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Abstract

In recent years, deep learning has achieved great success in many natural language process-
ing tasks, including named entity recognition. The shortcoming is that a large quantity of
manually annotated data is usually required. Previous studies have demonstrated that active
learning can considerably reduce the cost of data annotation, but there is still plenty of room
for improvement. In real applications, we found that existing uncertainty-based active learn-
ing strategies have two shortcomings. First, these strategies prefer to choose long sequences
explicitly or implicitly, which increases the annotation burden of annotators. Second, some
strategies need to revise and modify the model to generate additional information for sample
selection, which increases the workload of the developer and increases the training/prediction
time of the model. In this paper, we first examine traditional active learning strategies in spe-
cific cases of Word2Vec-BiLSTM-CRF and Bert-CRF that have been widely used in named
entity recognition on several typical datasets. Then, we propose an uncertainty-based active
learning strategy called the lowest token probability (LTP), which combines the input and
output of conditional random field (CRF) to select informative instances. LTP is a simple and
powerful strategy that does not favor long sequences and does not need to revise the model.
We test LTP on multiple real-world datasets, the experiment results show that compared with
existing state-of-the-art selection strategies, LTP can reduce about 20% annotation tokens
while maintaining competitive performance on both sentence-level accuracy and entity-level
F1-score. Additionally, LTP significantly outperformed all other strategies in selecting valid
samples, which dramatically reduced the invalid annotation times of the labelers.

Keywords Active learning - Learning strategies - Named entity recognition - CRF

1 Introduction

Over the past few years, papers applying deep neural networks (DNNs) to the task of named
entity recognition (NER) have achieved noteworthy success [4,14,18]. However, under typical
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training procedures, the advantages of deep learning mostly rely on a large quantity of labeled
data. When applying these methods on domain-related tasks, their main problem lies in
their need for a considerable human-annotated training corpus, which requires tedious and
expensive work from domain experts. Thus, to make these methods more widely applicable
and easier to adapt to various domains, the key is to reduce the number of manually annotated
training samples.

Active learning was designed to reduce the amount of data annotation. Unlike the super-
vised learning setting, in which samples are selected and annotated at random, the process of
active learning employs one or more human annotators by asking them to label new samples
that are supposed to be the most informative in the creation of a new classifier. The greatest
challenge in active learning is to determine which samples are more informative. The most
common approach is uncertainty sampling, in which the model preferentially selects samples
whose current prediction is least confident.

Many works have been performed to reduce the amount of data annotation for NER
tasks through active learning. However, these state-of-the-art approaches mainly face two
problems. One of the problems is that they tend to choose the long sequences explicitly or
implicitly, which is an undesirable behavior when someone seeks to maximize performance
for minimal cost annotation. Another problem is that they may need to revise and modify
the original model, which increases the workload of the developer and the computing cost.
In this work, we propose a simple but effective active learning strategy that does not prefer
a long sequence and does not need to revise the original model.

When evaluating the effect of NER, most of the works only use the value of the entity-level
F1 score. However, in some cases, this can be misleading, especially for languages that do not
have a natural separator, such as Chinese. The NER task is often used to support downstream
tasks (such as QA and task-oriented dialog), which prefer that all entities in the sentence are
correctly identified. Therefore, in this work, we evaluate not only the entity-level F; score
but also the sentence-level accuracy.

We first experiment with the traditional uncertainty-based active learning algorithms, and
then we proposed our own active learning strategy based on the lowest token probability
with the best labeling sequence. Experiments show that compared with traditional selection
strategies, our strategy does not favor long samples and does not need to revise model
while maintaining competitive performance on both sentence-level accuracy and entity-level
F1-score. Finally, we conduct an empirical analysis with different active selection strategies.

The main contribution of this paper is summarized as follows:

1. We proposeed a novel active learning strategy called LTP, which can handle both global
and local information without revising NER model. And compared with existing state-
of-the-art strategies, LTP can significantly reduce annotation cost.

2. We constructed a large number of experiments on different language datasets with dif-
ferent models. Especially on Chinese datasets, which fills the gap about active learning
strategies comparison on Chinese datasets.

3. We discussed the impact factors in active learning and give suggestions on how to choose
active learning strategies in practical applications.

The remainder of this paper is organized as follows. In Sect. 2, we summarize the related
works in named entity recognition and active learning. In Sect. 3, we briefly introduce the
data representation and CRF. Section 4 describes in detail the active learning strategies we
propose. Section 5 describes the experimental setting, the datasets, and results. Section 6
discuss the different strategies and gives suggestions on how to choose an appropriate active
learning strategy. The last section is the conclusion.
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2 Related Work

In this section we summarized related work. One of the related work in this paper is named
entity recognition, as this is the background and application scenario of this paper. Another
related work is transfer learning and active learning, as both of them are able to reduce the
amount of annotated data required in the named entity recognition with different principles.
In this paper, LTP considers the use of active learning in transfer learning based models to
further reduce the amount of data annotation required.

2.1 Deep Learning for Named Entity Recognition

The framework of NER using a deep neural network can be regarded as a composition of
the encoder and decoder. For encoders, there are many options. Collobert et al. [6] first
used a convolutional neural network (CNN) as the encoder. Traditional CNNs cannot solve
the problem of long-distance dependency. To solve this problem, RNN [24], BiLSTM [12],
dilated CNN [38] and bidirectional transformers [9] are proposed to replace CNN as an
encoder. For decoders, some works used RNN for decoding tags [21,24]. However, most
competitive approaches relied on CRF as a decoder [14,44]. Since the focus of this paper
is not the NER model, we will not take too much effect to explain the details of the NER
models. Readers who are interested in deep learning for named entity recognition can refer
to the very recent survey by Li et al. [16].

Transfer learning is the migration of trained model parameters to new models to facilitate
the new model training. We can share the learned model parameters into the new model in a
certain way to accelerate and optimize the learning efficiency of the model, instead of learning
from zero. So transfer learning could help to achieve better results on a small dataset. However,
it should be noted that transfer learning works well only when the sample distributions of
the source and target domain are similar. While significant distribution divergence might
cause a negative transfer [32]. There are two methods to apply the pre-trained language
model to downstream tasks. Feature-based approach (e.g. Word2Vec [22], ELMO [28])
use pretrained representations as input features for downstream task without modifying the
original pretrained models, while fine-tuning approach (e.g. GPT [30], Bert [9]) that train the
downstream task model by fine-tuning pretrained model parameters. Feature-based methods
usually require fewer computational resources, but the performance will be lower, especially
when the source and target domains differ significantly. Fine-tune based methods can achieve
higher performance and are more tolerant to differences between source and target domains
with the cost of requiring more computational resources. In this work, we experiment with
both types of transfer learning to show that 1) active learning can complement transfer learning
to further reduce the need for labeled data, and 2) our proposed active learning strategy can
perform well under different resource conditions.

Active learning strategies have been well studied [1,8], [36]. These strategies can be
grouped into the following categories: query-by-committee (QBC) [35,40], information den-
sity [41], Fisher information [34] and uncertainty sample [7,13,15,33]. OBC generates a
committee of classifiers based on the current training set, and then evaluate the informa-
tive value of each sample and select a subset of most informative samples. QBC is usually
not suitable for deep learning scenarios as generating a committee of deep learning based
classifiers is extremely expensive. The main idea of information density is that informative
samples should not only be those with high uncertainty, but also those representative of the
input distribution. The main bottleneck of information density is that each sample has to be
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Table 1 Example of data representation. [PAD] tags are not shown

Sentence Trump was born in the United States

Tag [CLS] B-PER (6] (6] (6] B-LOC I-LOC I-LOC [SEP]

compared with all other samples in the unlabeled sample pool, which is impractical when
the pool contains a large number of unlabeled samples. Fisher information tries to evaluate
how uncertain a model is about a sample and which model parameter is most responsible for
this uncertainty. The computational difficulties of Fisher information ratio and the difficulties
in interpreting the parameters of the deep learning model hinder the application of Fisher
information in deep learning based named entity recognition. Uncertainty sample queries
the samples which are least certain how to label. This approach is often straightforward.
Many works have compared the performance of different types of selection strategies in
NER/sequence labeling tasks with the CRF model [3,5,20,34]. These results show that, in
most cases, uncertainty-based methods perform better and require less time. For the existing
uncertainty-based active learning strategies we will describe them in detail and compare them
with LTP in Sect. 4.

We also found that existing studies are mainly based on English datasets and do not address
Chinese datasets. So that, in this work, four Chinese datasets are selected for experiments to
give a relatively comprehensive reference for active learning of Chinese NER. Additionally,
traditional uncertain-based strategies always choose long sequences explicitly or implicitly,
which significantly increases the burden on annotators. Some strategies [37] revise the model
and let the model perform additional tasks for sample selection. Therefore, in this work, we
propose a new active learning strategy that does not favor long sequences and does not need
to revise the model.

3 CRF-Based NER Model

3.1 Data Representation

We represent each input sentence following the BERT format; each token in the sentence is
marked with BIO scheme tags. Special [C L S] and [SE P] tokens are added at the beginning
and the end of the tag sequence, respectively. [ P A D] tokens are added at the end of sequences
to make their lengths uniform. The formatted sentence in length N is denoted as x =<
X1, X2, ..., XN >, and the corresponding tag sequence is denotedasy =< yi, y2, ..., YN >.
Table 1 gives an example of data representation.

3.2 CRF Layer

CREF are statistical graphical models that have demonstrated state-of-art accuracy on virtually
all of the sequence labeling tasks, including the NER task. The main advantage of CRF is that
it can recognize forms, even if they have not been seen in the training corpus. In particular,
we use the linear-chain CRF, which is a popular choice for tag decoders and is adopted by
most DNNs for NER.
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A linear-chain CRF model defines the posterior probability of y given x to be:

exp (P(yl; x1) + ZZ;} P (Yk+1; Xk+1) + Ayk,ykﬁ))

P(ylx; A) = 70

ey

where Z(x) is a normalization factor over all possible tags of x, and P (yx; Xx) indicates
the probability of taking the y; tag at position k, which is the output of the previous DNN
layer, such as bilstm and softmax. A is a parameter called a transfer matrix, which can be
set manually or by model learning. In our experiment, we let the model learn the parameter.
Ay vy, denotes the probability of a transition from tag states yx to yr41. We use y* to
represent the most likely tag sequence of x:

y* =arg max P(y[x) )

The parameters A are learned through the maximum log-likelihood estimation, that is, to
maximize the log-likelihood function ¢ of training set sequences in the labeled dataset £:

L
0L; Ay =y log Py x?; A) ©)
=1

where L is the size of the tagged set L.

4 Active Learning Strategies

Algorithm 1 Pool-based active learning framework

Require: Labeled dataset £,
unlabeled data pool U,
selection strategy ¢ (-),
query batch size B
while not reach stop condition do
// Train the model using labeled set £
train(L);
for b =1to B do
//select the most informative instance
x* = arg maxyey ¢ (X)
L = LU < x*, label (x*) >
U=U-—x*
end for
end while

The greatest challenge in active learning is how to select instances that need to be manually
annotated. A good selection strategy ¢ (x), which is a function used to evaluate each instance
x in the unlabeled pool ¢/, will select the most informative instance x.

Algorithm 1 illustrates the entire pool-based active learning process. In the remainder of
this section, we describe various query strategy formulations of ¢ (-) in detail.
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4.1 Token-Based (Local) Strategies

The token-based strategy treats the labeling sequence as a set of isolated tokens and evaluates
uncertainty by aggregating the information of these tokens.

Minimum token probability (MTP) selects the most informative tokens, regardless of the
assignment performed by CRF. This whose highest probability among the labels is lowest:

M (x) =1 min max P(y; = jixi; 4) 4)

where P(y; = j) is the probability that j is the label at position i in the sequence.

Entropy is a popular measure of informativeness. The entropy of a discrete random variable
Y can be represented by H(Y) = — ), P(y;)log P(y;), which means the information
needed to "encode" the distribution of outcomes for Y. Token entropy (TE) is a method for
using the entropy of the model’s posteriors over its labeling:

N M

YN PG = jlxis A)log P(yi = jlxiz A) )

i=1 j=I

1
TE _ _ *
=N
where N is the length of x without [PAD] and j ranges over all possible token labels.
Settles [34] argued that querying long sequences should not be explicitly discouraged if
they contain more information. They extended TE into maximum token entropy (MTE):

PMTEx) = N x ¢"E(x) (©6)

4.2 Sentence-Based (Global) Strategies

Different from token-based strategies, sentence-based strategies treat labeling sequence y as
a whole. Most of these strategies have high complexity or require intrusive models.

Culotta and McCallum [7] employed a simple uncertainty-based strategy for sequence
models called least confidence (LC), which sort examples in ascending order according to
the probability assigned by the model to the most likely sequence of tags:

P (x) =1 — P(y*|x; A) (7

This confidence can be calculated using the posterior probability given by Equation 1. Pre-
liminary analysis revealed that the LC strategy prefers to select longer sentences:

n—1
P(y*|x; A) o exp (P(yi‘; XD+ Y POy %) + Ay;,yifﬂ) 8)
k=1

Since Eq. 8 contains summation over tokens, the LC method naturally favors longer sen-
tences. Although the LC method is very simple and has some shortcomings, many works
have proven the effectiveness of the method in sequence labeling tasks.

Scheffer et al. [33] proposed a method called margin, which queries samples with the
smallest margin between the posteriors for its two most likely annotations:

M (x) = —(PYDIx; A) — P(y31x; A)) (C))

where y} and yj are the first and second most likely tag sequences of x. Margin requires the
model to calculate the unnecessary second most likely tag sequence.
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Table 2 Qualitative comparison of uncertainty-based active learning strategies

MTP LC TE TTE LTP Margin SE BALD

Local(Token) Information J J v VA

Global(Sentence) Information N N Vv Vv N
Favor long sequence explicitly N Vv

Revise model N N
Additional compute Vv Vv v

Different from TE and TTE, sequence entropy (SE) considers the entropy of the sequence
instead of the entropy of the token:

¢3F(x) ==Y P(Ix; A)log P(FIx; A) (10)
¥y

where y ranges over all possible tag sequences for x. This calculation cost increases expo-
nentially with the length of x and the number of tag categories.

The mostrecent uncertainty-based selection strategy is called Bayesian active learning by
disagreement (BALD) [11,37]. BALD measures the uncertainty of the sample by observing
the changes in the forward propagation result of the sample through multiple random dropouts
[10]. Let§', §2, ..., §7 represent the result from applying T independently sampled dropout

masks: .
maxg count (y)

BALD (y _
¢ x) =1 T

an

where count (¥) means the number of occurrences of ¥ in §!, 2, . .., §7. Normally, the value
of T is 100. BALD will require considerable time to repeat forward propagation when the
data pool is large.

4.3 Lowest Token Probability (LTP)

Unlike existing strategies, we believe that local information and global information have their
advantages, and the two can complement each other. We look for the most likely sequence
assignment (global) and hope that each token (local) in the sequence has a high probability.
This goal makes Eq. 1 as large as possible and increases the margin between the best sequence
and second best sequence.

o TP =1- min P (7 |xi; A) (12)
Vi €y

We proposed our select strategy called lowest token probability (LTP), which selects the
tokens whose probability under the most likely tag sequence y* is lowest. It is not difficult
to infer from the formulation that LTP utilizes global and local information and implicitly
implements Margin but does not require additional calculations.

Table 2 compares all the uncertainty-based active learning strategies mentioned in this sec-
tion. Strategies that do not need to revise the model and do not require additional calculations
are selected as the comparison method of our strategies.
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5 Experiments
5.1 Datasets

We have experimented and evaluated the active learning strategies mentioned in Sect. 4 on
four Chinese datasets and two English datasets:

— People’s Daily. People’s Daily is the most influential and authoritative newspaper in
China. The dataset is a collection of newswire articles annotated with 3 balanced entity
types, and is one of the common datasets for Chinese natural language processing related
tasks.

— Boson_NER [23,29]. This dataset is an annotated dataset released by BosonNLP Lab
specifically for Chinese named entity recognition. It consists of a set of online news,
compared to People’s Daily, which is more oriented to daily life. Boson_NER contains
6 balanced entity types.

— Weibo_NER [25,26]. The Weibo NER dataset is a Chinese Named Entity Recognition
dataset drawn from the social media website Sina Weibo, which is Chinese Twitter. This
dataset contains 8 extremely unbalanced entity types.

— OntoNotes-5.0 [42]. OntoNotes 5.0 is a large corpus comprising various genres of text,
including news, conversational telephone speech, weblogs, broadcast, etc. In this paper,
a collection of broadcast and news articles in Chinese are used. This dataset contains 18
unbalanced entity types.

— CONLL2003 [39]. CONLL2003 is a named entity recognition dataset released as a
part of CONLL2003 shared task. The dataset is in English and was taken from Reuter
Corpus, which consists of Reuter news between August 1996 and August 1997. This
dataset contains 4 balanced entity types.

— Ritter [31]. Ritter is a collection of noisy, informal, but informative 140-character mes-
sages drawn from Twitter. This dataset contains 10 unbalanced entity types.

All datasets are formatted in the “BIO" sequence representation. To perform batch training,
the length of all samples is limited to 64. Those samples that are originally longer than 64 are
split according to commas or directly truncated to meet the length requirement. In terms of
dataset partitioning, since all the datasets used in this paper are publicly available standard
datasets, if the dataset has been partitioned into a training set and a test set, we directly use
this partitioning result, and if it has not been partitioned, we partition the training set and test
set according to the ratio of 8:2.

Table 3 shows some statistics of the datasets in terms of dimensions, number of entity
types, and distribution of the labels. The statistical results show that the 6 selected datasets
have distinctive features, covering a wide range of languages, domains, data magnitude
and information richness, etc. For example, the gap between the number of sentences(#S)
contained in the largest dataset(People’s Daily) and the smallest dataset(Ritter) is nearly 26
times. The number of entity types(#E) in datasets range from 3 to 18. The distribution of
entity types on different datasets is quite different, which is shown in Fig. 1. Boson_NER,
People’s Daily and CONLL2003 can be regarded as a dataset with balanced distribution of
entity types, while Weibo_NER, OntoNotes-5.0 and Ritter can be regarded as unbalanced.
We also find that the percentage of tokens with positive label(%PT) in the non-standard text
datasets(Weibo_NER and Ritter) is significantly less than the other datasets. The average
entity length(ASE) of English dataset is smaller than that of Chinese dataset. Additionally,
we show the distribution of sample lengths on different datasets in Fig. 2. The sample lenght
distribution varies widely, especially for People’s Daily, CONLL2003 and Ritter.
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5.2 Experimental Setting

For each dataset, we randomly choose 1% warm-start samples as the initial training set
L1. We train the initial model on these data, then we apply an active learning strategy to
choose an additional 2% samples based on the model’s uncertainty estimates and train a new
model based on these data. In each iteration, we train from scratch to avoid negative effects
accumulated from previous training. We train each model to converge in each iteration. We
fix the number of active learning iterations at 25 because each algorithm does not improve
obviously after the 25 iteration.
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We test two different CRF-based NER models on each dataset, namely Word2Vec-
BiLSTM-CRF and Bert-CRF. These two models represent different commonly used
architectures(BiLSTM encoder and transformer encoder) [16] and different resource restric-
tion scenarios (restricted and sufficient). For Word2Vec-BiLSTM-CREF, we use a 300d Glove
word embedding pretrained on the Chinese Wikiped corpus [17] for the Chinese datasets
a 100d GloVe word embedding pretrained on the English Wikipedia corpus [27] for the
English datasets. We uniformly set the global learning rate as 0.001 and the training batch
size as 64. For Bert-CRF, we use the bert-base-chinese and bert-base-uncased provided by
Transformers [43] as the pre-trained language models for the Chinese and English datasets,
respectively. Limited by GPU memory, we set the training batch size as 16. To avoid insuffi-
cient learning of the CRF layer, we use different learning rate for different layers. The learning
rate of the CRF layer is 0.001, while Bert uses a learning rate of 0.00001 for fine-tuning.
Other parameters related to Bert are set to default. The transition matrix A in the CRF is left
to let the model learn by itself. It must be noted that the goal of this article is not to obtain
SOTA of NER, but to compare the performance of different active learning strategies under
the same conditions. Therefore, the NER model and its parameters may not be the best but
fair.

We empirically compare the selection strategy proposed in Sect. 4, as well as the uniformly
random baseline (RAND) and long baseline (LONG). We evaluate each selection strategy
by constructing learning curves that plot the overall Fi-score (for entities) and accuracy
(for sentences). To prevent the contingency of experiments, we performed 5 independent
experiments for each selection strategy on each dataset using different random initial training
sets L£1. All results reported in this paper are averaged across these experiments.

All the experimental materials and datasets can be found on https://github.com/HIT-ICES/
AL-NER.

5.3 Results

In this section, we compare the advantages and disadvantages of different active learn-
ing strategies on different NER models in terms of three metrics, entity-level Fi-scores,
sentence-level accuracy and annotation cost. Entity-level F;-scores and sentence-level
accuracy are used to show that LTP can obtain competitive performance compared to existing
state-of-the-art strategies. Anotation cost is used to show that LTP can significantly reduce
the annotation cost.

A sentence is considered to be correctly predicted if all token in the sentence are correctly
predicted. So that the sentence-level accuracy can be denoted as:

e = 2= 1009 (13)
M

We first present the summarized experimental results in Table 4, where entity_F1 and
sentence_acc are the performance of the models trained by different strategies after 25
iterations of sample selection. We can find that the LTP strategy can usually obtain better
performance than other strategies in the case of constrained resources (Word2vec-BiLSTM-
CRF) and still achieves competitive performance when computational resources are sufficient
(Bert-CRF). Convergency iterations denotes the number of iterations when the model perfor-
mance is stabilized to 95%(97% and 99%) of the best performance under the given strategy.
By comparison, we can find that Bert-CRF usually requires fewer iterations than Word2vec-
BiLSTM-CREF, which indicates that transfer learning does reduce the data requirement for
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Fig.3 Entity-level F}-score results for Word2vec-BiLSTM-CREF on different datasets

training. And by comparing LTP and Random, we can find that the number of iterations
required to converge to stable performance is reduced, which indicates that combining active
learning and transfer learning can further reduce the cost of data labeling. The annotation
cost indicates how many samples are labeled to achieve 95%(97% and 99%) of the best
performance, and for clarity, we use the value relative to Random for this representation. It
is clear that LTP has a significantly lower annotation cost compared to other active learning
strategies that are competitive in terms of entity_F'1 and sentence_acc.

In the remainder of this section we compare the differences between the different active
selection strategies at each iteration in more detail.

5.3.1 Results of Word2vec-BiLSTM-CRF

Entity-level Fj-scores of Word2vec-BiLSTM-CRF are shown in Fig. 3. It is clear that
strategy TE performs the worst on all datasets. The results of strategy LONG illustrate that
longer senteces do not necessarily contain richer information. The performance of selection
strategies on the Chinese and English datasets differs significantly. First, all active learning
strategies (except TE) overall outperform the benchmark strategy RAND on Chinese datasets,
while RAND significantly outperforms LC and is comparable to MTE on English datasets.
Second, MTE and LC perform similarly on Chinese datasets, but MTE outperforms LC
on English datasets. Our strategy LTP performs competitively on all datasets. LTP slightly
outperforms other active strategies on English formal text dataset CONLL2003 and Chinese
informal text datasets Boson_NER and Weibo_NER, and significantly outperforms other
strategies on English informal text dataset Ritter.

where M is the number of samples in the test set. ¥ is the model prediction result, and 7(-)
is an indicator.

Figure 4 shows the results of sentence-level accuracy on six datasets. The results exceeded
our expectations and are very interesting. First, the results confirm that the entity-level Fi-
score is sometimes misleading as mentioned in Sect. 1. For example, the strategy LONG
outperforms LC and MTE, and is competitive with MTP and LTP on CONLL2003 in terms
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Fig.4 Sentence-level accuracy score results for Word2vec-BiLSTM-CREF on different datasets
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Fig.5 Average length of the samples selected by active learning strategies. (Word2vec-BiLSTM-CRF)

of entity-level Fj-score, but only outperforms the strategy TE in terms of sentence-level
accuracy. On the dataset Ritter, the gap between the TE and LONG/MTE is obvious on
entity-level F-value, but this gap disappears on the sentence-level accuracy. Second, our
strategy LTP is better than the rest of the strategies, while it is not obvious on the large
datasets of formal text, which is similar to text for pre-trained word embedding.

Figure 5 shows average length of the samples selected by different active learning strate-
gies. TE and RAND tend to choose shorter sentences, but their performance (both entity-level
F1-score and sentence-level accuracy) is poor, which can be seen in Figs. 3 and 4. The aver-
age length of samples selected by LC, MTP, LONG and MTE decreases gradually with the
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Fig.6 Entity-level F|-score results for Bert-CRF on different datasets

number of iterations. However, the average length of samples selected by LTP is relatively
stable. Additionally, it can be seen from the Figs. 3, 4, 5 that the average length of samples
selected by LTP before the model performance converges (first 20 iterations) is significantly
less than other strategies (except TE and RAND). The preferences of different strategies for
selecting the sample length will be discussed in detail in Sect. 6.

5.3.2 Results of Bert-CRF

Entity-level F;-scores of Bert-CRF are shown in Fig. 6. TE is still the worst-performing
strategy, but compared to the performance under Word2Vec-BiLSTM-CRF model, the gap
between TE and other strategies has narrowed. All strategies have similar performance on
formal text datasets (OntoNotes5.0,People’s Daily and CONLL2003). Compared to other
strategies, MTP and LTP perform better on the informal text datasets, MTP is slightly better
(less than 0.5%) than LTP on Boson_NER and Weibo_NER, and LTP outperforms MTP on
Ritter.

Sentence-level accuracy of Bert-CRF are shown in Fig. 7. The performance of strategies on
Bert-CRF and Word2Vec-BiLSTM-CREF differs significantly. First, on all Chinese datasets,
MTP outperforms the other strategies overall, but it is important to note that our strategy
LTP is also competitive. LTP and RAND significantly outperform other strategies on English
dataset CONLL2003, and all strategies performed similarly on Ritfer. Second, on the dataset
Weibo_NER, all strategies perform more consistently on the Bert-CRF model compared to
the Word2Vec-BiLSTM-CRF model (Fig. 4).

Figure 8 shows average length of the samples selected by different active learning
strategies. Overall, all strategies perform similarly on Bert-CRF as they do on Word2Vec-
BiLSTM-CREF (Fig. 5). The average length of the samples selected by LTP is significantly
smaller than that of other strategies (except TE and RAND), and it should be noted that TE
and RAND are significantly weaker than LTP in terms of performance (Figs. 6 and 7).

@ Springer



LTP: A New Active Learning Strategy...

2449

Sentence-level accuracy score

o H 0 1
Number of iteration

(a) Boson_ NER

Sentence-level accuracy score

o

H 0 bt
Number of iteration

(d) People’s Daily

Sentence-level accuracy score

0.60

H 0 15
Number of iteration

(b) Weibo_NER

H 0 1
Number of iteration

(e) CONLL2003

Sentence-level accuracy score

[ H 10 5
Number of iteration

(¢) OntoNotes5.0

10
Number of iteration

(f) Ritter

Fig.7 Sentence-level accuracy score results for Bert-CRF on different datasets
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Fig.8 Average length of the samples selected by active learning strategies. (Bert-CRF)

6 Discussion and Suggestion

6.1 Discussion About Query Batch Size B

We know that the most obvious effect of active learning is to select one sample at a time,
although this is not realistic due to the cost of retraining. The more samples selected each time,
the worse the active learning effect. Therefore, in the case of a large data pool, selecting 2% of
the samples in each round cannot clearly reflect the differences between different strategies.
To clearly reflect the differences between strategies and understand the effect of query batch
size, we constructed an additional experiment on CONLL2003 with 3% and 1% samples
selected for each iteration. This experiment was also repeated 5 times independently and the
average results were reported. The results are given in Fig. 9. It is clear that query batch
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Fig. 9 Performances of different strategies on CONLL2003 with different percentage samples selected.
(Word2Vec-BiLSTM-CRF)

size B has limited effect on entity-level Fj, but a huge effect on sentence-level accuracy.
When the value of query batch size is large, the RAND strategy outperforms the other
strategies significantly on sentence-level accuracy. The performance gap between LTP and
other strategies widens significantly when the value of query batch size B is reduced. This
result demonstrates the efficiency of our proposed LTP, especially when the query size is
small.

6.2 Discussion About Informative

The core of active learning is to select "informative" samples, but there is no unified standard
to measure "informative". One thing is certain, the samples that are not correctly labeled by
the model are informative samples for the model. So we need an indicator to evaluate the
efficiency of strategies to select informative samples. We formally define effectiveness of
each iteration of selection as:

SEIGDy)

effectiveness =1 — 3

(14)
Figure 10 shows the results. We can observe that the curve of TE always significantly below
the curve of other active learning strategies, which is similar to the performance comparison
shown in Figs. 3, 4, 6 and 7. We also observe that the effectiveness of selecting samples for
all active learning strategies decreases overall with increasing number of iteration rounds on
all datasets (expect Ritter, as the NER models do not perform well.). This drop is expected
because with the increase of training samples, the performance of the model improves and
it becomes more difficult to select samples that do need to be labeled. We can see the LTP
achieves better performance through a slower rate of effectiveness decline and the ability
to maintain significantly higher values of effectiveness in later iterations than other active
learning strategies.
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Fig. 10 The results of the effectively selected sample percentage on different datasets (Word2Vec-BiLSTM-
CRF)

6.3 Limitation of LTP

Although our proposed LTP enables non-invasive and efficient selection of informative sam-
ples without bias to long samples by using complementary local and global information, LTP
has some limitations in theory and practice:

— The acquisition of local and global information in LTP relies on the CRF layer in the
NER model. LTP cannot be directly applied in NER models that are not based on CRF or
in other domain tasks. However, it should be noted that the core idea of LTP to evaluate
sample uncertainty using both local and global information has been adapted to other
tasks by other researchers, such as question answering [2,19] and role recognition [45].

— LTP is an uncertainty-based method that cannot guarantee the diversity of the selected
samples as the information density-based methods. In practice, this results in the samples
selected in each round often correcting errors in one aspect of the model. And when the
query size B is large it lead to wasted annotation as one aspect of uncertainty the model
may only need a number of samples smaller than B to correct. This phenomenon can be
solved by selecting the appropriate query size B.

6.4 Suggesions

Combining the experimental results and discussions, we give some suggestions for when to
choose LTP as active learning strategy.

— LTP would be a good choice when faced with constrained resources that prevent the use
of large-scale pre-trained language models, such as Bert.

— When the number of annotators is limited and only a small amount of data can be annotated
in each iteration, LTP can reduce the annotation cost more than other strategies.

— When the text of the dataset(target domain) and the pre-trained model (source domain)
differ significantly, then LTP would be a good choice. However, when the target domain
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is similar to source domain and the pre-trained model is large enough. Then there is no
need to use active learning strategies, and it is sufficient to randomly select samples for
annotation.

7 Conclusion

In this paper, we proposed a new active learning strategy for CRF-based named entity recog-
nition called LTP. The qualitative comparison of existing SOTA uncertainty-based active
learning strategies shows that our proposed LTP can leverage both local and global infor-
mation to find informative samples and does not introduce additional computing. We have
constructed a large number of experiments on different language datasets with different mod-
els. The experiment shows that compared with the traditional active selection strategies, our
strategy does not favor long samples and does not need to revise model while maintaining
competitive performance on both sentence-level accuracy and entity-level F1-score. Finally,
we detailed discuss the performance of active learning strategies under different conditions
and give some usage suggestions of LTP in practical applications.

Furthermore, we believe that the idea behind LTP, using both local and global information
to select informative samples can be adapt into other domains. In our further work, we will
try to adopt LTP to other domains, such as image classfication.

Acknowledgements Research in this paper is partially supported by the National Key Research and Devel-
opment Program of China (No 2018YFB1402500), the National Science Foundation of China (61832004,
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