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Abstract

This article is concerned with the fixed time synchronization for a class of Quaternion valued
neural networks (QVNNs) with mixed time varying delays. Firstly, the QVNNSs are separated
into four equivalent real valued neural networks (RVNNS). Then, a novel suitable controller is
designed to establish the fixed time synchronization of the QVNNSs with the help of Lyapunov
function. To give a glimpse, the finite time and fixed time stability definitions are proposed.
Two different expressions of settling time are obtained by using two different lemmas. Finally,
the validation of the theoretical results is shown through numerical simulation to a specific
example.

Keywords QVNNs - Fixed time synchronization - Mixed delay - Lyapunov function

1 Introduction

Over the past few decades, neural network is a hot topic of research. It has attracted many
scholars due to its wide range of practical applications in various fields including associative
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memory, signal processing, pattern recognition, artificial intelligence, combinational opti-
mization, and so on [1-8]. In the beginning, most of the works in neural networks were mainly
inreal valued neural networks (RVNNs) and complex valued neural networks (CVNNs) [6,9—
13]. Continuous development of real and complex valued neural networks are certain, due
to their limitations to deal with the problems of multi dimensional data. For instance, when
issue on detection of symmetry is encountered, RVNNs may not be useful, whereas CVNNs
can solve such problems [3]. CVNNs have also limitations when dealing with three and four
dimensional data. Therefore, we have to use high dimensional numbers. Quaternion number
being an extension of complex number, is a special case of clifford algebra introduced by
British Mathematician William Rowan Hamilton in the year 1843. As compared to real num-
bers and complex numbers, commutativity of multiplication does not hold in quaternions, due
to this the quaternions did not receive much attention of the researchers earlier. But recently,
researchers have started working in this direction due to its wide range of potential appli-
cations in various fields like computer graphics, array processing, three/four dimensional
data modelling, color image processing, attitude control, predication of 3-D wind processing
[14-17].

Quaternion valued neural network (QVNN) is an extension of CVNN. In QVNNSs, the
states, activation functions and the connection weights take values in quaternions with unique
superiority to deal with multi dimensional data. For the image compression [18], three neurons
are needed for the transmission of one colour signal, whereas for QVNN one quaternion
neuron can transmit one colour through three channels. Therefore, QVNNs store large amount
of data in lesser number of neurons. More precisely, QVNNs perform better to deal with the
problems of optimization and estimation as compared to RVNNs and CVNNs [19-21].

As animportant kind of dynamical behaviour, synchronization of neural networks has been
an interesting topic of research in recent years. This is widely applied in various aspects viz.,
secure communication [22], image encryption [23], medicine [24], synchronization of local
brain region in patient with Parkinson’s disease [25]. However, most of the works are limited
to attain synchronization in infinite time, including projective synchronization [26], adaptive
synchronization [27,28], exponential synchronization [29] and asymptotical synchronization
[30]. These types of synchronization rarely satisfy the synchronization condition unless the
time is infinite. Therefore, the method in which the synchronization within finite time is of
great interest rather than synchronization in infinite time [31-36]. However, the drawback
of finite-time synchronization is that it depends wholly on initial conditions. More precisely,
larger the initial synchronization error, bigger will be the settling time. But in actual appli-
cations of the neural networks, it is not always possible to find the initial conditions of the
system explicitly. To overcome this drawback, A. Polyakov proposed the fixed-time syn-
chronization [37]. Here, synchronization is achieved in a fixed time irrespective of any initial
conditions i.e., the uniform upper bound of finite time stability is independent of initial values.
Some important applications of fixed time synchronization are found in power system [38]
and rigid spacecraft [39]. Thus it is fruitful to focus on fixed time stability/ synchronization
of non linear systems. Recent works on the fixed time synchronization can be found in the
articles [38—43]. These works are mainly on the RVNNs and CVNN:Ss. Till date a few results
are available on the fixed-time synchronization of QVNNs [44—49]. In most of these works,
the neural network models have been considered without time delay or discrete delay or time
varying delay [45,46,49]. In this article, we have purposed mixed time varying delay neural
networks model which is more general. As far as, the synchronization of QVNNs with both
time varying and distributed delay is still an open and challenging problem.

Since time delays are generally time varying in nature, therefore it is inescapable in
dynamical system due to limited transmission velocity between the neurons. In presence of
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time delay dynamical behaviours of QVNNs become more complex and more general. Time
delay may lead to performance degradation, for example, oscillation, instability, bifurcation
etc. On the other hand due to existence of vast parallel pathways with different axon sizes
and lengths, it is more rational way to introduce continuously distributed delay into neural
networks model [50,51]. Few important practical applications for the system with distributive
delay can be found in the research articles [52,53].

Taking into account of all the above discussions, this article aims to study the fixed time
synchronization between the identical drive-response systems of QVNN (1) with mixed time
varying delays. This is obtained by using the criterion of fixed time stability of error system.
For the fixed time stabilty, the synchronization of drive-response systems is established within
fixed time. Some major contributions of this scientific contribution are listed as follows.

(1) Itis the first time the fixed time synchronization of QVNNSs is discussed with mixed time
varying delays.

(2) The controllers are deigned in such a way that the settling time is independent of the
delay terms.

(3) Converting the QVNN into four real parts and by using some suitable controllers along
with Lyapunov function, the synchronization within fixed time is achieved.

The rest of the article is organized as follows: Section 2 contains model description and pre-
requisite, section 3 contains main theoretical results, section 4 includes a numerical example
for validation of theoretical results, which is followed by the section 5 as conclusion.

Notations: R, C, QQ are real field, complex field and quaternion skew field, respectively.
R#xm Cr*m and Q"™ denote the n x m matrices where entries are from the R, C and Q,
respectively.

2 Model Description and Preliminaries

The quaternion numbers form a class of hypercomplex numbers composed of one real and
three imaginary parts. A quaternion number is 4-D vector space over R. Let g € Q, then it
can be written as

a=q"+q"i+q’j+q"k,

where g%, ¢!, q’, ¢¥ € R. The unit components of quaternion numbers obey the Hamilton
rules i.e., the units i, j and k satisfy the following:

ij=—ji=k, jk=—kj=iki=—ik=j, i’?=j*=k*=ijk=—1.

This shows that multiplication in quaternions is non commutative. Conjugate of the quater-
nion number is ¢* or g = g% — q’i — g’ j — ¢Xk, and the modulus value |g| is defined as
gl = Va-q* = V(@) + (¢)? + (@7 + (¢5)%

Ifq1, g2 € Q, whereqi = qf +q{i+q{ j+q{ k € Qandg> = g +q3i+q3 j+q5 k € Q.
The addition g1 + ¢> and multiplication gq;.q> are defined as

a1+ a2 =@+ + (@l +2)i + @i +4))j+ @l + a5k,
a2 =0ler —alas —ai @) —atad) + @fa +alax +aiax —af a)i
+(qRqd +qiaf —alaX +afadyi+ @RaX +qFaf +ala) —al gDk
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The model of QVNN with mixed time varying delay is considered as

Zp(t) =—- szp([) + Z aquq(zq(t)) + prng(zq([ —11(1)))
g=1

= g=1

[ 710)]

n t
+ Y dpg / hy(zq(s))ds + I,(1), (1)
g=1

where p = 1,2, ..., n;z2(t) = [z1(t), 22(t), . . ., za(t)]T € Q" is the state vector of the neural
networks with n neurons at time 7; C = diag{cy, c2, ..., ¢y} € R*™" is the self-feedback
connection weights matrix with ¢; > Ofori = 1,2,...,n; A = (4 )nxn, B = (bij)nxn
and D = (d;j)uxn € Q™" fori =1,2,...,n, j =1,2,...,n, are the connection weight
matrices; fi(.), gi(.) and h;(.) are the activation functions for i = 1,2, ..., n of suitable
dimensions; /; (¢t) fori = 1,2, ..., n, denote the external inputs. 71 (¢) and 7, (¢) are the time
varying delays.
The following assumptions will be used frequently.

Assumption 1 Each of the activation functions can be written as
Fp(zp(1) = FRzN (1)) + FJ (2}, 1) + F} (2}, 0) + F ) (z) (1), )
where F), = fp, gp, hp for p = 1,2,...,n;z% eRfory =R, I,J,K;p=1,2,...,n.

Assumption 2 Each of the four components of every activation function satisfies the Lipschitz
condition i.e., for x1, xo € R, 3 constants l[l,, llzj, IZ € R, such that

Lfy ) — £ ()l < 10 1x1 — xal,
lgh (x1) — gh(x2)| < 2]x1 — x2,

Ih)(x1) — B (x2)| < I3 |x1 — xal.

Remark 1 The activation functions are absolutely inherent components of the neural networks
which influence the dynamical behaviour of the designed neural networks. From both the
assumptions, the existence and uniqueness of the solution of model (1) can be guaranteed
due to continuity and Lipschitz condition of the activation functions [54].

The system (1) with the Assumption 1 can be written in four real valued systems as
n
BRy=—cpfr+) (aﬁqqu(sz 1) = ap, [} 2 () — a), £ (2] (1))
q=1
—af fEEE®) +bE KR — ) -] el ch i —i@))
—b],8) () (t —T1(1)) — bh gK Kt —r1(1))

t t
R R/_R 1 1,1
+ dpq / hq (zq (s))ds — dpq / hq(zq (s))ds
—1(1) t—12(1)

t t
7 Jod K
- dpq/t. hy (zg (s)ds — dpq/

- (1) 1—=1(t)

hq (zq (s))ds> + 10,

B =—ch)+) <a,£q e @) +af, 1@y — e, 1] @) @)
qg=1
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+a K@) + b, ek R — @) + bR, el — 1)
— bRl @)t — () + by e ¢ =)

r ¢
1 R/ _R R
1=1(t)

1=15(

t t
K Jo J J
—dpq/; hq(zq (s))ds—l—dqu

—12(t) t=12(1)

, hl(zh(s))ds

hg(zf(s))ds> + 1N,

G0 =—cpzpO+ ) (a,{q FRGE@) + ab, 110y + ol 1] 2] @)
g=1

—ay, [E R 0) + b ek @R — @) + by, el 2l — 1))
+ bR 8] (@)t — 11 (1)) — bl g X @t — 1 (1))

t t
J R/_R K I/ 1
+ dpq / hq (zq (s)ds + dpq / hq(zq (8))ds
t—1(1) t—12(1)

t t
R Tod 1
+dpq/t hy (zg (s)ds — dpq/

—12(t) 1—12(

, h (s))ds) + 1),

KO =—czh+) (a,’fq FRaE@) = a), £ @0) + ah, 1] 2] )
q=1
+af FECKO) + bR @R —ni)) - b)), 8l @ — i)
+bh.8) @)t — 1)) + bR KKt — )

t t
K R/_R J 1,1
+af, / hR & snds —df, / Bl (2l (s))ds
t—12(t) t—=12(t)

t t
1 Jo J R K/ _ K K
+d, / By (@] (s)ds +d¥, / e (s))ds) +IK@O. G
—12(t) t—12(1)

The corresponding slave system is given by

SRy =—cpsfr+) (a,’fq LG @) = a), s @) = a, £ (s ()
q=1
—ap [ GE @) + b e f @ — @) = b gl s}t — (@)

— b8 (s (t — (1)) = bp g (s (1 = T1(1))

t t
R R/.R I
+dpq f hq (54 (s)ds — dpq/
t—1(t) t

I,
hq (sq (s))ds
1)
t t
J Jood K K K R R
— dpq / hq (sq (s)ds — dpq / hq (sq (s))ds) + Ip (1) + UP (1),
t—12(1) t—1(t)

SH) = —cpsp)+ ) (a,’,q FRGRO) + af, £l 0) — ab, £ (s (1))
g=1
+a) [EGE @) +bh,eN (s —11(0)) + b, gl (s)(t — 11(1)))
—bh, 8] (5] (t — 11 (1)) + by, gK (s f 0 — 1))
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t t
1 R/.R R 1,1
+ dpq / hq (sq (s))ds + dpq / hq (sq (s))ds
t—1(t) t—12(t)
t t
K JooJ J K/ . K 1 1
— dpq / hq (Sq (s))ds + dpq / hq (sq (s))ds) + Ip(t) + Up(t),
t—1(t) t—12(t)

) =—cpsp )+ (a;q FRGR@) + ab, £ (sf @) + af, £ (s] (1))
g=1
—a) [F K@) +b] gR sk — @) + 05,8l (s)t — 11(1))

+bp gy (s (t — 11 (1)) = by (s (t — 11 (1))

t t
J R,/ .R K 1,1
tdpg / hy (sg (s))ds +d, / hy (s, (s))ds
t—=12(t) t—12(t)
f t
R JooJ 1 K/ K J J
+dp, / h; (sy ())ds —d,, / hy (s, (s))ds) + 1))+ U, @),
t—12(1) t—1(t)

Sp (D) =—cpsy )+ <a,’quqR X0y = a), £ L) + ab, £ (s (1))
g=1
+al fEGE @) +bh ek (sK @ — () — by, el (s)(t — 1(1))
+bh,8l (5]t — 11 (0))) + bR gK (s Kt — (1))

t t
K R/ R J I d
+ dpq / hq (54 (s))ds — dpq / hq (sq (s))ds
t—12(t) 1—12(t)

t t
1 JoJ R K/ K K K

+dpq f hq (sq (s))ds + dpq / hq (sq (s))ds) + Ip (1) + Up . @
t—12(1) t—12(1)

Let us define the error term as €, (t) = s, (t) — z, ().
Then from Egs. (3) and (4), we get

ER() =—cpeR)+ ) (a,’chff(sf ) = [0 = a), (f] (55 0) = f] )
g=1

— ), (f] ] ) = £ @ ) = af, (£ K@) = £FF o
+OR (R 6R e — 1) — gRft — 1)) — b, (gh ()t — 1))
— g4 (zg (t = T1(1))) = by, (g7 (s (1 = 11 (1)) — & () (t — T1(1))))

!
— b N Gf =) — gf @ ¢t — @) +df, / <,>(h§(s‘f (5))

-1

t
—hE X s)ds - df, /

-1

( )(hff (sg (8)) = hg (zg (s)))ds) +US ),
t

t
()(h;(sq’ () — hi () (5))ds — dj, f ()(h; (59 (5))
t —0(t

t
— k) (z]())ds - dy, /

=1

i =—cpen+ > <a§q<f; (s0(0) = f] GO + ab, (LR 6@y = £F R o))
g=1
+a, (K0 = 1f o) —af, (] ] o) - ] @ o)
+ b (20 (50 (1 — T1(1))) — g1 (2] (1 — 11 (1)) + by, (g0 (s (1 — T1 (1))
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— &l =T ()) + by, (gf (55 (1 —11(0) — g X ¢ — 1))

t
— by (g (5] (t — 11 (1)) — g (z) (1 — 11 (1)) + d}y, / m(h{,(s; ()
Y

t
— hl @l )ds +d, /

t
L sf ) - nfcfonds + a4, |
t

X K5y
()

t
—hK @K ))ds —df, f

-1

( )(h; (s () — h) (z) (s)))ds) +UN,
t

Ep(t) =—cpep )+ (a{fq(qu (sg () = ] (2 0)) = ap, (fF (s (0) = £ (2 (1))
g=1

+a), (LR = LR o) + of, (f] b)) = £l o
+ bR (8] (s) (t —T1(0) — g (z) (t — 11 (1)) — b, (g (5K (t — 71 (1))
—ef @ (=) + by, (&N (s (1 — 11 (1)) — g (25 (1 — T1(1))))

t
+ b, (gh (s (1 — 11 (1)) — g4 (20 (1 — 1 (D)) + djy, /

=1

(h) (s ()
(1)

t

— ) (z) (s))ds — dJ, /;

_rz

t
—h¥ @R ))ds + af, /

1—1

t
(R (s () = hl X (0)ds +aj, / (g (s (5))
® 1—=12(1)
( )(hfl(s; () — hl(z) (s)))ds) + U @),
t
Ky =—cpek+Y (”fq(ff (5 (O) = £ g ) + ap, (£ (5] 0) = f] & o)
g=1

—al ()b o) = oy + o, (FREa)y = £ReE o)
+bR XKt — ) — gl @ — ) + b, ) (5]t — 11(1)))
— ) () (t =T () = b, (ga sy (1t — 11 (1)) — g4 (20 (1 = T1 (1))

t
+ by, R =) — gffa — @) +df, / <,>(h5 (55 ()

=1

t 1
—hE G omds+dj, [ o) s — ), / IR
t
—hh@hnds + af, /, o (XK ) —nF ik (s)))ds) + UK. Q)
Let the controllers be defined as

t
Up (1) =—&1pep(t) — Sign(8%(f))(52yp|8%(t — )+ 53}/,]/ ) lep ($)1ds
12

—1o(t

+ Eaplen (D] + &splel <z)|f‘), (6)

where &4 > 0,85, > 0,0 <a < 1,8 > 1. &), Sgp and §3yp are the parameters those are to
be defined later.

Remark 2 The controller in the present article is designed in such a way that it contains the lin-
ear and non linear terms. Non linear term plays significant role in the rate of synchronization.
Also the settling time obtained is independent of the delays.
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Some definitions and lemmas used in this article are described below.

Definition 1 ([37]) The origin of the system (5) is said to achieve finite time stability,
if there exists a function 7 : R" — R4 U {0} called settling time function such that
lim; 7@ ll€@)|| = 0 and €(r) = 0 for all t > T (eg). Here, ¢g is the initial value of
the system (5).

Definition 2 ([37]) The origin of the system (5) is called fixed time stable if it is finite time
stable and the settling time function is bounded i.e., there exists a positive constant C such
that T'(gg) < C for all &g € Q".

Remark 3 From the definitions of finite-time and fixed-time stabilities, it can be seen that
in finite time stability, the settling time depends on initial conditions i.e., for every change
in initial conditions we will have different settling time expressions. Whereas in fixed time
stability, the settling time is invariant of initial conditions i.e., the settling time expression is
independent of initial conditions.

Lemma1 [55] Let V(.) : R" — R U{0} is a continuous and radially unbounded function.
If e(t) is any solution of expression (5), then the origin of the system (5) is fixed time stable
provided

(i) V(e(t)) =0iffe(r) =0;
(ii) for some ki, ka, k3 > 0,

V(t) < —k1V¥e(t)) — kzvﬂ(e(t)) —k3V(e(®),0<a<landp > 1.
The settling time expression is given by Tslet = mln(l + %) + mln(l + %).

Lemma2 [37]If V() : R* — Ry is a continuous and radially unbounded function and
e(t) is any solution of (5), then the origin of the system (5) is fixed time stable provided

(i) V(e@)) =0iffe(t) =0;
(ii) for some k1, ky > 0,

V(1) < =k V%(e(r)) — sz’S(e(t)), O<a<landp > 1.
The settling time expression is given by T2, = Wl—a) + m

Lemma3 [49]letz; > Ofori =1,2,...,n;0 < p < 1 and q > 1. Then the following
inequality holds.

n

n n p n q
Yz (Ya) Y (Xa)
i=1 i=1 i=1

i=1

3 Main Results

Theorem 1 The system (5) with the Assumption 2 and the controllers (6) gains fixed time
stability if it satisfies the following conditions:

n
cp+ép— > (1881 +1a), 1 + a1 + 12k )1} > 0,
q=1
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n
83, = > (Ibgy | + Ibgy | + 165, | + b4, )15 > 0.
q=1
n

£, =Y (14X 1+1d},1 + 1d;,1 + 1%, )13 > o.

q=1

Here, the expression of settling time expression is Tslet = ﬁln (1 + m) +

1 c
c(B—1) In (1 + min , (&s,) (4n)!1=# )’

where ¢ =min, (¢, + &1, — 20y (laf,| + 1), + la],| + |a£,|)lll,).
Proof Consider the Lyapunov functional as

4
V(i)=Y Vi), )

i=1

where Vi(1) = Y0 ley DI, Vat) = Y le, (0] V3(0) = Y0y lep (D], Var) =
Z?:l |5§(t)|

Then the dinni derivative of V;(#) along the trajectories of the considered system is given
by

Vi) =) sign(ef (0)ER (1)

p=1
=) sign(ep (z))( —cpeR @)+ Y (@l (fFRsRD) = fReE o)) - al, (f] ) @)
p=1 g=1

— £ G0 = a), (] ] @) = £ @ 0)) = af, (fF K@) = £ K0
+b8 @R sR =) — g Ea — @) — bl (gl s)t — i)
— 84 (2t =11 ()) = by, (g5 (s (t = 11 (1)) — & (=) (t — T1(1))))

t
—b X —n) - g« —no)) +daf, / (,>(h5(s‘ik(s))
Y

t t
— hi(zg ())ds — dy, ft m(hg(s; () = hy(zg())ds — dy, /
.

(hy (s ()
()

t
— ) (z) ()ds — d}, /

-1

==Y cpleRol+> )" (|a,’fq|l;|s§(t)| +lab el @)+ 1a, 11312 )]

p=1 p=1lg=1

( )(hg (sq () = gl (zg ()))ds) + U,’f(z))
t

+laf X O+ bR 1218t — i)+ 1b] 151l (t — i) + |b), 115 1e]) (t = 71 (1))

+ b 1k (1 — ()] + \dﬁqu;/ , |e§(s)|ds+|d,’,q|z§/ , ] (s)lds

t t
t—12( t—12(

t t
J 173 J K ;3 K
+ |dpq|lq / |£q (s)|ds + |dpq|lq/ |8q (s)|ds)
t—12(t) t )

—1o(t

+) sign(ep (r))( —Eipep (1) — sign(s] (r))(sfpw;f (t — ()]

p=l1
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t
+s3’§,/ " leR(s)lds + Eaplef ()] +ssp|s,’f(t)|f’))
—1(t

s—Z(cp Z| amlly +slp>|s UMZZ(' D len O]+ la, 1Ly le ()]

=1 r=1q=1
+ lag I}, |s’<<z)|+|b I le(t — T @) + b}, 1516l — 1) + b, 115 le) (1 — 11 (1))

+|bqp|z2|g§(z—zl(t))|+|dq’§,|l;/ " leR (s)]ds + | q1,|l3/ (t)|81’,(s)|ds
=1 123

+1 q,,|l3/ ()|e T (9)ds + |d} |l3/ ()|e§<s>|ds)—Zsz’§,|e,’f<z—n(t>)|
t—1(t (1 p=1

n

n t
- Z%’}/ " lef()lds = (Baplef ()1 + &splef ()1F).
p:l t—12(¢t

p=1

Similarly,

v'zms—z(cp D ul+51p>|e <r>|+22(l S eR @)+ laj, 1) leX )]

p=1 p=1lg=1
+ laf 1l |e’(r>|+|b [Z1el(t — Ti ()] + b, 112 |eR (¢ — T1()] + 1B, 1512k (1 = 71(0))]

t

t
1K 1216 (¢ — my (o) + 15 |13 / b s + i / 168 (s)ds
—172

—12(t)

t t n
ity [ e oas + i [ |s{,<s>|ds) ~ el e — n )
t—12(t) t—12(t) p=1

n

253,, f lel(s)lds — > (Eaplep (DI +&splep )]P).

p=1 n() p=1
v'3<z><—2(cp Dupul +sl,,>|e <z>|+22(|a,,|l leB O] + lafs 11y lef (0)]
p=1 p=1lg=1

+ laj, 11, leX (r)|+|b 21e7 (t — 1) + b, 11 |eX (t = T ()| + b, 15120 (t — 11.(1))]

1B IR1EK (= o) + 1R 153 /

t—1o(t)

t
+1dX 03 / leh($)lds + |}, 113 / ek <s>|ds) - Zs{,,w;(t 1)
t—12(t) t—12(t) p=1

n

Z&p / o el ©)lds — Y (Eapleg (O + Espler ]F).

62 (5)lds + 12, 113 / 16X (s)lds
(1)

p=1 p=1
v'4<z><—2(cp Z| ,,ul+sl,,>|e (0|+ZZ<I agp\lyled ()] + laf 1Ly leR ()]
p=1 p=1lg=1

+ la, |} e, <z)|+|b [5lex (t — 1) + b, 117165 (1 = T + |bh, 115 ey (¢ — 11 (1))

t
+ 6], 15 leh (t — T (r))|+|d;;|1§,/ |s§(s)|ds+|d;p|zf,/ |7 (s)|ds
t—12(t) 1—12(1)

t t n
+ |d£1|12/ lef (s)lds + \dquu;/ |g§,(s)|ds> =Y ek — )l
t—12(t) t—12(t) p=1
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n

n t
- :Ss’if " le ()ds = Y (Eaplel (DI +&splek 1)IF).
p=1 1—1(t

p=1
Merging these four inequalities, we have

V(t) =Vi(t) + Valt) + V3(t) + Va(t)

n

==y (c,; +Ep— Y (lag | + lab,| + laj,| + |a;§,|)1},)|e§<r>|
p=1 g=1
n n
-y (sz’; = (IR 1+ 1b) 1+ 167, + |b;i,|)l,%)|e§<z — 11 ()|
p=1 g=1
n n t
-3 (sgﬁ, = > (R 1+ 1dl, 1+ 1d], | + \dfpl)l;’;) / leR (5)1ds
p=1 g=1 1—12(t)
n n
-3 (cp +Ep— Y (lag | + lab,| + laj, | + |aq’§,|)1},)|ef,<z>\
p=1 g=1
n n
-y (sz’,, = (bR 1+ 1b) 1+ 167, + |b;i,|)l,%)|s,’,(t 0]
p=1 g=1
n n t
=3 (e = D i et aS05) [ holas
p=1 g=1 1—12(t)
n n
-3 (cp +Ep— Y (lag| + lal,| + laj, | + |aq’§,|)1},)|e{,<r)|
p=1 g=1
n n
-3 (s{,, = > (BE 1+ bl 1+ 18], + |b;i,|)l,%)|s{,<z — 1)
p=1 g=1
n n t
-3 (s;,, = > (R +1dL, 1+ 1d], | + \dgi,l)lf,) / le7 (s)lds
p=1 g=1 1—12(t)
n n
- (cp +Ep— Y (188 1+ 1al, 1+ 1a],1 + |aq’§,|)1},)|e§<r>|
p=l1 g=1
n n
-y (sz’; = (IR 1+ 1b) 1+ 167, + |b;§,|)l,%)|s§(z — ()
p=1 g=1
n n t
-2 (s = 2 (gl + ldgy | + 1dg, | +1dg, >zz) / e @18
p=I q=1 -

=Y Eap(lef 1 + 1eh (1 + e (O + ek (1))
p=1

=Y &5,(1ef 1P + b O)1F + 1) 0)IF + lef ()1P). ®)
p=1

By using Lemma 1 and Lemma 3, we obtain

n

V() < —min (cp +&1p = ) (lagy | + lag, | + lag, | + |a;;|)l},)va)
g=1

@ Springer



796 S.Singh et al.

=Y Ep(leR O + 15O + 12 (1 + X 0)])
p=1

=Y Esp(lef 1P + 1eh 1P + 1) ()IF + lef ()1P)
p=1

n
= —min (cp +Ep— Y (1881 +1al, +1a], | + |a,§§,|)l},)va)
q=1

=Y Ep(lef O+ b1+ le) )] + lef ()])*
p=1

= 34, (1R )]+ e O] + lef 01 + K 1)
p=1

n
<-— ml}n (Cp +&1p — Z (Ia,fpl + \aépl + Iaq]p| + Ia,;i,l)l,l,)V(t)
q=1
n

- mlgn(&p)(Z (lex ]+ leh (O] + le (O] + ek (r)|)“>
p=1

- m[;n(ssp>(4n)‘*ﬂ(2 (lex @1+ lep O] + leg )] + |e§<z)|)f‘)

p=1
= —min(&,) V() = rrgn<ssp><4n>“ﬁ VA

n

— min (cp +Ep— Y (laf | +1al, 1+ a1 + |a;;|)l},)vo>.
g=1

Corollary 1 The system (5) with the Assumption 2 and the controllers (6) achieves fixed time

stability with the same sufficient conditions as in Theorem 1. The settling time obtained in
this case is given by

1 1
2
= — + — .
T ming (§4p) (1 — @) ming,(&5,)@n)=A(B — 1)
Proof Define the Lyapunov functional as

(C))

n
V()= (lef®)] + leh ] + e ()] + lef D).
p=1
Calculating the derivative of V (¢) along the trajectories of given system as calculated in
Theorem 1 in equation (8), and using Lemma 1 and Lemma 3, we obtain

V() < — min(§4p) V(1) = ngn@sp)mn)‘*ﬁv"“‘(z),

and the corresponding settling time is given by expression (9).

Remark 4 Our considered model is more general and more complex as compared to the exist-
ing models to achieve the fixed time synchronization of QVNNS. If we take the connection
weights matrix D = 0 in the model (1), then we will get the model used in [46] which is
without distributed delay. Again by taking the connection weight matrices B = 0and D = 0
in (1), we get the model of [49] which is without delay term. But in actual implementation
of neural networks, the delay is an inescapable quantity.
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Fig. 1 Plot of trajectories of zf(t) and is(t), z{(t) and sll(t), zlj(t) and slj(t), zlk(t) and slk(t) for the
master-slave systems (3) and (4) without controllers

4 Numerical Example

In this section a drive is made to validate the efficiency and effectiveness of the proposed
method while applying it during synchronization of two identical QVNNs with mixed time
delays.

Example 1 Consider QVNN as given in (1) forn = 2 as

t

2(t) = =Cz(n) + Af (z(1) + Bg(z(t — 11 (1)) + D/ h(z(s))ds + 1(1),

t=12(t)
where z = zR + zli + 27 j + Kk,

A 1+220+2j—1k —2-35i+25] -3k
T\ 241541415k 05—-1.5+05] —1k)°
g (05— 150 +2j+ =2k 1+1i —2j — 1.5k

- 3—i+1j—-2k 05—i+3j—2k)’
D 03+2i+1j+.5k —1-03i +2j — 1k

T\ -1-02i43j—1k1+05—1j+15k)°
C =diag[1.5,1.4],1 = (1.2 —1.2i +1.3] + 1.4k, 1.4
+1.3i + 145 — 1307,
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Fig. 2 Plots of the trajectories of ef (1), el (1), ¢ (1), K (1) and eR (1), €L (1), e (1), eX (1) for the solution
e(t) of the error system (5)

71(1) = 1a(t) = cos* (1),
and let us take the activation functions as
fj(ZJJf) = tanh(z}/), gj(z];) = tanh(z}/), hj(z}’) = tanh(zl;),

forj=1,2andy =R, 1,J,K.

Let us consider the initial conditions as

21(0) = 80 4 70i + 60/ + 50k, z2(0) = 40 + 30i + 20 + 10k, 51(0) = 10 + 20i +
307 + 40k, 52(0) = 50 + 60i + 70 + 80k.

For this case, the trajectories of the system without controllers are shown through Fig.
1 which clearly show its non-synchronization. Again, the Assumption (2) with the above
considered activation functions hold for / ]1, =1= l% = li.Now, considering 11 = 12, &1 =
14,0 = 05,8 = 15,51 = 20,&»n = 20,5 = 20, & = 20,&, = 10,&5, = 20 for
p = 1, 2, the controller functions become

t
UY (1) = — 1267 (1) — sign(e] (1))[20¢] (1 — cos*(1)) + 20/ el (s)lds
t—cos2 (1)
+ 10} (1) + 2017 (0)['],
t
U (1) = — 14&} (1) — sign(e} (1))[20&] (r — cos* (1)) + 20/ ey (s)|ds
t—cos? (1)

+10]e} (1) +201] (1)]"].

The synchronization of the trajectories of the systems with control functions are depicted
through Fig. 2. The settling times are calculated as 7.}, = 0.4464 and T2, = 0.6656.
Therefore, the settling time obtained by Lemma 1 gives more accurate result as compared to
that given by Lemma 2.

Remark 5 The settling time using Lemma 1 is less as compared to that using Lemma 2. A
general comparison of the two settling time expressions is given in [46]. Lemma 2 is used to
prove synchronization results in [49,58] which gives more conservative results.

Remark 6 QVNNs store large amount of data in lesser number of neurons as compared to
the CVNNs and RVNNS. In [56], the proposed neural network needs 144 neurons to store
12 x 12 pixel colour figure, however the corresponding CVNNs should have 432 neurons to
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store the same. Also, in [57], this has been shown that the storage capacity of the CVNNSs is
larger than that of the RVNNS.

5 Conclusion

This article has investigated the fixed time synchronization of QVNNs with mixed time
varying delays. To achieve the desired synchronization, a set of sufficient conditions is derived
through designing a new controller and a proper choice of Lyapunov function. Two different
lemmas have been used for getting two different settling time expressions. The theoretical
results are validated through a given numerical example. To overcome the non-commutativity
of quaternions, QVNNs have been decomposed into four equivalent RVNNs, which have
supported to open a good scope of doing research in QVNNs as in RVNNs. In QVNNs
the pre-defined time stability and the effect of time varying impulses on finite or fixed time
stability may be a good area of research in near future.
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