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Abstract
The last decade has witnessed a continuous boom in the application of machine learning
techniques in pattern recognition, with much more focus on single-task learning models.
However, the increasing amount of multimedia data in the real world also suggests that
these single-task learning models have become unsuitable for complex problems. Hence,
multi-task learning (MTL), which leverages the common path shared between related tasks
to improve a specific model’s performance, has grown popular in the last years. And several
studies have been conducted to find a robust MTL method either in the supervised learning
or unsupervised learning paradigm using a shallow or deep approach. This paper provides
an analysis of supervised shallow-based multi-task learning methods. To begin, we present
a rationale for MTL with a basic example that is easy to understand. Next, we formulate a
supervised MTL problem to describe the various methods utilized to learn task relationships.
We also present an overview of deep learning methods for supervised MTL to compare
shallow to non-shallow approaches. Then, we highlight the challenges and future research
opportunities of supervised MTL.
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1 Introduction

Multi-task learning has received enormous interest over the years because it leverages com-
mon information between related tasks to improve generalization performance [71].Although
previous efforts were made in the single-task learning setting [41,48,68,72,74,75,86], many
studies which are not limited to [5,10,25,26,51,58,60,64,71,78,81,85,94] have also shown
that MTL can provide robust improvement to the single-task learning methods with use-
fulness in applications such as computer vision [60,62,64,92], bioinformatics [19,49] and
web search ranking [12,77]. Besides, MTL is related to some sub-fields of machine learning,
such as transfer learning [6,27], multi-label learning [33,34] and multi-class learning [17].
However, MTL differs mainly from transfer learning because it learns many related tasks
simultaneously to extract shared information.

Therefore, the strategy adopted in MTL as described in [11] is to assume that tasks
are often related and may well be unrelated too because a pairwise relationship may exist
between several tasks. For example, task Amay be related to task B and task Dwhile taskC is
only related to task D. Consequently, the relationships between all or subsets of tasks can be
learnt through existingMTL approaches which can be categorized as follows: Regularization
based methods [4,5,10,12,19,25,26,40,49,51,58,64,81,85,89,94], low-rank methods [3,29,
43,59,67], clustering methods [7,36,44,76], tasks similarity learning methods [22,62,71,90–
92] and decomposition methods [37–39,93,96]. These learning methods are widely applied
in a supervised learning paradigm using shallow algorithms such as support vector machine
(SVM) [10,60,71], single-layer artificial neural network [5,11] andBayesian network [90,91].

The above implies that most studies on MTL after [11] focuses on supervised learning
with minimal efforts made in unsupervised learning [18,28] and reinforcement learning [65].
Besides, there are only a few attempts made in the deep MTL direction [46,70]. It is not
surprising, given that shallowmodels are still more generalized for handling many real-world
problems due to some deep learning limitations. For example, whereas shallow models can
perform well with a limited quantity of data, a typical deep learning model would require a
huge amount of data to perform better than shallow models. Furthermore, suitable theories
that can assist researchers in selecting adequate deep learning tools are scarce. As a result,
some researchers are still hesitant to embrace the deep learning paradigm. Thus, this paper
shall focus on supervised shallow-based multi-task learning SSMTL methods, in which a
task with labeled data sets can be a regression or classification problem. Notwithstanding,
an overview of deep learning methods is also provided to compare shallow to non-shallow
approaches.

The main contributions of the authors in this paper are summarized as follows:

(1) An up-to-date and simplified overview of MTL with illustrating examples.
(2) A presentation of the progresses made in MTL research through the discussion of its

existing approaches.
(3) A formulation of a typical SSMTL method using a general approach and an SVM

approach to aid analysis of existing SSMTL methods.
(4) An overview of challenges and future research directions of SSMTL.

This paper is structured as follows. Section 2 presents an overviewofMTLwhile providing
answers to many questions bothering onMTL. Next, in Sect. 3, an SSMTL problemwith a bit
more emphasis on the SVM approach is formulated due to its generalization goal. Afterward,
Sect. 4 reviews SSMTLmethods. Then Sect. 5 provides an overviewof deep learningmethods
in supervised MTL. Furthermore, Sect. 6 presents a discussion of the challenges and future
direction of supervised MTL, while Sect. 7 presents the conclusion.
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Fig. 1 An illustration of a single task learning versus multi-task learning

2 WhyMulti-task Learning?

In order to improve learning accuracy for single-task models, techniques such as ensemble
learning [41,74] and transfer learning [6,27] became handy over the years. Specifically, the
ensemble technique involves creating multiple models where each model can be combined
linearly to produce improved results. On the other hand, the transfer learning technique stores
the knowledge gained while learning one task and then use it as a bias to learn another task
sequentially. Although both approaches have been substantially demonstrated in the literature
to be effective, they both have limitations. For instance, the ensemble technique requires that
each model performs better than a random guess to have a favorable output. Otherwise,
the worst result may be achieved when compared to a single-task model. This is typical
of the transfer learning technique if there is a negative transfer from one task to another.
MTL tackles these limitations by providing a way to learn multiple tasks simultaneously to
improve performance (see Fig. 1). As such, theMTLprocess does not just focus on improving
prediction accuracy; it also increases data efficiency while reducing training time [73]. For
example, through a virtual input, a self-driving vehicle can simultaneously learn the tasks
of predicting objects trajectories (avoiding collisions), detecting the location of pedestrians,
responding to traffic signals, determining a per-pixel depth usingMTL technique with a more
reduced training time than in transfer learning. Such that the knowledge gain in one task can be
shared simultaneously to learn other tasks, unlike the sequential process of transfer learning,
which is more susceptible to negative transfer.

According to the work of [8], MTL is particularly advantageous for learning problems that
belong to an environment of related problems. As an example, medical diagnostic challenges
are discussed, in which a pathology test can be used to detect numerous diseases at the same
time by identifying a common bias that will also aid in learning fresh cases. MTL is also
useful in a variety of other complicated real-world situations, like as emotion recognition.
In this case, multiple models can be trained at the same time to recognize a dress type and
weather condition depending on the learned dress type. Therefore, it’s easy to understand
how reference [8] and most other preliminary works on MTL, including reference [11] are
based on the notion that tasks often share a certain similarity. However, under what condition
can one expect different tasks to belong to an environment of related problems? To answer
this question, Ben-David and Borbely [9] focuses on sample generating distributions that
underpin learning tasks, where task relatedness is defined as an explicit relationship between
the distributions. Their idea appears to include a subset of applications where multi-task
learning could be effective, while excluding many other MTL scenarios from the picture.

123



2494 S. E. Abhadiomhen et al.

Specifically, the proposed methodology applies to circumstances in which the learner’s prior
knowledge includes knowledge of some family F of transformations. So, a typical example
involves several sensors providing data for the same classification task, such as a system
of cameras positioned at the presidential palace’s entrance to automatically detect intrusion
through the photographs they capture. Thus, let us assume these cameras are placed at different
heights, light conditions, and angles. Then it should be clear that each of these cameras has its
own bias, which can be difficult to identify. Therefore, Ben-David and Borbely’s framework
may be utilized to mimic the above in theMTL scenario by developing a collection of picture
transformations F so that the data distributions of images collected by all of these cameras
are F-related.

The illustrations above show MTL problems that cannot be solved well using a single-
learning technique. Besides, Liu et al. [52] demonstrate this by assessing individual task
performance in MTL and comparing it to single-task learning. Their findings reveal that
individual task performance in the MTL context was superior to that of single-task learning,
providing a compelling justification for MTL.

3 Problem Formulation

Supposewehave T classification tasks, a typicalMTLproblem formulation using any shallow
learning algorithms such as SVM, logistic regression, the artificial neural network can be
generalized as follows

3.1 General Approach

min
W=w1+w2...wt

T∑

t=1
L (St , wt ) + λ (W) , (1)

where St is the training data for the t task given as follows {xt i , yti }Nt
i=1 in which xt i ∈ Rd is

the i-th training instance of the t task, labeled with yti , wt ∈ Rd is the weight vector of the
t task, d is the feature space dimension, assuming that each task’s input matrix has the same
feature dimension (homogeneous feature, but it can alternatively be heterogeneous where d
varies per task). The + sign allows w1, w2, w3 . . . wt to be concatenated to learn W (i.e.,
each row ofW has a corresponding feature) with a specific regularization constraint denoted
by λ(W) that can be informed mainly by the data’s prior knowledge [77]. To illustrate this,
we revisit the medical diagnostic and self-driving vehicle problems from Sect. 2, where the
input matrices Xt and Xu of two different tasks are the same, but the target outputs yt and
yu are not. Here, T tasks model can be trained concurrently to learn a common bias for all
tasks by carefully selecting the value of λ( a regularization parameter) to avoid overfitting. It
should be emphasized, however, that this does not necessarily indicate a strict MTL problem.
As mentioned in reference [88], it may be best be described as a multi-label learning or
multi-output problem. As a result, the camera system example also presented in Sect. 2 will
more accurately depict a strict MTL problem with different input samples for each task.

3.2 Standard SVM Approach

In this section, we employ the SVMMTL formulation from [23] as an example. The reason
for this is that SVM is commonly employed to solve MTL problems [66]. Perhaps because
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Fig. 2 The image on the left
represents traditional binary
classification, while the one on
the right side depicts typical
SVM binary classification

of its strong generalization capability, which is ideal for MTL. Thus, given training data
{{(xi , yi )}Ni=1, xi ∈ Rd , yi ∈ {1,−1}}, SVMfinds the hyperplane with the maximummargin
separating the points−1 and 1 as illustrated in Fig. 2. As such, the standard soft margin SVM
for a single task problem is as follows

min
w,b

N∑

i=1
ξi + λ ‖ w‖2,

s.t ., yi (w.xi + b) ≥ 1 − ξi , ξi ≥ 0,
(2)

where ξi is the slack variable introduced into the constraint to accommodate any outlier
that hitherto would not be allowed in the hard margin SVM. In other words, ξi measures
how much a point violates the margin. λ is the regularization constant that regulates the
tradeoff between complexity and generalization. It is crucial since any increase in a model’s
complexity can lead to overfitting, which is when a trained model fits well to train examples
but fails to generalize to unknown ones. Therefore, given the same datasets as in Eq. (1), Eq.
(16) of [23] provides an example extension of the single task SVM problem of Eq. (2) to
MTL SVM as follows

min
w,Bt

T∑

t=1

Nt∑

i=1
ξti + λ ‖ w‖2,

s.t ., ytiw′Bt xti ≥ 1 − ξti , ξti ≥ 0,∀t,∀i,
(3)

where the matrix Bt is assumed to be a full rank d for each t to ensure a solution w to the
equation exist. Thus, using the Lagrange multiplier approach, a typical solution to Eq. (3) can
be found in several steps (the work of [54,80] offers the mathematical deductions of SVM
for easy understanding) by first obtaining its dual form. This strategy is beneficial because it
incorporates a sparsity effect into SVM by relying on LaGrange multipliers (which are only
non-zero at the locations in the margin referred to as support vectors) rather than the feature
space, making it computationally efficient for high-dimensional data. Accordingly, the dual
problem of Eq. (3) that also considers non-linear cases using the kernel trick (In Reproducing
Kernel Hilbert Spaces (RKHSs) [57]) is given in Eq. (18) of [23]. In the next section, we will
use the general MTL formulation to review existing SSMTL Methods.

4 SSMTLMethods

As shown in Fig. 3, existing SSMTL methods can be categorized into five groups:
regularization-based methods, low-rank methods, clustering methods, tasks similarity learn-
ingmethods, and decompositionmethods.Wewill go through each of these methods in detail
in the subsections that follow.
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Fig. 3 Supervised shallow based multitask learning methods

4.1 Regularization BasedMethods

Regularization concept has beenwell-known over time, primarily for its application in resolv-
ing overfitting and underfitting issues [63] to reduce training and test errors and improve a
model’s generalization performance. Therefore, various studies [25,27,49] have shown the
effectiveness of the regularization technique in MTL, where it is utilized to learn a shared
representation across multiple related tasks. For example, if we have a collection of datasets
with n correlated features for all tasks, we may use the regularization technique to simulta-
neously learn an uncorrelated subspace of the original feature space that is shared across all
tasks. Particularly in the case of supervisedMTL, regularization techniques such as L1-norm,
L p,q -norm regularization impose a penalty on the weight matrixW . This penalty shrinks the
row of the weight matrix closer to zero so that only none zero rows are selected. In the next
subsections, we will review the existing regularization-based methods.

4.1.1 L1-Norm or Lasso Sparsity

L1-norm which can also be referred to as the least absolute shrinkage and selection operator
(Lasso) penalty, is an alternative to L2-norm. Although, the L2-norm can be used minimize
computing complexity while boosting performance accuracy by shrinking the rows of the
weight matrix closer to zero, it cannot impose sparsity on the weight matrix. As a result,
L2-norm cannot perform feature selection automatically. So, to illustrate the capability of
L1-norm, we consider the L1-norm version of Eq. (1), which is given as follows

min
W

T∑

t=1
L (St , wt ) + λ ‖ W‖1, (4)

It is easy to see that the L1-norm regularization in Eq. (4) is non-differentiable. As such,
a large value for the regularization constant λ will cause some rows of the weight matrix
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whose columns are the T tasks specific weight vector to be exactly zero. This characteristic
of L1-norm encourages sparsity of the feature space but it fails to perform group selection
in cases where there are several correlated features that are all important in determining
the target variable. That is because, when the above is the case, L1-norm will select only a
few features while it shrinks the others to zero. In doing so, L1-norm will fail to capture an
absolute relationship between the T tasks. Due to this limitation, L1-norm is often applied in
combination with other norms. For instance, several variants of L1-norm such as L1,2-norm
[25,95], L1,∞-norm [15,38], L1,1-norm [56] have been used to capture sparse representation
shared across tasks. Specifically, Gong et al. [25] proposes a method based on capped-L1,
L1 norm as follows

min
W

L(W) + λ
d∑

j=1
m(‖ w j‖1, θ) : W ∈ R d×T . (5)

First, in Eq. (5), an L1 norm penalty is imposed on the row of the weight matrix W to
obtain a sparse representation for all related tasks. Then, a capped- 1 normwhichwas initially
proposed in [87] is further imposed on the weight matrix. With this combination, the optimal
W in Eq. (5) would have many non-zero rows. Besides, it can observe also through Eq. (5)
thatW is threshold by a parameter θ ,wherew1×T

j denotes the j th row ofW . In other words,
the threshold parameter θ regulates W ’s sparsity such that as it becomes smaller, the rows
of W gets sparser. Thus, making only a subset of features to be utilized. Moreover, the work
of [47], which proposed the GO-MTL for Grouping and Overlap Multi-Task Learning, had
also previously used the L1-norm to impose sparsity on a matrix S ∈ R k×T containing the
weights of a linear combination of each task. This approach enforces that each observed task
is obtained from only a few of the k latent tasks. Such that, the weight matrix W can be
calculated as W = LS, where L is a matrix of size d × k with each column representing a
latent task.

4.1.2 L2,1-Norm for Group Sparsity

L2,1-norm is a variant of L2-norm, which can be applied for group feature selection. This is
because L2,1-norm can capture tasks relatedness using a shared representation of a similar
set of features amongst related tasks. Accordingly, Eq. (4) can be extended for group sparsity
based on the L2,1-norm as follows

min
W

T∑

t=1
L (St , wt ) + λ ‖ W‖2,1, (6)

Several MTL research works based on the L2,1-norm includes [4,5,19,26,49,51,55,64].
In particular, Argyriou et al. [5] proposed a convex optimization problem based L2,1-norm
as follows

min
A,U

T∑

t=1

m∑

i=1
L(yti , 〈at ,UT xti 〉) + γ ‖ A‖22,1 : A ∈ R d×T , (7)

Basically, Eq. (7) is formed under the assumption that all related tasks share small feature
sets with N ≤ d . It then means that matrix Awill have many zero rows, corresponding to the
columns of matrix U (the irrelevant features) not required by any task. Therefore, to learn
the required features N , the L2,1-norm regularization is introduced to ensure that matrix A
has a small number of non-zero rows. Besides, by removing matrix U , it is clear that Eq. (7)
is comparable to the method proposed in [64], which uses the L2,1-norm to select a subset
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of features that is good for all tasks. However, in a single task scenario, this method will
reduce to an L1-norm approach. Furthermore, Li et al. [49] applied L2,1-norm for survival
analysis in MTL scenario by means of a single base kernel. Yet, this single kernel approach
was extended to multiple kernels in [19] to demonstrate that survival analysis in MTL can
benefit more by capturing a shared representation through more gene data sources. Hence an
additional data source (pathways/gene datasets) is incorporated to identify survival-related
molecularmechanisms. Such that one kernel is used for the cancer survival benchmark dataset
and another kernel for the pathways/gene dataset. This approach, however, does not utilize
the L2,1-norm as the regularization term. Besides, for p, q ≥ 1, Eq. (6) can generalize to
L p,q -norm as follows

min
W

T∑

t=1
L (St , wt ) + λ ‖ W‖p,q , (8)

where the L p-norm is applied on the rows, followed by the Lq -norm on the vector of row
norms. Therefore, the variants of L p,q -norm include L p,1-norm and capped L p,1-norm but,
L p,1-norm is the same as L2,1-norm in Eq. (6) if p = 2. Thus like Eq. (5), a capped L p,1-norm
can be obtained as follows

min
W

T∑

t=1
L (St , wt ) + λ

d∑

j=1
m(‖ w j‖p, θ) : W ∈ R d×T . (9)

In any case, when the threshold parameter θ in Eq. (9) becomes too large, the capped
L p,1-norm will reduce to L p,1-norm. To conclude this section, it may be worth mentioning
that aside from the norms discussed above, the cluster norm [35] and K support norm [59]
can also be utilized to learn a better similarity weight matrix. Moreover, to considerably
acquire an accurate similarity between tasks, the Multitask Learning problemwas previously
formulated as a Multiple Kernel Learning [53] one by Widmer et al. [82] using a q-Norm
MKL algorithm. And this approach was shown to outperform similar baseline methods.

4.2 Low-Rank

Theoretically, the weight matrix W can be assumed to be low-rank since tasks are usually
related with similar model parameters. However, to obtain the low rank of W , one can solve
the following nuclear norm-based optimization problem:

min
W

T∑

t=1
L (St , wt ) + λ ‖ W‖∗, (10)

where W ∈ R d×T denotes the weight matrix, ‖ .‖∗ denotes nuclear norm [1,2]. Actually,
the methods in [3,14,43,67] use a similar approach as Eq. (10) to find the low-rank represen-
tation of W . For example, reference [3] proposed a non-convex formulation to learn a low
dimensional subspace shared between multiple related tasks under the assumption that all
related tasks have similar model parameters. As such, the weight vector of the t task can be
obtained as follows

wt = ut + �T vt , (11)

where ut is the t task learned weight vector, Θ is the low rank representation of W and vt is
the bias for the t task. Since Eq. (10) is non-convex, it will be difficult to solve it, especially
when the feature space is highly correlated. Hence, to relax the non-convex approach, Chen
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Fig. 4 Task clustering method

et al. [13] proposed a convex formation that is much easier to solve. It uses L2,2-norm
(which is a special case when p = q = 2 for the L p,q -norm in Eq. (8)), also known as
the Frobenius norm or the Hilbert–Schmidt norm, to penalize eigenvalues. This approach,
however, uses complex constraints, so it is not scalable to large data sets. Furthermore, to
learn a better low-rank matrix, [29] extended the idea in [3,67] by introducing a capped trace
norm regularization as follows

min
W

L (W) + λ
R∑

i=1
min (σi (W), τ ) : W ∈ R d×T , (12)

where
∑R

i=1 σi (W) is denoted as the set of non-increasing ordered singular values of W .
Noticeably, Eq. (12) is like the capped L p,1-norm in Eq. (9) because it can be reduced
to Eq. (10) when the threshold parameter τ becomes very large, e.g., τ → ∞. However,
these approaches cannot guarantee robust classification results when the data originate from
nonlinear subspaces. Therefore, several kernel-based approaches have been proposed over the
years which focus on tackling the above issue. For example, to handle multiple features from
the variational mode decomposition (VMD) domain, He et al. [31] proposed the kernel low-
rank multitask learning (KL-MTL). KL-MTL uses the Low-rank representation (LRR) [50]
nuclear norm strategy to capture the global structure of multiple tasks, then using the kernel
trick, this approach was extended for nonlinear low-rankmultitask learning. Besides, the KL-
MTL approach was further expanded in [32] to handle 2-D variational mode decomposition
(2-D-VMD). Subsequently, Tian et al. [78] proposed a nonparametric multitask learning
method, which measures the task relatedness in a reproducing kernel Hilbert space (RKHS).
Specifically, themultitask learning problem is formulated as a linear combination of common
eigenfunctions shared by different tasks and individual task’s unique eigenfunctions. In this
way, each task’s eigenfunctions can then provide some additional information to another and
so as to improve generalization performance.

4.3 Clustering

As we saw in Sect. 1, a pairwise relationship can exist among the tasks, where Task A is only
related to Task B, and Task C is only related to Task D. Thus, the clustering method can be
used to learn model parameters by placing all related but separate tasks in the same cluster
where they are co-learned. As a result, the work of [7,76] proposed methods, which obtains
the model parameters by clustering tasks(see Fig. 4 for illustration) into group of related
tasks based on prior knowledge obtained in the single task setting. However, the downside
is that not too good model parameters can be learned in this two-stage approach resulting in
poor generalization performance for all tasks. To address the above weakness, Kang et al.
[44] proposed a method that can determine the pairwise relationship existing between tasks
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Fig. 5 Dirty decomposition
method

while obtaining their parameter. It is achieved by solving the single optimization problem
below.

W∗ = min
∑

t
L (Dt , wt ) + γ

∑

g
‖ Wg‖2∗, (13)

where G denotes the number of clusters available for all tasks. As a result, the weight matrix
of the tasks in the gth cluster is denoted by Wg . With this formulation, all tasks in the same
cluster can be co-learned in contrast to the tasks in other clusters. Thus, Wg can be obtained
as follows

‖ W Qg‖∗ = Trace[W Qg(W Qg)
T ] 1

2 , (14)

where Q is the group assignment matrix composed of qgt ∈ {0, 1}. That is, 0 and 1 indicates
whether the t task is assigned to gth cluster or not. Then Qg ∈ R T×T is a diagonal matrix
with qgt as the diagonal elements. This method is very effective because the fact that tasks are
related does not automatically suggest that successful sharing will occur between them. Fur-
thermore, Jacob et al. [36] introduced a new spectral norm that encodes the priori assumption
(tasks within a group have similar weight vectors) without prior knowledge of task grouping.
This approach was shown to outperform similar state-of-the-arts methods. Subsequently, ref-
erence [16] proposed a method for learning a small pool of shared hypotheses in the context
where many related tasks exist with few examples. This way, each task is then mapped to
a single hypothesis in the learned pool (associating each with other related tasks). Thus,
avoiding a possible inherent error that may occur in learning all the tasks together using a
single hypothesis.

4.4 Decomposition

Thedecompositionmethoddivides theweightmatrixW into twoormore componentmatrices
(E.g., W = D + B)), each of which can be penalized independently. As such, there are two
main variations of which this method exists; the Dirty and Multilevel methods. While the
dirty method decomposes the weight matrix into exactly two-component matrices, as shown
in Fig. 5, the multilevel method decomposes the weight matrix into two or more component
matrices. This way, each component matrix can then capture the various aspects of the
task relationship. Hence, many MTL studies such as [37–39,93,96], utilized this technique.
Illustratively, the least square convex optimization problem proposed in [38] is given as

min
S,B

1
2n

r∑

k=1
‖ yk − Xk (Sk + Bk) ‖22 + λs ‖ S‖1,1 + λB ‖ B‖1,∞, (15)

where matrix Θ ∈ R p×r = B+ S based on the assumption that a certain number of rows in
Θ matrix will contain large non-zero entries, which correspond to the feature shared across
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various tasks. Accordingly, some rows in Θ matrix will also contain all-zero entries, which
correspond to irrelevant features not needed by any task, while some rows will have elemen-
twise sparseness corresponding to those features that are only relevant to some tasks but not
all. Thus, matrices B and S capture a different aspect of relationship such that S captures
elementwise sparsity whereas B captures row-wise sparsity with different regularization on
both. Jalali et al. [37] then extended [38] by proposing a new forward–backward greedy
procedure for the dirty model. The suggested technique identifies the best single variable
and best row variable in each forward step that gives the largest incremental drop in the loss
function. In contrast, it looks for the variable whose removal leads to the smallest incremen-
tal loss function rise in each backward step. Besides, a new adaptive method for multiple
sparse linear regression was presented by Jalali et al. [39]. This approach was conceived by
examining the multiple sparse linear regression problem, which entails recovering several
related sparse vectors simultaneously. Thus, when there is support and parameter overlap,
the proposed method takes advantage of it but does not pay the penalty when there isn’t.

4.5 Tasks Similarity Learning

In this context, the pairwise relationships between tasks are learned directly from the data
through a common model. Take as an example, when relying on the formulation in Eq. (1),
then, the approach proposed in [22] is as follows

min
w0,vt

T∑

t=1

Nt∑

i=1
ξti + λ1

T

T∑

t=1
‖ vt‖2 + λ2 ‖ w0‖2,

s.t ., yti (w0 + vt ) · xti ≥ 1 − ξti , ξti ≥ 0,∀t,∀i,
(16)

wherewt is used to denotew0+vt , vt is t task-specificweight vector, andw0 is commonmodel
between different tasks. The regularization constraint is imposed on w0 (which captures the
similarity between tasks) while constraining how much each wt vary from one another
(allowing each wt to be close to some mean function w0) by simultaneously controlling vt ’s
size. Essentially, vt is smaller when tasks are related but, when w0 → 0, Eq. (16) reduces to
an independent task problem where wt = vt . To further improve learning accuracy, Ji and
Sun [42] extended the idea of [22] for non-linear MTL with a different task-specific base
kernel. Since most previous multitask multiclass learning approaches aimed at decomposing
multitask multiclass problems into multiple multitask binary, they do not completely capture
the inherent correlations between classes. Therefore, a method was presented which can
learn the multitask multiclass problems directly and efficiently. It was achieved by using
a quadratic objective function to cast these problems into a constrained optimization one.
Meanwhile, to capture negative task correlation and identify outlier tasks, Zhang et al. [92]
proposed a method, which captures task relationship through a prior task covariance matrix
obtained via the trace of a square matrix regularizer on weight matrix W as follows

tr(W	−1WT ), (17)

where tr(.) is the trace of a square matrix regularizer and 	 denotes a positive semi definite
(PSD) tasks covariance matrix. Therefore, Eq. (17) is the same as the matrix fractional
function given as:

∑

t
W(t, :)	−1W(t, :)T , (18)

where W(t, :)	−1 denotes the t-th row of W matrix. Then by obtaining the Hessian matrix
of W(t, :)	−1W(t, :)T , Eq. (18) can be proved to be jointly convex w.r.t. W ,	. Therefore,
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Table 1 A brief performance comparison of clustering, decomposition and tasks coupling methods using
office-Caltech and MHC-I datasets with respect to classification error evaluation metric

Dataset Clustering Decomposition Tasks Similarity Learning

Office-Caltech – [38] (0.2030) [90] (0.0690)/[23] (0.0450)

MHC-I [36] (0.1890)/[44] (0.2050) – [90] (0.1870)

Murugesan and Carbonell [62] extended the single kernel-based approach in [92] with task-
specific multiple base kernels and proposed a method named Multitask Multiple Kernel
Relationship Learning (MK-MTRL). MK-MTRL’s main idea is to automatically assume
task relationships in the RKHS space, similar to the one proposed in [32]. However, different
from the work of [32], MK-MTRL formulation allows for incorporating prior knowledge to
aid the simultaneous learning of several related tasks. Besides, Ruiz et al. [71] proposed a
convex approach which can capture task relationship such that a convex penalty is imposed
on both the task-specific weight ‖ vt‖2 and the common part ‖ u‖2.

Also, Williams et al. [83] employed Gaussian processes to learn a task-similarity matrix
with a block-diagonal structure that captures inter-task correlations by assuming tasks are
ordered with regard to clusters. Consequently, a kernel-based method for automatically
revealing structural inter-task relationships, which extend the low-rank output kernels strat-
egy initially introduced in [21] to a multi-task environment, was proposed in the work of
[20]. This approach uses a properly weighted loss, allowing several datasets with different
input sampling patterns to be used. In another way, some efforts were made in [23,45] to
capture the similarity between tasks using the Graph Laplacian strategy. Thus, guaranteeing
that all tasks in the same cluster will have identical model parameters. Meanwhile, other
efforts, such as [14,30,78] combined the ideas of numerous SSMTL techniques to increase
generalization performance across all tasks.

Therefore, Table 1 gives brief performance comparison of Clustering, Decomposition and
Tasks Coupling methods using Office-Caltech [38] and MHC-I [36] datasets.

5 Non-shallow Approach to SMTL

Before now, we focused on the Supervised Shallow approach to MTL, in which features
are handcrafted according to the target problem. However, in a supervised deep learning
paradigm, the best feature representation can be derived from the data directly using deep
learning algorithms such as Convolutional Neural Network.

Therefore, Ruder [70] classified the deep efforts in MTL into hard and soft parameter
sharing of hidden layers. The hard parameter method shown in Fig. 6 shares the hidden
layers across several related tasks while keeping the tasks specific output layers. In contrast,
the soft parameter-based method assigns to each task a specific model with its parameter.
As a result, one can liken the soft margin approach to the shallow-based approach but, to
capture relationships across multiple related tasks, the soft margin-based method obtains the
distance between parameters of the different but related tasks, which are then regularized to
encourage similarity.

MTL studies based on deep approach includes [24,61,69,79,84] with application area such
as computer vision [24,69], speech synthesis [84] and bioinformatics-neuroanatomy [61,79].
All the same, [70,77] gave an extensive overview of deep MTL methods. And Fig. 7 shows
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Fig. 6 Hard parameter-based
sharing of the hidden layers

Fig. 7 Shallow versus deep learning pipeline

a graphical comparison of Shallow vs. Deep Learning methods, while Table 2 gives a brief
comparative analysis on both.

6 Challenges and Future Research Direction of SMTL

MTL aims to improve generalization performance by leveraging common information shared
between related tasks. This way, the lost function is minimized on all similar tasks to obtain a
unified model that generalizes to new tasks. At present, many studies have shown that MTL
can provide robust improvement to single-task learning. Nonetheless, the generalization
performance can degrade if a new task is unrelated or is an outlier to the model tasks.
Besides, many existing MTL methods cannot guarantee that a trained unified MTL model
will outperform the single-task model in all tasks. This is because an outlier task(s) can
contribute negatively to learning the common information between related tasks. Although
Zhang and Yang [88] had suggested an approach to tackle the first issue, it is not realistic in
most real-world scenarios. For instance, while the suggested technique of detecting when a
new task is not well-matched with the trained MTL model may be feasible, training another
tasks model that matches the outlier task(s) will then present a new challenge. To address
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Table 2 A brief comparative analysis of shallow and deep learning approaches

SN Attributes Shallow models Deep models

1 Interpretability It is much easy to predict a
model’s output even before the
training begins

They usually lack a certain level
of interpretability. Thus, it is
hard to predict the model’s
outcome

2 Computational complexity Complexity grows mainly as the
data size increases

Complexity depends on both data
and network sizes

3 Feature learning approach Uses handcrafted features Optimal features are learned
directly from the data

4 Performance Shallow models can maintain
good performance even with a
small amount of data

Deep models require a huge
amount of data to obtain good
performance

5 Flexibility They may require complex
extensions to solve newer
problems

They can easily be adapted to new
problems with limited changes

these concerns holistically, there is a need to explore the combination of MTL and ensemble
learning to learn common information shared between related tasks. This approach will
improve generalization performance and further reduce the complexity of training a strong
specific task model. Besides, task embeddings for MTL will be a fascinating area of research
in the future. In this instance, tasks consistency can be addressed in order to preserve the
geometric structure and information in each task to the greatest extent possible to help in
learning a robust model that generalizes to newer tasks.

7 Conclusion

Most research work done onMTL focused on supervised learning, with several experimental
results, which show that MTL is effective. Nevertheless, MTL based on unsupervised and re-
enforcement learninghas recently gainedmore attention.Besides, fewattempts exist to extend
MTL to the semi-supervised learning paradigm such that MTL can benefit from incomplete
data. In this paper, a review of existing supervised shallow-based MTL methods is made
explicit, with specific attempts to present these methods without sophisticated mathematical
deductions. Moreover, efforts were made to explain the concept of MTLwith basic examples
by avoiding ambiguity for readers.
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