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Abstract
Zhang neural network (ZNN), a special recurrent neural network, has recently been estab-
lished as an effective alternative for time-varying linear equations with inequality constraints
(TLEIC) solving. Still, the convergent time produced by the ZNN model always tends to
infinity. In contrast to ZNN, a finite-time convergent neural network (FCNN) is proposed
for the TLEIC problem. By introducing a non-negative slack variable, the initial form of the
TLEIC has been transformed into a system of time-varying linear equation. Afterwards, the
stability and finite-time performance of the FCNN model is substantiated by the theoretical
analysis. Then, simulation results further verify the effectiveness and superiority of the pro-
posed FCNN model as compared with the ZNN model for solving TLEIC problem. Finally,
the proposed FCNN model is successfully applied to the trajectory planning of redundant
manipulators with joint limitations, thereby illustrating the applicability of the new neural
network model.

Keywords Finite-time convergent neural network · Time-varying linear equations with
inequality constraints · Redundant manipulators · Joint constraints

1 Introduction

Finding solutions for systems of linear equations with inequality constraints is the basis of
manymathematical or engineering topics [1–5], such as robot kinematics [2], data processing
[3] and control optimization [4].Many achievements have been studied the solutions of linear
equations with inequality constraints [6–11]. For example, Pang et al. [6] proposed an ABS-
MPVT algorithm to solve linear equations and inequality systems. Murav’eva [7] studied the
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consistency and inconsistent radius of linear equations and inequality solutions. Moreover,
other iterative algorithms were proposed to obtain the solutions of linear equalities with
bound constraints, including the abstract algorithm [10] and �-algorithm [11].

Due to the parallel processing characteristics of recurrent neural network (RNN), many
researchers are committed to solve mathematical problems with RNN [12–15]. A special
RNN, the classical Hopfield neural network (HNN), was presented in literature [12]. Follow-
ing the aspiring work, Xia et al. [13] investigated two RNNmodels based on continuous time
and discrete time for time-invariant mathematical problems. Liang et al. [14] proposed an
improved discrete time RNN model. In [15], various RNN dynamics were developed for the
solution of linear underdetermined systems with inequality constraints. Significantly, all the
methods mentioned above are used to solve time-invariant systems of linear equations and
inequalities. In practical applications, most systems are not static but changing over time [2].
However, there are large errors and relatively delay in solving time-varying mathematical
problems with the mentioned methods.

Different from the aforementioned neural networks, Zhang neural network (ZNN), also a
special RNN, was presented by Zhang et al. aiming zero convergence with infinity time for
solving time-varying mathematical problems [16–21]. For instance, Zhang et al. proposed
two newly-designed ZNN models, which aims at time-varying underdetermined linear sys-
tems in [21]. Simulation results of trajectory planning of redundant manipulators verified
the validity of the two newly-designed ZNN models. However, in many real applications,
the limitation of solutions should be considered when time-varying linear equations solving.
For example, each joint is physically constrained within a fixed moving range in inverse-
kinematics of redundantmanipulators. The unexpected joint-angle positionwill lead towrong
trajectory of the manipulator, and even even cause damage to itself. Thus, keeping the joint
variables within its physical limits is greatly important. For this purpose, two new constructed
ZNNmodels incorporating bound constraints with time-varying linear equationswere proved
to have perfect convergence as long as time is infinity [22]. However, the long convergent
time of time-varying linear equations with inequality constraints (TLEIC) will affect the
executive effectiveness, which tends to add heavy burden for time-varying systems and is
incapable to complete the given task.

To accelerate convergent speed and shorten convergent time, many studies have been done
about finite-time convergence [23–33]. For instance, Li et al. [23] first presented a particular
activation function, which can make ZNN model converge to zero within finite time. In
[24], this activation function was utilized for establishing a ZNN model with finite-time
characteristics to solve time-varying inequality problems. Aiming at the solution of time-
varying nonlinear equation, Lin et al. also proposed two novel nonlinear activation functions
in [25] for enhancing the convergence performance of the ZNN model. Jin et al. [26] used a
power-versatile activation function in ZNNmodel to solve dynamic matrix inversion (DMI),
and proved the excellent convergence performance and great robustness of the proposed
model for solving DMI problem under various interference environments. Different from
[23–26] (i.e., improving activation functions), some new design formulas were designed in
[28–32] to accelerate ZNN model. For example, Jin et al. [28] replaced the error function
e(t) in the original ZNN design formula with a Bernoulli equation, thereby obtaining a new
design formula and constructing a improved ZNN (IZNN) model to solve time-invariant and
time-varying nonlinear equation. In [30–32], a new design formula with linear activation
function was investigated by Lin et al., and established three different finite-time RNN
(FTRNN) models for the online solutions of time-varying matrix inversion, time-varying
matrix square root and time-varying Sylvester matrix equation. Comparative results were
visualized to determine the superiority of FTRNN models. In [33], a class of new evolution
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formula was exploited for quadratic programming problems, and its finite-time convergence
and robustness were also substantiated by the application of k-winner-take-all (k-WTA).
However, at present, no research has focused on solving TLEIC directly in finite time.

Aspired by the above RNN designing rules for time-varying problems, a new finite-time
convergent neural network (FCNN) is proposed in this paper to solve TLEIC. Theoretical
analysis proves the stability and finite-time convergence of the proposed FCNN model in
detail. The superiority of the FCNN model is substantiated in the simulation experiment.
This work is attempted to show the proposed FCNN can directly handle the time-varying
linear equations considering the corresponding inequality constraints. Furthermore, we apply
the proposed FCNN model to trajectory planning of redundant manipulators and solve its
TLEIC problem by referring to each joint variable limitations. Simulations on six-degrees-
of-freedom (six-DOF) planar manipulator and PUMA560 redundant manipulator show the
application of the proposed FCNN model. With its motion planning of redundant manipula-
tors, this work serves as an improvement in the finite-time research of redundantmanipulators
with joint physical constraints.

The rest of this paper consists of six sections. Sect. 2 describes the specific form of TLEIC
and gives out the key steps of transforming TLEIC into time-varying linear equations. In
Sect. 3, the new design formula of FCNN is presented, and the corresponding FCNN model
is established for TLEIC. Sect. 4 proves the stability and finite-time convergence of the
proposed FCNN model. The FCNN model is further simulated and compared with the ZNN
model for the TLEIC problem solving in Sect. 5. Section 6 demonstrates the application of
the proposed FCNNmodel to trajectory planning of redundant manipulators. Finally, Sect. 7
gives a summary of this paper. It should be pointed out that the main contributions of this
paper are as follows.

1) This papermainly proposes a FCNNmodel via a novel design formula for directly solving
TLEIC within finite time.

2) The stability and finite-time convergence of the FCNN model for TLEIC is proved in
detail. Besides, the finite convergent time of the FCNN model is derived theoretically,
which further proves the effectiveness in finite time.

3) Numerical simulation verifies the validity and finite-time convergence of the proposed
FCNNmodel. Furthermore, the superiority of the FCNNmodel for solving TLEIC prob-
lem is verified, as compared with the ZNN model under various activation functions.

4) The feasibility and practicability of FCNNmodel in the application of trajectory planning
for redundantmanipulators with joint constraints (namely 6-DOF planarmanipulator and
PUMA560 redundant manipulator) are further demonstrated.

2 ProblemDescription and Transformation

This section mainly describes the mathematical expression of TLEIC and the transformation
steps required in the solving procedure.

2.1 Problem Description

In this subsection, mathematical form of the TLEIC problem can be described as

{W(t)x(t) = l(t)
x1 ≤ x(t) ≤ x2

(1)
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where W(t) ∈ Rm×n is a given non-zero time-varying coefficient matrix with m < n, and
l(t) ∈ Rm is a given non-zero time-varying vector. x(t) ∈ Rn is an unknown vector to be
solved in TLEIC problem (1). x1 ∈ Rn and x2 ∈ Rn denote the lower and upper bounds of
x(t), both of which are constant vectors. Besides, to ensure the existence of x(t), we assume
W(t) is nonsingular in (1) at all t ∈ [0,+∞) in this paper.

Subsequently, the inequality constraints on x(t) in TLEIC problem (1) can be transformed
into a system of linear inequalities, i.e.,

Ux(t) ≤ c

where U = [−I, I]T ∈ R2n×n , with I ∈ Rn×n denotes an identity matrix. c ∈ R2n as

a vector composed of the x1 and x2, and the specific form is c = [−xT1 , xT2
]T
. Note that

superscript T as the transpose operation. Then, the following equations can be obtained{W(t)x(t) = l(t)
Ux(t) ≤ c

. (2)

which is equivalent to TLEIC problem (1).

2.2 ProblemTransformation

Previously, we have introduced the specific form of the TLEIC. Then, by introducing an
unknown slack variable s.2, which is greater than or equal to 0 [16], the inequality constraints
in (2) can be rewritten as the following time-varying nonlinear equations:

Ux(t) + s.2(t) − c = 0 (3)

where the superscript .2 in s.2(t)means the square operation of each element in s(t). For ease
of understanding, the relationship between s(t) and s.2(t) are given here:

s(t) =

⎡
⎢⎢⎢⎢⎢⎣

s1(t)
s2(t)
s3(t)

...

s2n(t)

⎤
⎥⎥⎥⎥⎥⎦

∈ R2n, s.2(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s21 (t)

s22 (t)

s23 (t)

...

s22n(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R2n .

The following system including time-varying linear andnonlinear equations can be derived
from (2) through analysis above: {

W(t)x(t) = l(t)

Ux(t) + s.2(t) = c
. (4)

In addition, vector s(t) is determined in parallelwith the solutionof (1). For further discussion,
we first convert s.2(t) into the following form:

s.2(t) = V (t)s(t) (5)

where V (t) ∈ R2n×2n is a time-varying diagonal matrix with all the elements in s(t) as the
main diagonal element, i.e.,

V (t) = diag (s1(t), s2(t), s3(t), · · ·, s2n(t)) .
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Then, according to Eq. (5), we reconstruct the the time-varying linear and nonlinear equa-
tions (4) as

K(t)z(t) = q(t) (6)

where K(t) ∈ R(2n+m)×3n , q(t) ∈ R2n+m and z(t) ∈ R3n are respectively expressed as

K(t) =
[W(t) 0

U V (t)

]
, q(t) =

[
l(t)
c

]
, z(t) =

[
x(t)
s(t)

]
.

Remark 1 To guarantee the transformed Eq. (6) is solvable, we assume that Eq. (6) satisfies
the following condition in this paper:

rank (K(t)) = rank
([K(t) q(t)

]) = 3n

where operator rank(·) denotes the rank of a matrix.

Basedon the above transformation, solvingTLEICproblem (1) is equivalent to the solution
of Eq. (4) or Eq. (6) at any t ∈ [0,+∞).

3 FCNNDescription andModel Establishment

In this section, a finite-time convergent neural network (FCNN) model with finite-time char-
acteristics is presented to solving the TLEIC problem (1).

Based on Eq. (6), we first define a indefinite vector-valued time-varying error function
e(t) as

e(t) = K(t)z(t) − q(t) (7)

By the above definition, the time-derivative of e(t), i.e., ė(t), is given as

ė(t) = K(t) ż(t) + K̇(t)z(t) − q̇(t) (8)

where K̇(t), q̇(t) and ż(t) are the time-derivative ofK(t), q(t) and z(t), respectively. Then,
in order to zeroing e(t), a novel design formula of FCNN is given as

ė(t) = Φ
(
−ξ1e.d/b(t) − ξ2e(t)

)
(9)

where ξ1 > 0 ∈ R and ξ2 > 0 ∈ R are design parameters. The superscript .d/b in e.d/b(t)
indicates that the exponential term d/b is added to each element in e(t), and the specific
expression is

e.d/b(t) =

⎡
⎢⎢⎢⎢⎣

ed/b
1 (t)

ed/b
2 (t)

ed/b
3 (t)

...

⎤
⎥⎥⎥⎥⎦ .

Moreover, d and b as positive odd numbers in Eq. (9), and satisfy d < b. Φ(·):R2n+m →
R2n+m denotes an activation function,which can only be amonotone increasing odd function,
i.e., Φ(·) = −Φ(−·), such as linear function, sigmoid function, hyperbolic-sine function,
etc. Note that this paper focus on the study of a design formula (i.e., Eq. (9)) to establish
FCNN model for solving TLEIC problem (1). Therefore, in the experimental simulation,
only linear activation function is used in the FCNN model (11).
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On the basis of Eq. (5), the time-derivative of s.2(t), i.e., ṡ.2(t), can be obtained as

ṡ.2(t) = 2V (t)ṡ(t). (10)

According to the Eqs. (7), (8) and (10), (9) can be expanded into the following equation:[W(t) 0
U 2V (t)

] [
ẋ(t)
ṡ(t)

]
+
[ Ẇ(t) 0

0 0

] [
x(t)
s(t)

]
−
[
l̇(t)
0

]

= Φ

(
−ξ1

([W(t) 0
U V (t)

] [
x(t)
s(t)

]
−
[
l(t)
c

]).d/b

− ξ2

([W(t) 0
U V (t)

] [
x(t)
s(t)

]
−
[
l(t)
c

]))
.

where Ẇ(t), ẋ(t), ṡ(t) and l̇(t) are the time-derivative ofW(t), x(t), s(t) and l(t), respec-
tively. Defining the time-varying matrices G(t) and H(t) as

G(t) =
[W(t) 0

U 2V (t)

]
∈ R(2n+m)×3n, H(t) =

[Ẇ(t) 0
0 0

]
∈ R(2n+m)×3n

following implicit dynamic equation can be obtained:

G(t) ż(t) + H(t)z(t) − q̇(t) = Φ(−ξ1(K(t)z(t) − q(t)).d/b − ξ2(K(t)z(t) − q(t))).

Furthermore, FCNN model can be expressed as follows:

ż(t) = G†(t)(−H(t)z(t) + q̇(t) + Φ(−ξ1(K(t)z(t) − q(t)).d/b

−ξ2(K(t)z(t) − q(t))) (11)

where G†(t) is the right pseudo-inverse of G(t), and its concrete expression is G†(t) =
G(t)T(G(t)GT(t))−1.

To facilitate understanding, Fig. 1 presents the nteuron structure of FCNN model (11).

Remark 2 The i-th neuron of FCNN model (11) is expressed as

zi =
∫ 2n+m∑

j=1

g̃i j

⎛
⎜⎝−

3n∑
p=1

h jpz p + q̇ jφ

⎛
⎜⎝−ξ1

⎛
⎝ 3n∑

p=1

k jpz p − q j

⎞
⎠

d/b

− ξ2

⎛
⎝ 3n∑

p=1

k jpz p − q j

⎞
⎠
⎞
⎟⎠
⎞
⎟⎠ dt

where g̃i j , h jp , k jp , q j , q̇ j and zi are the i j-th element of G†(t), the j p-th element of H(t),
the j p-th element of K(t), the j-th element of q(t), the j-th element of q̇(t) and the i-th
element of z(t), respectively. φ(·) is an element of Φ(·).

4 Theoretical Analysis

In this section, stability and finite-time convergence of the FCNN model (11) are analyzed,
which verifies the feasibility of the FCNN model for the solution of TLEIC problem (1).

4.1 Stability Analysis

Theorem 1 Given time-varying coefficient matrix W(t), time-varying vector l(t) and the
bounded vector constraints c, if Φ(·) is a monotone increasing odd function, the vector-
valued x(t) of FCNN model (11) can globally converges to the theoretical solution x∗(t) of
TLEIC problem (1).
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Fig. 1 Neuron structure of FCNN model (11) for TLEIC problem (1) solving

Proof Let’s suppose x∗(t) be the theoretical solution of TLEIC problem (1), and the slack
variable s∗.2(t) will be exists that satisfies the following equations:

{
W(t)x∗(t) = l(t)

Ux∗(t) + s∗.2(t) = c
. (12)

Furthermore, the time-derivative of Eq. (12) can be obtained as

{
W(t)ẋ∗(t) + Ẇ(t)x∗(t) = l̇(t)

Uẋ∗(t) + ṡ∗.2(t) = 0
. (13)

Then, expanding FCNN model (11) and converting into

⎧⎪⎪⎨
⎪⎪⎩

W(t)ẋ(t) + Ẇ(t)x(t) − l̇(t)
= Φ(−ξ1(W(t)x(t) − l(t)).d/b − ξ2(W(t)x(t) − l(t)))
Uẋ(t) + ṡ.2(t)
= Φ(−ξ1(Ux(t) + s.2(t) − c).d/b − ξ2(Ux(t) + s.2(t) − c)).
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Substituting Eq. (12) and Eq. (13) into the above equations, it can be obtained that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W(t)(ẋ(t) − ẋ∗(t)) + Ẇ(t)(x(t) − x∗(t))
= Φ(−ξ1(W(t)(x(t) − x∗(t))).d/b − ξ2(W(t)(x(t) − x∗(t))))
U(ẋ(t) − ẋ∗(t)) + ṡ.2(t) − ṡ∗.2(t)
= Φ(−ξ1(U(x(t) − x∗(t)) + s.2(t) − s∗.2(t)).d/b

− ξ2(U (x(t) − x∗(t)) + s.2(t) − s∗.2(t)))

(14)

which can be further converted into[W(t) 0
U I

] [
ẋ(t) − ẋ∗(t)
ṡ.2(t) − ṡ∗.2(t)

]
+
[Ẇ(t) 0

0 0

] [
x(t) − x∗(t)
s.2(t) − s∗.2(t)

]

= Φ

(
−ξ1

([W(t) 0
U I

] [
x(t) − x∗(t)
s.2(t) − s∗.2(t)

]).d/b

−ξ2

([W(t) 0
U I

] [
x(t) − x∗(t)
s.2(t) − s∗.2(t)

]))
(15)

where ṡ∗.2(t) and ẋ∗(t) are the time-derivative of s∗.2(t) and x∗(t), respectively. I ∈ R2n×2n

is a identity matrix.
Defining

ê(t) =
[W(t) 0

U I

] [
x(t) − x∗(t)
s.2(t) − s∗.2(t)

]
∈ R2n+m (16)

Eq. (15) can be reformulated as

˙̂e(t) = Φ
(
−ξ1 ê

.d/b
(t) − ξ2 ê(t)

)
(17)

where ˙̂e(t) is the time-derivative of ê(t). Then, the j-th element (with j ∈ {1, 2, · · · , 2n+m})
in ê(t) can be given as

˙̂e j (t) = ϕ(ê j (t)) (18a)

ϕ(ê j (t)) = φ
(
−ξ1ê

d/b
j (t) − ξ2ê j (t)

)
(18b)

where φ(·) is an element of Φ(·), which is a monotone increasing odd function.
We can be obtained that the equilibrium state of the dynamic equation (18a) is ê j = 0.

Then, we defined the Lyapunov function as

v
(
ê j
) = 1

2
ê2j (t)

which is a positive-definite function. Subsequently, the time-derivative of v
(
ê j
)
is

v̇
(
ê j
) = d v

(
ê j
)

d t
= ê j (t) ˙̂e j (t).

Substituting Eq. (18a) into the above equation, v̇
(
ê j
)
can be reformulated as

v̇
(
ê j
) = ê j (t)ϕ(ê j (t)). (19)

If φ(·) is a monotone increasing odd function, then

ϕ(ê j (t))

⎧⎨
⎩

> 0, ê j < 0
= 0, ê j = 0
< 0, ê j > 0
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Thus, we can obtained that

v̇
(
ê j , t

) = ê j (t)ϕ(ê j (t))

{= 0, ê j = 0
< 0, ê j �= 0

which demonstrates v̇
(
ê j
)
is a negative-definite function.

Then, according to Lyapunov stability theory [34], it can be concluded that dynamical
equation (18a) is asymptotically stable in the equilibrium state ê j = 0. Since ê(t) = {ê j (t)},
it’s further proved that ê(t) = 0 is the equilibrium state of dynamical equation (17) and is
asymptotically stable.

Considering the previous definition of ê(t), the equilibrium state ê = 0 can be expanded
as

ê(t) =
[W(t) (x(t) − x∗(t))
U (x(t) − x∗(t)) + s.2(t) − s∗.2(t)

]
=
[
0
0

]

which proves that the x(t) asymptotes to the x∗(t) at the equilibrium state ê = 0. That means
the vector-valued x(t) of FCNNmodel (11) can globally converge to the theoretical solution
x∗(t) of TLEIC problem (1). The proof of Theorem 1 is completed. �	

4.2 Convergence Analysis

In this subsection, finite-time convergence of FCNNmodel (11)without the specific activation
function is analyzed. Meanwhile, the convergent time of FCNN model (11) under linear
activation function is calculated.

Theorem 2 Given time-varying coefficient matrix W(t), time-varying vector l(t) and the
bounded vector constraints c, if Φ(·) is a monotone increasing odd function, then the vector-
valued x(t) of FCNN model (11) with any initial state x(0) can converge to the theoretical
solution x∗ of TLEIC problem (1) in finite time. Specifically, when the linear activation

functions is used, the convergent time of FCNNmodel (11) is tcv = b
ξ2(b−d)

ln
ξ2 ê j (0)(b−d)/b+ξ1

ξ1
.

Proof Finite-time convergence of the general monotone increasing activation functions Φ(·)
has been proved in detail in [35], which is omitted here.

Then, we consider the activation function Φ(·) is a linear function, i.e., Φ(ê(t)) = ê(t),
Eq. (18a) can be reformulated as

˙̂e j (t) = −ξ1ê
d/b
j (t) − ξ2ê j (t), j ∈ {1, 2, · · · , 2n + m}. (20)

Dividing both sides of Eq. (20) by êd/b
j (t), it can be obtained that

ê−d/b
j (t)

dê j
dt

+ ξ2ê
1−d/b
j (t) = −ξ1. (21)

Let ê1−d/b
j (t) = f (t), then

d f (t)

dt
= b − d

b
ê−d/b
j (t)

dê j (t)

dt
.

Eq. (21) can be reformulated into

d f (t)

dt
+ b − d

b
ξ2 f (t) = −b − d

b
ξ1. (22)
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At this point, Eq. (22) is a first-order linear differential equation, then its general solution
is

f (t) = e− ∫ t0 b−d
b ξ2 dt

(∫ t

0
−b − d

b
ξ1e

∫ t
0

m−n
m ξ2 dt dt + A

)

= e− ∫ t0 b−d
b ξ2dt

(∫ t

0
−b − d

b
ξ1e

b−d
b ξ2t dt + A

) (23)

where A is an arbitrary constant.
Since t = 0, A = f (0), then Eq. (23) can further expressed as

f (t) = e− b−d
b ξ2t

(
− b − d

b
ξ1

b

(b − d)ξ2
e
b−d
b ξ2t

∣∣∣∣
t

0
+ f (0)

)

= − ξ1

ξ2
+ ξ1

ξ2
e− b−d

b ξ2t + f (0)e− b−d
b ξ2t .

(24)

When ê j (t) = 0, f (t) = ê1−d/b
j (t) = 0 and t = tcv . Then, Eq. (24) can be converted into
(

ξ1

ξ2
+ f (0)

)
e− b−d

b ξ2tcv = ξ1

ξ2
. (25)

According to Eq. (25), the convergent time tcv from any initial state ê j (0) to equilibrium
state ê j = 0 is

tcv = b

ξ2(b − d)
ln

ξ2 f (0) + ξ1

ξ1

= b

ξ2(b − d)
ln

ξ2ê j (0)(b−d)/b + ξ1

ξ1
.

(26)

It is worth noting that ê j (0) is the j-th element of ê(0). Substituting Eq. (12) into Eq. (16),
we can obtained that

ê(t) =
[ W(t)x(t) − W(t)x∗(t)
Ux(t) + s.2(t) − (Ux∗(t) + s∗.2(t)

)
]

=
[ W(t)x(t) − l(t)
Ux(t) + s.2(t) − c

]

=
[W(t) 0

U V (t)

] [
x(t)
s(t)

]
−
[
l(t)
c

]

= K(t)z(t) − q(t).

Hence, ê(0) = K(0)z(0) − q(0). The proof of Theorem 2 is completed. �	
Remark 3 In the convergence analysis, finite-time convergence of the general monotone
increasing odd functions Φ(·) has been discussed in [35]. Thus, in order to simplify the
process, we only give the details of the finite-time convergence analysis of FCNNmodel (11)
under linear activation function. Although the process of analysis is similar to the theoretical
analysis presented in [30–32], this paper focuses on the solution of the TLEIC problem, and
the corresponding solution model, i.e., FCNNmodel (11), is quite different from the solution
model of time-varying matrix inversion, time-varying matrix square root and time-varying
Sylvester matrix equation in [30–32].
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Fig. 2 Numerical simulation results using the proposed FCNN model (11) with ξ1 = 1 and ξ2 = 1 under
linear activation function for TLEIC problem (1) solving. aState trajectories of x(t), bState trajectories of
ē(t), cResidual errors JE of FCNN model (11)

5 Numerical Verification of FCNNModel

In this section, the feasibility of the FCNNmodel (11) for TLEIC problem (1) is substantiated
by numerically simulated. In addition, comparative simulation results with the ZNN model
with various activation functions further verify the superiority of FCNN model (11).

5.1 Numerical Verification

In this numerical simulation, the specific forms ofW(t), l(t) and the constraints of x(t) (i.e.,
x1 and x2) in TLEIC problem (1) are considered as

W(t) =
⎡
⎣ 2 + sin(2t)

2 + cos(t)
2 cos(2t) − sin(2t) + 5

⎤
⎦
T

∈ R1×3,

l(t) = cos(t) + sin(t) ∈ R ,

x1 =
⎡
⎣−0.2

−0.2
−0.2

⎤
⎦ ∈ R3, x2 =

⎡
⎣ 0.2
0.2
0.2

⎤
⎦ ∈ R3.

Based on the above definition, FCNN model (11) is simulated and investigated with linear
activation function and different values of ξ1. In addition, design parameters ξ2 = 1 and
d/b = 5/7 are fixed in this simulation. The initial state x(0) ∈ R3 is set as "0.2×rand(3, 1)".
The relevant simulation results are displayed in Fig. 2-4.

Figure 2 shows the simulation results using FCNN model (11) with linear activation
function and ξ1 = 1,where the residual errors of FCNNmodel is defined as JE = ‖K(t)z(t)−
q(t)‖2 and the ‖ · ‖2 denotes the two-norms. The state trajectories of x(t) are shown in
Fig. 2awith five different initial states x(0). From this figure, we can see that all the state
trajectories of x(t) do not exceed [−0.2, 0.2]. To further verify that the x(t) presented in
Fig. 2a satisfy the linear equations of TLEIC problem (1), the state trajectories of ē(t) =
W(t)x(t)− l(t) are given in Fig. 2b. As observed in Fig. 2b, all states of ē converges to zero
in any initial state. In Fig. 2c, all the residual errors JE of FCNN model (11) converge to
zero within the range of 3.5 - 4 s. Combining with the analysis in Sect. 4, it can be concluded
that the x(t) presented in Fig. 2a simultaneously satisfies time-varying linear equations (i.e.,
W(t)x(t) = l(t)) and the inequality constraints (i.e., x1 ≤ x(t) ≤ x2). In other words,
x(t) presented in Fig. 2a can converge to the theoretical solution x∗(t) of TLEIC problem
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Fig. 3 Numerical simulation results using the proposed FCNN model (11) with ξ1 = 5 and ξ2 = 1 under
linear activation function for TLEIC problem (1) solving. aState trajectories of x(t), bState trajectories of
ē(t), cResidual errors JE of FCNN model (11)

0 2 4 6 8 10t(s)

-0.2

0

0.2

x 1

0 2 4 6 8 10t(s)

-0.2

0

0.2

x 2

0 2 4 6 8 10
t(s)

-0.2

0

0.2

x 3

(a)

0 2 4 6 8 10
t(s)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.02 0.04 0.06 0.08
-0.15

-0.1

-0.05

0

0.05

(b)

0 2 4 6 8 10
t(s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

J E

0.065 0.07 0.075 0.08 0.085
0

0.5

1

1.5

2
10-3

(c)

Fig. 4 Numerical simulation results using the proposed FCNN model (11) with ξ1 = 50 and ξ2 = 1 under
linear activation function for TLEIC problem (1) solving. aState trajectories of x(t), bState trajectories of
ē(t), cResidual errors JE of FCNN model (11)

(1) within finite time. Therefore, the feasibility and finite-time convergence of FCNN model
(11) with linear activation function and ξ1 = 1 for TLEIC problem (1) is substantiated.

In order to verify the influence of different values of ξ1 on the convergence performance of
FCNNmodel (11), numerical simulations are carried out for ξ1 = 5 and ξ1 = 50, respectively.
The relevant simulation results are displayed in Figs. 3 and 4.

As shown in Figs. 3a and 4a, all the state trajectories of x(t) obtained by FCNN model
(11) with linear activation function are within [−0.2, 0.2]. The state trajectories of ē(t) in
Figs. 3b and 4b both converge to zero. Besides, we can observe that the residual errors JE of
FCNN model (11) with ξ1 = 5 converge to zero within the range of 0.75 - 0.85 s in Fig. 3c.
Similarly, in Fig. 4c, the residual errors of FCNN model (11) with ξ1 = 50 converge to zero
within the range of 0.075 - 0.085 s. This indicates that the x(t) presented in Figs. 3a and
4a simultaneously hold W(t)x(t) = l(t) and x1 ≤ x(t) ≤ x2 true. Thus, the feasibility
and finite-time convergence of FCNN model (11) with linear activation function for TLEIC
problem (1) is substantiated again. Furthermore, the comparison of Figs. 2c, 3c and 4c shows
that as the value of ξ1 increases, the convergent rate of residual error JE can be improved
and the convergent time can be shortened, that is, increasing ξ1 enhances the convergence
performance of the proposed FCNN model (11). Note that the value of ξ1 should be selected
appropriately for experimental or simulation purpose.
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Fig. 5 Comparative results of residual errors JE = ‖K(t)z(t) − q(t)‖2 using the proposed FCNN model
(11) and ZNN model for solving TLEIC problem (1) with different values of ξ1 and β1 when ξ2 = 1 is fixed.
a ξ1 = 1 and β = 1, b ξ1 = 5 and β = 5, c ξ1 = 50 and β = 50

5.2 Comparative Verification

For illustrate the superiority of the proposed FCNN model (11) for TLEIC problem (1),
comparisons between ZNN model are stated in this subsection.

For comparison convenience, the design formula of ZNN is shown as

ė(t) = −βΦ (e(t))

and the following three activation functions is used to ZNN.

1) The hyperbolic-sine activation function (ZNN-h):

φ(ei (t)) = exp ei (t) − exp (−ei (t))

2
.

2) The linear activation function (ZNN-l):

φ(ei (t)) = ei (t).

3) The bisigmoid activation function (ZNN-bi):

φ(ei (t)) = 1 − exp(−αei (t))

1 + exp(−αei (t))
, with α > 2.

Note that ei (t) as the i−th element of e(t). The relevant simulation results are displayed in
Fig. 5.

Figure 5 presents the residual errors JE = ‖K(t)z(t) − q(t)‖2 of FCNN model (11) with
linear activation function and ZNNmodel with above three activation functions (i.e., ZNN-h,
ZNN-l, ZNN-bi). In addition, the value of ξ2 and d/b are the same as defined in Sect. 5.1. The
adjustable parameter ξ1 and β are simultaneously set as 1, 5, 50 in Fig. 5a, b, c, respectively.
As observed in Fig. 5a, b, c, the residual errors of FCNN model (11) with linear activation
function converge to zero within 3.5 s, 0.75 s and 0.075 s, respectively, while at the same
time, ZNN-h, ZNN-l and ZNN-bi converge slower. This comparison results indicate that
the convergent time of FCNN model (11) is shorten than that of ZNN model. Furthermore,
Table 1 shows the convergent accuracy of FCNN model (11) and ZNN model when residual
errors converge to zero, which can be seen that the convergent accuracy of FCNN model
(11) is better than that of ZNN-h, ZNN-l and ZNN-bi. Hence, the excellent convergence
performance of FCNN model (11) with linear activation function as compared with ZNN-h,
ZNN-l and ZNN-bi for solving TLEIC problem (1) is verified.
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Table 1 Comparisons of convergent accuracy using the proposed FCNN model (11) with the ZNN model for
TLEIC problem (1) solving

Neural network solver Activation function Value of ξ1 Convergent accuracy

The proposed FCNN Linear function 1 10−6

5 10−6

50 10−7

ZNN Hyperbolic sine function 1 10−4

5 10−5

50 10−6

Linear function 1 10−4

5 10−5

50 10−6

Bipolar sigmoid function 1 10−5

5 10−5

50 10−6

6 Application of FCNNModel on Redundant Manipulators

6.1 Problem Description

In this subsection, we demonstrate the application of the proposed FCNNmodel to trajectory
planning of redundantmanipulators. The corresponding inverse-kinematics problem is shown
as follows:

⎧⎪⎪⎨
⎪⎪⎩

J(θ(t))θ̇(t) = ṙd(t) + fb(rd − f (θ))

θ− ≤ θ(t) ≤ θ+

θ̇
− ≤ θ̇(t) ≤ θ̇

+
(27)

where J(θ(t)) ∈ Rm×n is the Jacobian matrix. θ(t) ∈ Rn is a joint-angle vector. θ̇(t) ∈ Rn

is a joint-velocity vector. Moreover, θ± ∈ Rn and θ̇
± ∈ Rn represents the constraints of θ(t)

and θ̇(t), respectively. rd ∈ Rm and f (θ) ∈ Rm are the expected trajectory and the actual
trajectory of the end effector, respectively. fb(rd − f (θ)) is the feedback on the position, in
which fb ∈ R (with fb > 0) represents the feedback gain of the position.

Since the scheme (27) is established based on the velocity layer, the joint-angle constrains
(i.e., θ− ≤ θ(t) ≤ θ+) need to be converted into the following joint-velocity constrains [36]:

	
(
θ− − θ(t)

) ≤ θ̇ ≤ 	
(
θ+ − θ(t)

)

where large value of parameter 	 > 0 may cause quick joint deceleration when a joint
approaches its limits [5]. Then, by combining the above formula with θ̇

− ≤ θ̇(t) ≤ θ̇
+
, the

inequality constraints on θ̇(t) can be transformed into

ϑ− ≤ θ̇ ≤ ϑ+
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where the i-th element (with i = 1, 2, · · · , n) in ϑ− and ϑ+ can be expressed as

ϑ−
i = max

{
θ̇−
i , 	

(
θ−
i − θi

)}
,

ϑ+
i = min

{
θ̇+
i , 	

(
θ+
i − θi

)}
.

Furthermore, scheme (27) can be re-written as

{
J(θ(t))θ̇(t) = ṙd(t) + fb(rd − f (θ))

ϑ− ≤ θ̇ ≤ ϑ+ . (28)

Considering the TLEIC problem (1) described in Sect. 2, which is similar to the form
of scheme (28). That is, θ(t) corresponds to x(t), J(θ(t)) corresponds to W(t), ṙd(t) +
fb(rd − f (θ)) corresponds to l(t), ϑ− and ϑ+ correspond to x1 and x2 respectively. Hence,
the FCNN model (11) proposed in this paper can be used to solve scheme (28) with

G(t) =
[
J(θ(t)) 0

U 2V (t)

]
, H(t) =

[
J̇(θ(t)) 0

0 0

]
,

K(t) =
[
J(θ(t)) 0

U V (t)

]
, z(t) =

[
θ̇(t)
s(t)

]
,

q(t) =
[
ṙd(t) + fb(rd − f (θ))

c

]
.

To further illustrate the practical feasibility of the FCNN model (11), FCNN model (11)
will be applied to the six-degree-of-freedom (six-DOF) planar manipulator and PUMA560
redundant manipulator.

6.2 Six-DOF Planar Manipulator

In this simulation, the proposed FCNN model (11) with ξ1 = 100 and linear activation
function is applied to the circular trajectory planning of the six-DOF planar manipulator with
joint constraints. Other adjustable parameters ξ2 = 1, d/b = 5/7 and fb = 1 in FCNNmodel
(11). The initial joint-angles is set to θ(0) = [π/4;π/4;π/4;π/4;π/4;π/4]. In addition,
the specific upper and lower bounds of θ(t) and θ̇(t) (i.e., θ±

i and θ̇±
i ) are given in Table 2.

The entire period of motion in this simulation is 10 s. The relevant simulation results are
displayed in Fig. 6.

Figure 6a presents the motion trajectory of the six-DOF planar manipulator tracking the
circular trajectory. Figure. 6b shows the desired trajectory and the actual trajectory of the end-
effector. As we can see from Fig. 6a, b, the actual trajectory of the end-effector coincides with
the desired circular trajectory. In Fig. 6c, the tracking errors (i.e., εX , εY ) of the end-effector
of six-DOF planarmanipulator is shown. It can be seen that themaximum tracking error is not
more than 3 × 10−5 m. This illustrates that the end-effector of six-DOF planar manipulator
can successfully track the desired circular trajectory with a small error. Furthermore, Fig. 6d,
e show the state trajectories of θ(t) and θ̇(t) of six-DOF planar manipulator. The maximum
and minimum values of each θ(t) (i.e., max θi and min θi ) and θ̇(t) (i.e., max θ̇i and min θ̇i )
are listed in Table 2. It can be seen that the maximum and minimum values of θ(t) and θ̇(t)
of the six-DOF planer manipulator are kept within the given joint constraints. In conclusion,
these results verify the effectiveness of FCNN model (11) to the trajectory planning of the
six-DOF planar manipulator with joint constraints. This further illustrates the capability of
the proposed FCNN.
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Fig. 6 Computational results of six-DOF planar manipulator tracking circular trajectory with joint-angle
constrains and joint-velocity constrains by the FCNN model (11) with ξ1 = 100 and ξ2 = 1 under linear
activation function. aMotion trajectory of the six-DOF planar manipulator, bEnd-effector trajectory, cEnd-
effector tracking errors, dTrajectories of joint-angle, eTrajectories of joint-velocity

Table 2 Joint constrains used in the simulation of the six-DOF planar manipulator and the minimum and
maximum of joint variables obtained by the FCNN model (11)

Joint θ+
i (rad) θ−

i (rad) max θi min θi θ̇+
i (rad/s) θ̇−

i (rad/s) max θ̇i min θ̇i

θ1 0.95 −0.95 0.9391 0.7074 0.1 −0.1 0.0620 -0.0846

θ2 π /3 −π /3 0.9845 0.7383 0.2 −0.2 0.0843 −0.1115

θ3 π /3 −π /3 0.8763 0.7266 0.2 −0.2 0.0534 −0.0481

θ4 π /3 −π /3 0.7861 0.5368 0.2 −0.2 0.0987 −0.1073

θ5 π /3 −π /3 0.7854 0.6391 0.08 −0.08 0.0541 −0.0568

θ6 π /3 −π /3 0.7854 0.5575 0.2 −0.2 0.0875 −0.0914

6.3 PUMA560 Redundant Manipulator

In this simulation, the proposed FCNNmodel (11) with ξ1 = 100 and linear activation func-
tion is applied to theoctagon trajectoryplanningof thePUMA560 redundantmanipulatorwith
joint constraints,where the length of the octagon is 1. The values of ξ2,d/b and fb are the same
defined as Sect. 6.1. The initial joint-angles is set to θ(0) = [π/4; 0; 0;−π/4;π/4;−π/4].
In addition, the limitations of joint-angles and joint-velocities (i.e., θ±

i and θ̇±
i ) are given in

Table 3. Note that the entire period of motion in this simulation is 8 s. The relevant simulation
results are displayed in Fig. 7.
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Fig. 7 Computational results of PUMA560 redundantmanipulator tracking octagon trajectorywith joint-angle
constrains and joint-velocity constrains by the FCNN model (11) with ξ1 = 100 and ξ2 = 1 under linear
activation function. aMotion trajectory of the PUMA560 redundant manipulator, bEnd-effector trajectory,
cEnd-effector tracking errors, dTrajectories of joint-angle, eTrajectories of joint-velocity

Table 3 Joint limits used in the simulation of the PUMA560 redundant manipulator and the minimum and
maximum of joint variables obtained by the FCNN model (11)

Joint θ+
i (rad) θ−

i (rad) max θi min θi θ̇+
i (rad/s) θ̇−

i (rad/s) max θ̇i min θ̇i

θ1 2.151 −2.512 0.9542 0.5392 0.2 −0.2 0.1966 −0.1966

θ2 0.750 −3.078 0.2881 0 0.3 −0.3 0.1835 −0.1853

θ3 3.126 −0.905 0 −0.5006 0.3 −0.3 0.2854 −0.2834

θ4 2.537 −1.812 −0.7854 −1.0254 0.3 −0.3 0.0477 −0.1833

θ5 1.651 −1.651 0.8412 0.3638 0.3 −0.3 0.2842 −0.2827

θ6 4.076 −4.158 −0.7825 −0.7854 0.3 −0.3 1e−03 3.58e−04

Figure 7a presents the movement trajectory of the PUMA560 redundant manipulator.
Figure 7b shows the actual motion trajectory and the expected octagonal trajectory of the
end-effector. As can be seen from these two figures, the actual trajectory of the end-effector
coincideswith the desired octagonal trajectory. As observed in Fig. 7c, themaximum tracking
error of the end-effector of PUMA560 redundant manipulator, i.e., max{εX , εY , εZ}, is
less than 3.1 × 10−5 m, which further verifies that the end-effector can successfully track
the expected octagonal trajectory with minimal error. Subsequently, Figs. 7d, e show the
state trajectories of θ(t) and θ̇(t) of PUMA560 redundant manipulator. The maximum and
minimum values of each θ(t) (i.e., max θi and min θi ) and θ̇(t) (i.e., max θ̇i and min θ̇i )
are listed in Table 3. It can be seen that the θ(t) and θ̇(t) in the PUMA560 redundant
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Fig. 8 Comparative results of residual errors JE = ‖K(t)z(t)− q(t)‖2 using the proposed FCNNmodel (11)
and ZNN model for trajectory planning of manipulator with joint limitations. aResidual errors in six-DOF
planar redundant manipulator, bResidual errors in PUMA560 redundant manipulator

manipulator during movement are kept within the given joint constraints. In summary, these
simulation results verify the effectiveness and practicability of FCNNmodel (11) for solving
the trajectory planning problem of PUMA560 redundant manipulator with joint constraints.

To illustrate the excellent convergence performance of FCNN model (11), the residual
errors JE = ‖K(t)z(t)− q(t)‖2 using FCNNmodel (11) with linear activation function and
ZNN model with three activation functions (i.e., ZNN-h, ZNN-l, ZNN-bi) are carried out
in Fig. 8. Note that the ZNN-h, ZNN-l and ZNN-bi are defined in Sect. 5. In addition, the
adjustable parameter of β is set as 100 in ZNN model. Figure 8a presents the residual errors
JE of FCNN model (11) and ZNN model for the circular trajectory planning of six-DOF
planar manipulator with joint constraints is shown. Figure 8b shows the residual errors for the
octagon trajectory planning of the PUMA560 redundant manipulator with joint constraints.
From these two figures, it can be seen that the residual errors JE of FCNN model (11)
converge to zero within 0.04 s and 0.048 s, respectively, while the convergent rate of ZNN-h,
ZNN-l and ZNN-bi is slower at t = 0.04 s and t = 0.048 s. These results illustrate that FCNN
model (11) can solve the trajectory planning problem of manipulator with joint constraints
in finite time, and the convergence performance of FCNN model (11) is better than that of
ZNN-h, ZNN-l and ZNN-bi.

Above all, the conclusions obtained from the simulation results in Figs. 6, 7 and 8 can be
summarized as follows:

1. The effectiveness and availability of FCNN model (11) for the trajectory planning of
redundant manipulator with joint constraints is verified.

2. The convergence performance of FCNN model (11) with linear activation function is
superior to ZNNmodel with hyperbolic activation function, linear activation function and
bipolar sigmoid activation function for the trajectory planning of redundant manipulators
with joint constraints.

7 Conclusion

For finding the solution of TLEIC, a FCNN model has been proposed in this paper. Specifi-
cally, by introducing a non-negative slack variable, the TLEIC is transformed into a class of
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time-varying linear equations. Then, the proposed FCNN model is used to solve the trans-
formed equations. By using the Lyapunov stability theorem, the stability of the FCNNmodel
(11) is proved concretely. Meanwhile, the convergent time of the FCNN model (11) with
linear activation function is calculated, which proves its finite-time convergence. Compared
with the ZNN model with three kinds of activation functions (i.e., ZNN-h, ZNN-l and ZNN-
bi) in numerical simulation, the convergent speed, convergent time and convergent accuracy
of the FCNN model (11) are significantly improved in solving TLEIC problem (1). Finally,
the effectiveness and feasibility of the FCNN model (11) are further demonstrated through
its application to two types of redundant manipulator with joint constraints. Further work
may lie in the application of FCNN model (11) to a practical redundant manipulator, and the
discrete-time form of the FCNN model (11) will be studied to solve the TLEIC.
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