hϕh(t) =

K∑

p=1

Z∑

h=1

� h
pp�hϕ

T
h (t)ϕh(t)

+
K∑

p=1

Z∑

h=1

K∑

q=1,q �=p

� h
pq�hϕ

T
h (t)ϕh(t)

=
K∑

p=1

η P̃ϕT
h (t)ϕh(t)

+
K∑

p=1

ηo Pj‖ϕT
h (t)‖‖ϕh(t)‖

=
K∑

p=1

ϕT
h (t)

{
(η − ηo)P̃

+ηo
Pi + PT

i

2

}
ϕh(t)

Similarly,

K∑

p=1

ϕT
p (t)

Z∑

h=1

K∑

q=1

πh
pq	hϕh(t − χ2) ≤ ε

2
ϕT
p (t)(E ⊗ Ẽ)(E ⊗ Ẽ)Tϕh(t)

+ 1

2ε
ϕh(t − χ2)(IK ⊗ In)ϕh(t − χ2)

≤ ε

2
ϕT
p (t)λmax (EET )λmax (Ẽ ẼT )ϕp(t)

+ 1

2ε
ϕh(t − χ2)

Tϕh(t − χ2) (11)

123



A Robust Non-Fragile Control Lag Synchronization... 2929

− 2
N∑

p=1

ϕT
p (t)M(Y + �Y )ϕp(t) ≤ −2

N∑

p=1

ϕT
p (t)Yϕp(t) − 2

N∑

p=1

ϕT
p (t)�Yϕp(t)

≤ −2
N∑

p=1

ϕT
p (t)Yϕp(t) − 2

N∑

p=1

ϕT
p (t)(H1�1(t)T1))ϕp(t)

−2
N∑

p=1

ϕT
p (t)(Y + �Y )ϕp(t) ≤ −2

N∑

p=1

ϕT
p (t)Yϕp(t) − 2

N∑

p=1

ϕT
p (t)Z1ϕp(t)

−2
N∑

p=1

ϕT
p (t)Z2ϕp(t) (12)

Combining the equations (8)-(12) and substitute in (7), we can write

DζV (ϕp(t)) =
K∑

p=1

ϕT
p (t)Aϕp(t) +

K∑

p=1

ϕT
p (t)(Wp�p − ρp In p )ϕp(t)

+
K∑

p=1

1

2ε
K1CϕT

p (t − χ1)ϕp(t − χ1)

K∑

p=1

ϕT
h (t)

{
(ϕ − ϕo)P̃ + ϕo

Pi + PT
i

2

}
ϕh(t)

+ ε

2
ϕT
p (t)λmax (EET )λmax (Ẽ ẼT )ϕp(t)

+ 1

2ε
ϕp(t − χ2)

Tϕp(t − χ2) − 2
N∑

p=1

ϕT
p (t)Yϕp(t) − 2

N∑

p=1

ϕT
p (t)Z1ϕp(t)

−2
N∑

p=1

ϕT
p (t)Z2ϕp(t) +

K∑

p=1

ϕT
p (t)

K∑

p=1

dp(t)ϕp(t) −
K∑

p=1

ϕT
p (t)

K∑

p=1

dpϕp(t)

DζV (ϕp(t)) ≤
K∑

p=1

ϕT
p (t)

{
A + (Wp�p − ρp In p ) + (η − ηo)P̃

+ηo
Pi + PT

i

2
− Y − 2Z1 − 2Z2 + ε

2
λmax (EET )

×λmax (Ẽ ẼT )

}
ϕp(t)

+
K∑

p=1

C
K1

2ε
ϕT
p (t − χ1)ϕp(t − χ1)

+ 1

2ε

K∑

p=1

ϕp(t − χ2)
Tϕp(t − χ2)

DζV (ϕp(t)) ≤ 1

2
λmax

{
2A + 2(Wp�p − ρp In p ) + 2((η − ηo)P̃
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+ηo
Pi + PT

i

2
) − 4Y − 4Z1 − 4Z2

+2(
ε

2
λmax (EET )λmax (Ẽ ẼT ))

}
ϕT
p (t)ϕp(t)

+
K∑

p=1

C
K1

ε

1

2
ϕT
p (t − χ1)ϕp(t − χ1)

+ 1

2ε

K∑

p=1

ϕp(t − χ2)
Tϕp(t − χ2)

DζV (ϕp(t)) = −�V (ϕp(t)) + C
K1

ε
V (ϕp(t − χ1)) + 1

2ε
V (ϕp(t − χ2)) (13)

Now, let us consider the linear fractional differential equation can be given by

DζV (ψ(t)) = −�V (ψp(t)) + C
K1

ε
V (ψp(t − χ1)) + 1

ε
V (ψp(t − χ2))

V (ψ(t)) = h(t) ≥ 0. (14)

As we can write a characteristic equation of the above term as,

sζ + � − C
K1

ε
e−sχ1 − 1

2ε
e−sχ2 = 0. (15)

which has no purely imaginary roots and � > C K1
ε

+ 1
2ε , then we can get the zero solution

of (above equation) is asymptotical stable. Suppose in the case of pure imaginary s = ωi =
|ω||cos( π

2 )+ isin(±π
2 )|. Where ω is the real number. Hence substitute the value of s in (15),

we have

(ωi)ζ + � − C
K1

ε
e−ωiχ1 − 1

2ε
e−ωiχ2 = 0.

Here,

ω > 0, s = |ω||cos(π
2

) + isin(±π

2
)|,

ω < 0, s = |ω||cos(π
2

) − isin(±π

2
)|,

which can be written as,

(ωi)ζ + � = C
K1

ε
e−ωiχ1 + 1

ε
e−ωiχ2 = 0.

Squaring on both sides

|ωiζ + �|2 =
(
C
K1

ε
cosωχ1 + C

K1

ε
cosωχ1

)2

+
( 1

2ε
sinωχ1 + 1

2ε
sinωχ1

)2

|ω|2ζ + C
K1

ε
cos

(ζπ

2

)
|ω|ζ + �2 = C2 K

2
1

ε2
+

( 1

4ε2

)2 + 2CK1

2ε2
cosω

(
χ1 − χ2

)

≤
(
C
K1

ε
+ 1

2ε

)2
.
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Hence we have � > 0, if � > C K1
ε

+ 1
2ε , has no real roots. By lemma (3.7), we can get

V (ϕ(t)) ≤ V (ψ(t)), and also |ω|ζ > 0, cos( qπ
2 ) > 0 which denoting that the zero solution

of (13) is asymptotically stable. This completes the proof.
Suppose if the coupling term 	 = 0, then the error system can be rewritten as

Dζ ϕp(t) = Aϕp(t) + B( f (φp(t)) − f (ςp(t − ρ))) + C( f (φp(t − χ1))

− f (ςp(t − χ1 − ρ)))

+
Z∑

h=1

K∑

q=1

� h
pq�hϕh(t) + ϑp(t) − (Y + �Y )ϕp(t)

−
K∑

p=1

dpϕ
T
p (t)ϕp(t). (16)

We will obtain the result below in this case. �
Corollary 4.2 Under the assumptions [A1], [A2] and [A3] holds, and for a given Y > 0 the
drive system is synchronized with the response system, if the following condition is satisfied

� > C
K1

ε
(17)

where −� = λmax (P) , where η = λmin(
W�+WT

�

2 ), W� = ∑Z
h=1 �h, ηo = ∑Z

h=1 ‖�h‖,
P̃ = ∑Z

h=1
∑K

p=1 diag{� h
11,�

h
22, ...,�

h
NN }, Pi = ∑Z

h=1
∑K

q=1,q �=p � h
pq , P = 2A +

2B(Wp�p − ρp In p ) + 2((η − ηo)P̃ + ηo
Pi+PT

i
2 ) − 4Y − 4Z1 − 4Z2 p = 1,2,...,K.

5 Numerical Simulations

Throughout this section, numerical example is given to illustrate Robust non-fragile lag
synchronization of FMCDN.

Example 5.1 Consider a general FMCDN with identical nodes, then the dynamics of node is
given by

Dζ
t ςp(t) = Aςp(t) + B f (ςp(t)) + C f (ςp(t − χ1)) +

Z∑

h=4

K∑

q=1

� h
pq�hςq(t)

+
4∑

h=1

K∑

q=1

πh
pq	hςq(t − χ2).

and the response system is given by,

Dζ
t φp(t) = Aφp(t) + B f (φp(t)) + C f (φp(t − χ1))

+
4∑

h=1

K∑

q=1

� h
pq�hφq(t)

+
Z∑

h=1

K∑

q=1

πh
pq	hφq(t − χ2)
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+ϑp(t) + u p(t)

where ζ = 0.98, f (ςp(t)) = cos(ςp(t)); f (ςp(t −χ1)) = sin(ςp(t)−χ1); χ1 = 035;χ2 =
1.45;ρ = 0.50;ϑp(t) = (0.02∗sin(ς), 0.01∗sin(ς), 0.03∗sin(ς))T ;(Y+�Y ) = (150.75+
0.2∗tanh(ς), 180.85 + 0.2∗tanh(ς), 200.74 + 0.2∗tanh(ς))T

A =
⎛

⎝
−40.58 0 0

0 −45.27 0
0 0 −49.05

⎞

⎠ B =
⎛

⎝
−2 0 0
0 −2.01 0
0 0 −2.08

⎞

⎠

C =
⎛

⎝
−0.02 0 0

0 −0.4 0
0 0 −0.8

⎞

⎠

�1 =
⎛

⎝
1 0 0
0 −1 0
0 0 2

⎞

⎠ �2 =
⎛

⎝
0.5 0 0
0 0.1 0
0 0 −0.1

⎞

⎠ �3 =
⎛

⎝
2 0 0
0 0.1 0
0 0 0.5

⎞

⎠

�4 =
⎛

⎝
−1 0 0
0 −1 0
0 0 −0.5

⎞

⎠ 	1 =
⎛

⎝
0.1 0 0
0 2 0
0 0 0.1

⎞

⎠ 	2 =
⎛

⎝
2 0 0
0 −0.2 0
0 0 −0.3

⎞

⎠

	3 =
⎛

⎝
0.1 0 0
0 0.5 0
0 0 0.6

⎞

⎠ 	4 =
⎛

⎝
0.01 0 0
0 0.2 0
0 0 −0.3

⎞

⎠

� 1 =

⎛

⎜⎜⎜⎜⎝

1 0 −1 2 3
0 −2 0 −2 1

−1 −2.4 2 1 0
0 −3.5 −1 −2.1 1

−2.4 −0.1 −1 0 −3

⎞

⎟⎟⎟⎟⎠
� 2 =

⎛

⎜⎜⎜⎜⎝

−0.2 0 0.2 0.1 0.25
0 −0.1 0.5 0 0.4
0.1 0.4 0.2 0.5 −0.1
0.2 0.5 0.4 0.2 0.2
0.25 0.4 0.2 0.2 −0.3

⎞

⎟⎟⎟⎟⎠

� 3 =

⎛

⎜⎜⎜⎜⎝

−0.5 0 0.1 0 0.4
0 −0.2 0.4 0 0.3
0.1 0.4 −0.4 0.3 0.2
0 0 0.3 −0.3 0.5
0.4 0.3 0.2 0.5 −0.1

⎞

⎟⎟⎟⎟⎠
� 4 =

⎛

⎜⎜⎜⎜⎝

−0.4 −0.1 0.2 0 0
0 0.2 −0.2 0 0.3
0 0.1 −0.3 −0.1 0
1 0.5 −0.2 0.1 −0.1
0 1 0.1 0 0.1

⎞

⎟⎟⎟⎟⎠

π1 =

⎛

⎜⎜⎜⎜⎝

0.6 0.2 0.1 0.1 1
0.3 −0.7 0.5 0.2 0
0.1 0.5 −0.25 0.2 0.1
0.3 0.4 0.5 −0.3 0.2
0 1 0.1 −0.25 −0.2

⎞

⎟⎟⎟⎟⎠
π2 =

⎛

⎜⎜⎜⎜⎝

0.5 0.2 0.1 0.1 0
0.2 −0.8 0.1 0 0.2
0.1 0.3 −1.1 0.1 0.4
0.1 0 0.4 −0.3 0.2
0 0.2 0 0.1 −0.6

⎞

⎟⎟⎟⎟⎠

π3 =

⎛

⎜⎜⎜⎜⎝

0.7 0.3 0.1 0.1 1
0 −0.8 0.3 0.2 0
0.2 0.1 −0.3 1 0.1
0.1 0 0.2 −1.1 0.2
0.1 0 0 0.2 −0.6

⎞

⎟⎟⎟⎟⎠
π4 =

⎛

⎜⎜⎜⎜⎝

0.5 0.5 0.1 0 0.2
0.2 −0.4 0 0.1 0.1
0.1 0 −0.25 0 0
0 0.1 0 −0.4 0.3
0.2 0.1 0 0.3 −0.6

⎞

⎟⎟⎟⎟⎠

By the simple computation, we get λmax (EET )λmax (Ẽ ẼT ) = 1.314; η = −1.80;
ηo = 2.50; � = 635.6975; C K1

ε
+ 1

2ε = 300.0120. Hence form the computational val-
ues, theorem (4.1) is satisfied. The Fig. 1 shows the evolution of synchronization error of
ϕp1(p = 1, 2, 3, 4, 5) identical nodes without controller. After inserting the non-fragile con-
troller to the system, the error is completely reduced which the trajectories goes to zero which
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Fig. 1 Evolution of synchronization error ϕp1(t) (without controller), P = 1,2,3,4,5
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step

( t
)

p1

Fig. 2 Evolution of synchronization error ϕp1(t) (with controller), P =1,2,3,4,5

is shown in Fig. 2. Figures 3 and 4 are the evolution of errors for ϕp2 and ϕp3 (p = 1, 2, 3)
nodes without controller and with controller respectively (Figs. 5, 6).

Example 5.2 Consider a general FMCDN without considering any coupling delays, then the
dynamics of node can be given by

Dζ
t ςp(t) = Aςp(t) + B f (ςp(t)) + C f (ςp(t − χ1)) +

Z∑

h=4

K∑

q=1

� h
pq�hςq(t)

and the response system is given by,

Dζ
t φp(t) = Aφp(t) + B f (φp(t)) + C f (φp(t − χ1))

+
4∑

h=1

K∑

q=1

� h
pq�hφq(t) + ϑp(t) + u p(t)
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step
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Fig. 3 Evolution of synchronization error ϕp2(t) (without controller), P = 1,2,3,4,5
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step
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p2

Fig. 4 Evolution of synchronization error ϕp2(t) (with controller), P = 1,2,3,4,5

where ζ = 0.93, f (ςp(t)) = cos(ςp(t)); f (ςp(t − χ1)) = sin(ςp(t) − χ1); χ1 = 0.15;
ρ = 0.63; ϑp(t) = (0.02∗sin(ς), 0.01∗sin(ς), 0.03∗sin(ς))T ;(Y + �Y ) = (100.02 +
0.2∗tanh(ς), 140.74 + 0.2∗tanh(ς), 180.49 + 0.2∗tanh(ς))T

A =
⎛

⎝
−40.58 0 0

0 −45.27 0
0 0 −49.05

⎞

⎠ B =
⎛

⎝
−2 0 0
0 −2.01 0
0 0 −2.08

⎞

⎠

C =
⎛

⎝
−0.02 0 0

0 −0.4 0
0 0 −0.8

⎞

⎠

�1 =
⎛

⎝
1 0 0
0 −1 0
0 0 2

⎞

⎠ �2 =
⎛

⎝
0.5 0 0
0 0.1 0
0 0 −0.1

⎞

⎠ �3 =
⎛

⎝
2 0 0
0 0.1 0
0 0 0.5

⎞

⎠
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step
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Fig. 5 Evolution of synchronization error ϕp3(t) (without controller), P = 1,2,3,4,5
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step
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Fig. 6 Evolution of synchronization error ϕp3(t) (with controller), p = 1,2,3,4,5

�4 =
⎛

⎝
−1 0 0
0 −1 0
0 0 −0.5

⎞

⎠ 	1 =
⎛

⎝
0.1 0 0
0 2 0
0 0 0.1

⎞

⎠ 	2 =
⎛

⎝
2 0 0
0 −0.2 0
0 0 −0.3

⎞

⎠

	3 =
⎛

⎝
0.1 0 0
0 0.5 0
0 0 0.6

⎞

⎠ 	4 =
⎛

⎝
0.01 0 0
0 0.2 0
0 0 −0.3

⎞

⎠

� 1 =

⎛

⎜⎜⎜⎜⎝

1 0 −1 2 3
0 −2 0 −2 1

−1 −2.4 2 1 0
0 −3.5 −1 −2.1 1

−2.4 −0.1 −1 0 −3

⎞

⎟⎟⎟⎟⎠
� 2 =

⎛

⎜⎜⎜⎜⎝

−0.2 0 0.2 0.1 0.25
0 −0.1 0.5 0 0.4
0.1 0.4 0.2 0.5 −0.1
0.2 0.5 0.4 0.2 0.2
0.25 0.4 0.2 0.2 −0.3

⎞

⎟⎟⎟⎟⎠
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Fig. 7 Evolution of synchronization error ϕp1(t) (without controller), P = 1,2,3,4,5
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step
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p1

Fig. 8 Evolution of synchronization error ϕp1(t) (with controller), P =1,2,3,4,5

� 3 =

⎛

⎜⎜⎜⎜⎝

−0.5 0 0.1 0 0.4
0 −0.2 0.4 0 0.3
0.1 0.4 −0.4 0.3 0.2
0 0 0.3 −0.3 0.5
0.4 0.3 0.2 0.5 −0.1

⎞

⎟⎟⎟⎟⎠
� 4 =

⎛

⎜⎜⎜⎜⎝

−0.4 −0.1 0.2 0 0
0 0.2 −0.2 0 0.3
0 0.1 −0.3 −0.1 0
1 0.5 −0.2 0.1 −0.1
0 1 0.1 0 0.1

⎞

⎟⎟⎟⎟⎠

π1 =

⎛

⎜⎜⎜⎜⎝

0.6 0.2 0.1 0.1 1
0.3 −0.7 0.5 0.2 0
0.1 0.5 −0.25 0.2 0.1
0.3 0.4 0.5 −0.3 0.2
0 1 0.1 −0.25 −0.2

⎞

⎟⎟⎟⎟⎠
π2 =

⎛

⎜⎜⎜⎜⎝

0.5 0.2 0.1 0.1 0
0.2 −0.8 0.1 0 0.2
0.1 0.3 −1.1 0.1 0.4
0.1 0 0.4 −0.3 0.2
0 0.2 0 0.1 −0.6

⎞

⎟⎟⎟⎟⎠
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Fig. 9 Evolution of synchronization error ϕp2(t) (without controller), P = 1,2,3,4,5
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Fig. 10 Evolution of synchronization error ϕp2(t) (with controller), P = 1,2,3,4,5

π3 =

⎛

⎜⎜⎜⎜⎝

0.7 0.3 0.1 0.1 1
0 −0.8 0.3 0.2 0
0.2 0.1 −0.3 1 0.1
0.1 0 0.2 −1.1 0.2
0.1 0 0 0.2 −0.6

⎞

⎟⎟⎟⎟⎠
π4 =

⎛

⎜⎜⎜⎜⎝

0.5 0.5 0.1 0 0.2
0.2 −0.4 0 0.1 0.1
0.1 0 −0.25 0 0
0 0.1 0 −0.4 0.3
0.2 0.1 0 0.3 −0.6

⎞

⎟⎟⎟⎟⎠

By the simple computation, we get η = 0.80; ηo = 0.50; � = 350.010; C K1
ε

=
10.338. Hence form the computational values, corollary (4.2) is satisfied. The Fig. 7 shows
the evolution of synchronization error of ϕp1(p = 1, 2, 3, 4, 5) identical nodes without
controller. After inserting the non-fragile controller to the system, the error is completely
reduced which the trajectories goes to zero which is shown in Fig. 8. Figures 9, 10 are the
evolution of errors for ϕp2 and ϕp3 (p = 1, 2, 3, 4, 5) nodes without controller and with
controller respectively (Figs. 11, 12).
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Fig. 11 Evolution of synchronization error ϕp3(t) (without controller), P = 1,2,3,4,5
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Fig. 12 Evolution of synchronization error ϕp3(t) (with controller), p = 1,2,3,4,5

6 Conclusions

In this problem, we investigated the fractional order lag synchronization for multi-weighted
complex dynamical networks with coupling delays via non-fragile control. As we introduced
a generalmulti-weighted complex networkmodel including the coupling delayswith external
disturbances and analyzed the lag synchronization criteria using the state feedbacknon-fragile
control. Based on the Lyapunov stability theory and comparison principle, we ensured our
model guarantees the lag synchronization under the controller. To check the feasibility of the
results obtained, a numerical example is drawn up. In future, we will consider the impulses
and uncertainty and analyzing its synching criteria.
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