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Abstract
In clinical diagnosis, karyotyping is carried out to detect genetic disorders due to chromo-
somal aberrations. Accurate segmentation is crucial in this process that is mostly operated
by experts. However, it is time-consuming and labor-intense to segment chromosomes and
their overlapping regions. In this research, we look into the automatic segmentation of over-
lapping pairs of chromosomes. Different from standard semantic segmentation applications
that mostly detect object regions or boundaries, this study attempts to predict not only non-
overlapping regions but also the order of superposition and opaque regions of the underlying
chromosomes. We propose a novel convolutional neural network called Compact Seg-UNet
with enhanced deep feature learning capability and training efficacy. To address the issue of
unrealistic images in use characterized by overlapping regions of higher color intensities, we
propose a novel method to generate more realistic images with opaque overlapping regions.
On the segmentation performance of overlapping chromosomes for this new dataset, our
Compact Seg-UNet model achieves an average IOU score of 93.44% ± 0.26 which is signif-
icantly higher than the result of a simplified U-Net reported by literature by around 6.08%.
The corresponding F1 score also increases from 0.9262 ± 0.1188 to 0.9596 ± 0.0814.

B Fei Ma
Fei.Ma@xjtlu.edu.cn

B Jionglong Su
Jionglong.Su@xjtlu.edu.cn

1 Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool University, Suzhou 215123,
China

2 School of Mathematics, The University of Edinburgh, Edinburgh EH9 3JW, UK

3 Suzhou Sano Precision Medicine Ltd., Suzhou 215123, China

4 Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China

5 Department of Applied Mathematics, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China

6 School of AI and Advanced Computing, XJTLU Entrepreneur College (Taicang), Xi’an
Jiaotong-Liverpool University, Suzhou 215123, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-021-10629-0&domain=pdf
http://orcid.org/0000-0001-5360-6493


286 S. Song et al.

Keywords Convolutional neural networks · Deep learning · Automatic segmentation ·
Overlapping chromosomes · Compact Seg-UNet

1 Introduction

In eucaryotes, the genetic information is encoded andpackaged into a set of chromosomes. For
example, the genome of human beings has been divided into 23 pairs of chromosomes. The
first 22 pairs are homologous chromosomes which means they are common to both females
and males. The last pair is called sex chromosomes and it is the only nonhomologous pair
(two X in females, one X and one Y in males) [2]. Chromosomes are typically colored by
fluorescent dyes at the metaphase of mitosis. At this stage, cells undergo nuclear division
and their chromosomes are highly organized and compacted. To unambiguously display the
46 chromosomes in a human cell, researchers artificially rearrange them in numerical order
[15]. Cytogeneticists can detect abnormalities associated with inherited defects. An original
microphotograph and its corresponding karyotype are shown as Fig. 1a, b respectively.

In the medical profession, chromosome abnormalities [18,22,25] are significant evidence
in the diagnosis of genetic disorder such as Down syndrome [29], Williams syndrome
[36], and cancer [20,37]. Some chromosome abnormalities, including atypical number and
structural abnormalities, are distinct and visible in metaphase cells. Therefore, analyzing
karyotypes segmented from metaphase cell images occupies a key role in cytogenetics and
cancer studies [20,37]. Accurate segmentation is crucial to karyotyping which involves orga-
nizing and ordering pairs of homologous chromosomes in terms of their entire bands and
features. Nonrigid shapes, overlapping chromosomes, stain debris and other noises increase
the difficulty for chromosome segmentation [23]. As professional discretion is generally
required in karyotyping, it is inevitably time-consuming and expensive [34].

Convolutional neural networks (CNNs) refer to a class of feed-forward artificial networks,
which have been proved to be efficient in image analysis. The success of CNNs advances
the development in computer vision area, significantly improving the performance on many
computer vision tasks, such as label prediction [1], neural style transfer [6], object detection
[8,28], and image semantic segmentation [8]. In the field of semantic segmentation, specif-

Fig. 1 a An example of the real microphotographs, b an example of the karyotypes
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ically in scene understanding, U-Net [30] and SegNet [3] are two efficient and practical
CNN architectures that have achieved many breakthrough results and showed advantages in
end-to-end applications.

In this research, we focus on the automatic segmentation of overlapping chromosomes.
Most semantic segmentation applications emphasize detecting object regions or boundaries,
e.g. Fast/Faster/MaskR-CNN[7,11,28] and pyramidCNN[24]. In recent years, severalworks
concentratemore on the occlusion detection problem inmany application scenarios [4,16,17].
In the medical segmentation field, Kowal et al. [16] combine a CNN model and seeded
watershed algorithm for addressing the problem of aggregated cell nuclei segmentation.
BANet [4] focuses on handling occlusion by assigning occluded pixels to the correct object
in panoptic segmentation tasks. OCFusion [17] resolves the occlusion problem by adding
an additional “head”, named as the “occlusion head”, to the Mask R-CNN architecture for
classifying pixels.However, these currentworks still focus on separating the boundaries rather
than predicting the underlying regions between overlapped objects. This study attempts to
predict not only non-overlapping regions but also the order of superposition and opaque
regions of underlying chromosomes.

There are twokey contributions in this study. First, a newneural network architecture called
Compact Seg-UNet, a hybrid ofU-Net [30] and SegNet [3], is proposed in this study to predict
non-overlapping and overlapping segments separately. Second, to evaluate the segmentation
performance of overlapping chromosomes,wemodified the dataset constructionmethod used
in [12] to generate more realistic images with opaque overlapping regions.

The rest of this paper is organized as follows. In Sect. 2, we review several chromo-
some segmentation methods available in literature. Section 3 first provides details of dataset
preparation, then the proposed approaches and the architecture of Seg-UNet & Compact
Seg-UNet are introduced. Subsequently, we provide detailed results of the experiments in
Sect. 4. Finally, conclusions and future work are given in Sect. 5.

2 RelatedWork

2.1 Architecture of U-Net and SegNet

Before deep CNNs gain popularity in its application in computer vision, researchers regu-
larly work on object recognition and edge detection. The deep learning methods can achieve
significant improvements not only in edge detection but also in pixel-wise semantic seg-
mentation. Different from Fully Convolutional Networks [19], U-Net and SegNet [3,30] are
both designed as encoder-decoder architectures. The encoder path extracts and integrates the
interior features of images, while the decoder ensures that the output details and sizes are
identical to the input images.

The U-Net is initially applied to biomedical image segmentation [30]. It has a unique
U-shaped architecture, comprising of a contracting path and an expansive path (Fig. 2). The
contracting path contains 4 blocks, each consisting of two convolutional layers with respec-
tive rectified linear units (ReLU) as activation functions, and one max-pooling layer for
downsampling. In the expansive path, upsampling is achieved through transposed convolu-
tion operators. Each upsampling output is concatenated with a corresponding high-resolution
feature map of the contracting path. Thus, high-resolution features are maintained and inher-
ited across layers. [30] utilizes the U-Net for cell tracking and segmentation in biomedical
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Fig. 2 Architecture of U-Net [30]

Fig. 3 Architecture of SegNet [3]

images. The U-Net achieves the best performance of 77.5% intersection over union (IOU)
score which is 46% higher than its nearest competitor in ISBI challenge.

As a semantic segmentation architecture, SegNet is initially applied to road and indoor
scene understanding scenarios which also require the neural networks to detect different
objects, e.g., pedestrians, vehicles, doors and office chairs [3]. The SegNet consists of an
encoder network (contracting path), a decoder network (expansive path), and a pixel-wise
classifier in its final layer (Fig. 3). The encoder network is identical to the first 13 convolutional
layers of the VGG16 network [33], in which each convolutional layer is supplemented by
batch normalization andReLU.Theupsampling step of SegNet is computed by corresponding
pooling indices of the encoder path, and it differs from the transposed convolution method
in U-Net.
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2.2 PreviousWork on Chromosome Overlapping Segmentation

Several methods and algorithms have been proposed for the automatic segmentation of
overlapping chromosomes in metaphase images. Karvelis et al. [14] utilizes the watershed
transform which decomposes images into watershed regions and gradient paths, and then
merges adjacent regions to generate chromosome areas. Furthermore, a hybrid of fuzzy C-
means and the watershed algorithm has been proposed to detect overlapping region [21].
Methods focusing to detect cut-points have also been studied. Ranjan et al. [27] proposes a
novel method to detect pale path for chromosome images, which obtains an optimum number
of cut-points and minimized grayscale intensity by self-adaptive searching windows. Delau-
nay triangulation is utilized to identify the number of overlapping chromosomes by detecting
the optimal cut-points [26]. Most of these geometric analyses can detect and segment over-
lapping chromosomes, but have weak performances when chromosomes are merely touching
or partially overlapping. In practice, these methods may require a lot of human interventions
which are time-consuming.

Although CNNs have been developed for over 20 years, they are seldom applied to the
field of chromosome related image analysis. In 2017, [32] and [9] design pipelines for the
automation of chromosome segmentation and classification.However, their chromosome seg-
mentation is implemented by crowdsourcing method which is carried out manually. This is
different fromour purposewhich is the automatic segmentation of overlapping chromosomes.
A simplified U-Net (abbreviated as Sim U-Net) for automatic segmentation of overlapping
chromosome pairs is proposed by Hu et al. [12], by retaining the first two downsampling and
the corresponding upsampling blocks of the regular U-Net (Fig. 2). The maximum channel
size of Sim U-Net is 256. By training on randomly overlapped chromosome pairs, it quanti-
tatively evaluates the segmentation accuracies of overlapping and non-overlapping regions at
pixel level. For improving the performance, a method is proposed by Saleh et al. [31] which
combines a medium-size U-Net (abbreviated as Med U-Net) and test time augmentation
(TTA). By retaining the first three downsampling and corresponding upsampling blocks, the
maximum channel size of Med U-Net is 512. The depth of bottleneck layers of Med U-Net is
512which is deeper than that of SimU-Net (256) and shallower than that of the originalU-Net
(1024). It achieves IOU accuracies between 90.63–99.94% which is significantly better than
the range of 78.93–99.93% [12] in its reproduced experiments. TTA is a method generally
used after the training stage to improve the performance of test sets. It is not employed in
this study because our focus is to compare the efficacies of different architectures.

3 ProposedMethod

In this section, we provide a detailed description of our approach, organized as follows:
(a) The construction of datasets, (b) pre-processing of data, (c) architecture of Compact
Seg-UNet and (d) evaluation metrics.

3.1 Datasets

In this research, two datasets are used. Dataset 1 comprises 13434 pairs of overlapping
chromosomes. The dataset is obtained by extracting 46 individual chromosomes from two
microphotographs, one containing DAPI stained human metaphase chromosomes and the
other includingCy3 labeled telomeres. The areas of chromosomes are calculated and ordered.
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Fig. 4 aFour examples of generated overlapping chromosomes;b their corresponding ground truth (orange and
green colors are used to distinguish between two chromosomes; blue color is used to represent the overlapping
region)

After that, 12 chromosomes are pickedby selecting every fourth chromosome froma sequence
of chromosomes ordered by sizes (Lines 1 to 2 of Algorithm 1). They are combined to pro-
duce

(12
2

)
= 66 chromosome pairs (Line 3 of Algorithm 1). With random rotation, 13434

overlapping chromosome images are generated (Dataset 1) (Line 4 of Algorithm 1). Dataset
1 is also used in Hu et al. [12]. Figure 4a gives four examples of the remained 13434 chro-
mosome pairs. Their corresponding ground truth information is illustrated in Fig. 4b whose
orange and green regions correspond to the non-overlapping regions of underlying and top
chromosomes respectively, while blue regions correspond to the overlapping region.

A shortcoming of Dataset 1 is that, during image generation, the pixel-wise summation
of greyscale values occurs when chromosomes are superimposed, resulting in lighter lumi-
nance (Fig. 5a). In this case, the non-overlapped regions of top and underlying chromosomes
are indistinguishable and the lighter overlapping regions are distinct for recognition. This
phenomenon will not happen to physical objects including chromosomes (Fig. 5c). For gen-
erating more realistic overlapping chromosomes, we modify the image generation method.
In overlapping regions, only the pixel values of top chromosomes remained. A new dataset
(Dataset 2) is then constructed in which the top chromosomes are opaque with respect to the
underlying ones (Fig. 5b) (Lines 5 of Algorithm 1). The overlapping images and their order
of the two datasets are identical except for the pixel values of overlapping regions. Dataset 1
and 2 are available at https://github.com/SifanSong/Chr_overlapping_datasets.

3.2 Pre-processing

The ground truth (Fig. 6-GT) of Datasets 1 and 2 is initially transformed to four one-hot
images for assessing the accuracies of different target regions. It is then denoised using a
label correction method [12] to eliminate mislabeled pixels (Fig. 6i to iv). After denoising,
Fig. 6v shows the label of background. Fig. 6vi and vii illustrate smoothed non-overlapping
regions of the underlying and the top chromosomes respectively. Figure 6viii shows the
overlapping region. Pixel values of target regions are labeled as 1 (the black regions) and
those of the rest are labeled as 0 (the white regions in Fig. 6). Before being fed into CNNs,
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Fig. 5 aThe overlapping region inDataset 1 is lighter than non-overlapping areas;bWemodify the overlapping
method, making Dataset 2 appears more similar to real images; c In real microphotographs, opaque overlaps
are more common than translucent ones

Fig. 6 (GT) An example of ground truth labels; (i) to (iv) four one-hot images without denoising; (v) to (viii)
four one-hot images after denoising

the background of all overlapping chromosome images and one-hot images are extended to
96 × 96 pixels (Lines 6 to 10 of Algorithm 1). It is notable that the pre-processing steps are
identical in all experiments in this study.

3.3 Architecture of Compact Seg-UNet

Seg-UNet is a hybrid convolutional neural network combining the main characteristics of
U-Net [30] and SegNet [3]. It consists of an encoder path and a decoder path (Fig. 7). The
SegNet architecture is used as a framework, that is, each convolutional block contains a
convolutional layer, a batch normalization and an activation function ReLU. In encoder path,
2 x 2 max-poolings with stride 2 are conducted to filter deep features when downsampling,
and their pooling indices are saved. The architecture of the decoder path is almost symmetrical
to that of the encoder. The pooling indices are utilized to perform upsampling (Fig. 8). The
upsampling guided by pooling indices restores double feature sizes by keeping positions
with the best logits recorded in max-pooling [3]. In order to deliver low-level features, we
concatenate the results of upsampling to corresponding layers with the same feature sizes
from the encoder path (Fig. 8). These skip connections decrease the loss of features during
upsampling in different scales and preserve more contour details [5,30].
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Algorithm 1 Dataset preparation and pre-processing
Input: Extracted 46 chromosome digital images. The background of the image is black (0 pixel values).
Output: Two datasets for experiments.
1: The areas (non-zero pixel number) of chromosome images are counted and sorted in increasing order.
2: An image set including 12 chromosomes are collected by choosing every fourth chromosome.
3: Then

(12
2
)
= 66 chromosome pairs are combined.

4: By using different degrees of rotating, these 66 pairs generate 14850 images of which 1416 images that do
not exist overlapping regions then are removed (13434 images remaining).

5: In order to eliminate the deficiency of the pixel-wise summation of greyscale values in Dataset 1, we
generate a more realistic dataset (Dataset 2). Compared to Dataset 1, Dataset 2 contains 13434 exactly
identical chromosome overlaps but their overlapping regions are opaque.

6: for each image i ∈ {1, 2, ..., 13434} of Dataset 1 and 2 respectively do
7: Four-layer one-hot labeling (Figure 6 (i) to (iv)))
8: Denoising (Figure 6 (v) to (viii)))
9: Extending the image size to 96 × 96
10: end for
11: For fair comparison, all experiments implemented to Dataset 1 and 2 are with identical hyperparameters

in this research. These are further described in Section 4.

Fig. 7 The architecture of Seg-UNet and its compact version

The narrow and thick bottleneck layers introduce excessive trainable parameters in the
Seg-UNet, leading to overfitting when applied to small datasets [38]. To avoid this pitfall,
we customize the depth of Seg-UNet by removing these layers (the grey box in Fig. 7). We
denote this architecture with a smaller network size as the Compact Seg-UNet.

3.4 EvaluationMetrics

To evaluate the performance of segmentation in pixel-level, we first apply three measurement
metrics, IOU, precision and recall:

I OU = I ntersection

Union
× 100% = T P

T P + FP + FN
× 100% (1)

Precision = T P

T P + FP
× 100% (2)

Recall = T P

T P + FN
× 100% (3)
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Fig. 8 Upsampling of Compact
Seg-UNet

Fig. 9 An illustration of True
Positives (black color), False
Positives (blue color), and False
Negatives (yellow color). (Color
figure online)

where I ntersection is equal to T P (True Positive) representing existing segments and being
predicted correctly; FP (False Positive) is non-existing andwrongly predicted segments; FN
(False Negative) represents segments that exist but not predicted; andUnion is a summation
of T P , FP and FN . For every one-hot image, we use IOU, precision and recall to assess the
performance of segmentation. We overlay two corresponding one-hot images of ground truth
and predicted segmentation to demonstrate them (Fig. 9). In Fig. 9, the colors black, blue
and yellow represent T P , FP and FN respectively. We further use F1 score to combine the
precision and recall and to provide a balanced measurement of these two metrics:

F1 = 2 × Precision × Recall

Precision + Recall
(4)

where Precision and Recall are previously defined in (2) and (3) respectively.
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Table 1 The detailed hyperparameters of All experiments

Hyperparameters Details

Training:Validation sets 9548:2386 (5-fold cross-validation)

Testing set 1500 images

Optimizer Adam

Fixed random seed 152

Batch size 8

Learning rate 0.00002

Decay rate 0.5

Patience for learning rate decay 3

Patience for stop training 9

4 Experiments and Results

4.1 Implementation Details

Due to the fact that the one-hot images are composed of 0 and 1 pixel values,we apply sigmoid
and binary cross-entropy as the last activation function and the loss function respectively. Our
experiments are coded by PyTorch 3.7.5, and run on a NVIDIA RTX 2080Ti GPU and an
Intel(R) Core(TM) i9-9900K CPU. We list all detailed hyperparameters in Table 1. For fair
comparison, we apply the configuration described in Table 1 to every experiment and each
dataset. We randomly choose 1500 images as a testing set. The order of remained images is
randomized by a fixed random seed = 152. These remained images are split in the ratio of
4:1 (9548:2386 images) for training and validation (batch size = 8). We then perform 5-fold
cross-validation to prevent overfitting issues. The training process is optimized using Adam
optimizer. We utilize the early stopping training strategy in this study, and the initial learning
rate lr is 0.00002. The validation performance is checked once per epoch, and model weights
with the best validation performance (the lowest loss of validation sets) are saved. If the best
validation performance is not updated after 3 consecutive epochs, the lr is decreased by 0.5
decay rate. If the best validation performance is not updated after 9 consecutive epochs, the
training process is terminated for avoiding overfitting.

4.2 Results

To better assess the segmentation performance of overlapping chromosomes, we employ four
CNN architectures (Sim U-Net, Med U-Net, Seg-UNet and Compact Seg-UNet) on the two
datasets. Since Sim U-Net has the shallowest architecture among the four CNNs, we use its
results as baselines. As shown in Tables 2 and 3, Experiments A to D are conducted using
Dataset 1 and Experiments E to H are carried out using Dataset 2. Specifically, Experiment A
and E utilize Sim U-Net; both Experiments B and F useMed U-Net; both Experiments C and
G utilize Seg-UNet; and both Experiment D and H use Compact Seg-UNet. Table 2 lists the
architectures, datasets, and four IOU scores whose meanings are consistent with Fig. 6b-v
to viii respectively. To further evaluate the segmentation performance of these architectures,
we calculate sizes of GPU memory usage (GMU), average IOU, precision, recall and F1
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Fig. 10 a–c Examples of average losses of training, validation and test sets versus epochs respectively, where
D1 and D2 represent Dataset 1 and Dataset 2; d the zoom-in plot of Seg-UNet and Compact Seg-UNet
experiments of test sets

scores (Table 3). We note that all the results of Tables 2 and 3 are average scores± 2 standard
deviation (2std.) of test sets of 5-fold cross-validation.

For the Experiments (A to D) conducted on Dataset 1 and the Experiments (E to H)
conducted on Dataset 2, Table 2 indicates that all IOU scores of Seg-UNet and Compact
Seg-UNet have a significantly better performance than those of Sim U-Net and Med U-Net,
since their confidence intervals (average scores±2std.) do not have overlapwith those of Sim
U-Net andMed U-Net. At the same time, their 2std. scores are much lower than those of Sim
U-Net andMed U-Net. The segmentation performance of Med U-Net is generally better than
that of SimU-Net. It indicates that SimU-Net is too shallow to achieve a good performance in
this study, so a deeper architecture (Med U-Net) improves the capacity to learn deep features.
In Table 2, the comparisons of Seg-UNet and Compact Seg-UNet (Experiments C to D and
G to H) show that results of IOU_0 to IOU_3 are almost similar, but the results of Seg-UNet
may be affected by overfitting due to this excessively complex architecture. In contrast, the
results of Compact Seg-UNet are slightly better than those of Seg-UNet. Compact Seg-UNet
achieves the best IOU scores in the range of 88.51%(±0.56)-99.97%(±0.00) on Dataset 1
and 82.49%(±0.74)-99.97%(±0.00) on Dataset 2. Especially, Experiments D and H show
that the robustness of Compact Seg-UNet model is superior to that of Seg-UNet with respect
to lower 2std. scores. Although IOU_3 scores of Dataset 2 are lower than those of Dataset
1, these IOU scores demonstrate the flaws of Dataset 1. The directly summed pixel values
cause unrealistic lighter overlapping regions as we described above, and this phenomenon
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Fig. 11 a–c Examples of average IOU scores of training, validation and test sets versus epochs respectively,
where D1 and D2 represent Dataset 1 and Dataset 2; d the zoom-in plot of Seg-UNet and Compact Seg-UNet
experiments of test sets

cannot be observed in the real-world. Therefore, these lighter regions not only are distinct
to neural networks, but also do not appear which chromosomes are underlying. Comparing
Experiments (A-D) to (G-H), these flaws have been reflected by higher scores of the IOU_3
and poorer ability to distinguish the non-overlapping regions of underlying chromosomes
(IOU_1). Although Experiments (C and D) on Dataset 1 show higher average scores in both
Tables 2 and 3, we still recommend setting the results on Dataset 2 as benchmarks in future
research and evaluations, since the underlying regions are not transparent under microscopes
and CNNs should learn to predict the extend of overlapping.

In Table 3, the average IOU is the mean of IOU_0 to IOU_3 of Table 2. We observe
that relationships of other average ± 2std. results (precision, recall and F1) of four CNN
architectures are consistent with IOU scores. Although Sim U-Net andMed U-Net only have
1443 and 1609 MiB GMU respectively, their segmentation results have been significantly
improved by altering architectures and may not satisfy the requirement of further research
on automatic segmentation of overlapping chromosomes. Compact Seg-UNet (Experiments
D and H) also achieves the best performance in overlapping chromosome segmentation (an
average IOU of 93.44% ± 0.26 and a F1 score of 0.9596 ± 0.0814 on Dataset 2) and its
GMU has been reduced from 2455 (Seg-UNet) to 2251 MiB. These results highlight the fact
that the removal of bottleneck layers of Seg-UNet not only reduces the load of training but
also exhibits superiority in this study.
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To further explore the segmentation performance in training processes, we present average
losses of test sets versus epochs (Fig. 10) and average IOU accuracies of test sets versus
epochs (Fig. 11). The results of the first fold of cross-validation are recorded and illustrated as
examples. The curves of SimU-Net andMedU-Net are distinctly separated from those of Seg-
UNet and Compact Seg-UNet. Figures 10a and 11a demonstrate the continuous overfitting
of models is terminated by our early stopping strategy when validation performances are not
updated for a while (Figs. 10b, 11b). Figures 10c and 11c are average scores of test sets, and
they also show that both Seg-UNet and Compact Seg-UNet significantly improve average
results and decrease total epochs before early stopping. Figs. 10d and 11d are zoomed-in
plots of the curves of Seg-UNet and Compact Seg-UNet. We observe that the experiments
conducted using each dataset show similar trends and are highly consistent. They highlight
the superiority of the Compact Seg-UNet and Seg-UNet over Sim U-Net and Med U-Net in
this task with high efficacies.

5 Conclusions and FutureWork

In this work, a novel deep learning neural network architecture, Compact Seg-UNet, is
proposed to segment images with overlapping chromosomes. With the removal of several
low-resolution layers, Compact Seg-UNet requires relatively less GPU memory usage. The
scarcity of real-world overlapping chromosome pairs motivates the construction of a dataset
with generated overlapping chromosomes. To evaluate the performance of the proposed
method, we also compare Compact UNet with Sim U-Net, Med U-Net and Seg-UNet. With
the measurement metrics of IOU, precision, recall and F1 scores, the proposed Compact
Seg-UNet is superior to other architectures in terms of segmentation performance.

For the public dataset (Dataset 1), there are lighter overlapping regions due to pixel-wise
summation of the respective greyscale values. Such feature is not only unrealistic but can
be directly recognized by neural networks. In view of this, we propose a modified approach
to generate images with opaque overlapping regions that are more commonly seen in the
real-world (Dataset 2). On Dataset 2, our proposed Compact Seg-UNet achieves the best
average IOU score (93.44% ± 0.26) and the highest average F1 score (0.9596±0.0814).
Those significantly outperform the previous work by large margins.

When CNNs have identified and learned interior textures from chromosomes, the trained
models can predict the shape, size and obstructed overlapping region of chromosomes in
this study. This differs from most semantic segmentation applications whose emphases are
merely detecting object regions or boundaries, e.g. Fast/Faster/ Mask R-CNN and pyramid
CNN.

The achievement in this research is the first step towards the segmentation of chromosomes
with higher degrees of overlapping. The research shows that Compact Seg-UNet can be
used to segment overlapping chromosomes and predict nonrigid shapes. Compact Seg-UNet
is designed for alleviating the overfitting problem. It not only improves the segmentation
performance but also reduces computational costs. In future research, apart from customizing
the size of CNN architectures, methods such as, dropout [35], weight initialization [10] and
stochastic weight averaging [13] may be integrated into our architecture to further improve
the generalization and robustness.

Despite the encouraging results obtained with Compact Seg-UNet in this study, Datasets
1 and 2 are artificially generated from merely 12 individual chromosomes. This is the main
weakness impeding the practicability of models to segment overlapping chromosomes in
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more complicated scenarios. To achieve robust segmentation performance on more realistic
images with overlapping chromosomes, we would augment training sets with real-world data
and various chromosome shapes for constructing a great variety of overlapping conditions
and chromosome individuals. In the next step of the research, we would also label and use
real overlapping chromosome images to train our proposed neural network for improving
model robustness, as well as to test fine-tuned models on real chromosome images for an
assessment of its efficacy.
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