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Abstract
Real-time video anomaly detection and localization still prevail as a challenging task.Autoen-
coders are expected to give high reconstruction error for abnormal events than normal events
while trained on video segments of normal events. Nevertheless, this assumption is not always
true in practice. Sometimes the autoencoder offers better generalization. Therefore, it also
reconstructs abnormal events well, leading to slightly degraded performance for anomaly
detection. To alleviate this issue, we propose a Skip connected andMemory Guided Network
(SMGNet) for video anomaly detection. The memory guided network with skip connection
help in avoiding loss of meaningful information such as foreground patterns, in addition to
memorizing significant normality patterns. The effect of augmentingmemory guided network
with skip connection in the residual spatiotemporal autoencoder (R-STAE) architecture is
evaluated. The proposed technique achieved improved results over three benchmark datasets.

Keywords Video anomaly detection · Normality modeling · Memory guided network ·
Spatio temporal autoencoders · Residual blocks

1 Introduction

The task of anomaly detection has recently gained a lot of attention in the field of video
surveillance. Video anomaly detection (VAD) and localization play an inevitable role in
ensuring public and private safety. Unlike the supervised video classification task, there
exists various challenges that one faces when building a VAD system. One of the challenges
being insufficient training data for anomalous activities, which creates an imbalance between
normal and anomalous samples.The taskbecomes incredibly challenging since the data points
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lie in a higher dimension. Also, there are varying kinds of anomalies based on the scenario.
For example, running in the middle of the roadmight be considered anomalous while running
in a park is not. Due to these challenges, it becomes impractical to address VAD with typical
supervised video event classification techniques. Conventionally, it is treated as an outlier
detection problem. A normality model is trained based on normal activities present in the
training data, and deviations from the normality model are detected as anomalies while
testing.

Recent techniques proposed for VAD are based on unsupervised deep learning architec-
tures,which involve training an autoencoder based on normal video events, and the anomalous
activities are then identified based on the reconstruction error. However, few of these meth-
ods [14,43] solely depend on a 2D convolutional autoencoder (2D-CAE) or fully-connected
autoencoder (FC-AE) in which the convolution and pooling operations are performed only in
the spatial dimensions, in turn, fails to capture the temporal characteristics of abnormal activ-
ities, which are essential for video anomaly detection. To alleviate this issue, few approaches
[3,44] incorporated 3D-convolution layers and convolutional LSTM (C-LSTM) layers to
autoencoder to derive motion information from video events.

In [7], we proposed a Residual Spatio-temporal Autoencoder (R-STAE) approach for
normality modeling. Spatio-temporal features are extracted from video segments and resid-
ual blocks are used to mitigate the vanishing gradients problem. This approach provides
incremental performance consistently for three datasets used for abnormality detection. The
problem with normality model-based approaches is that autoencoders tend to generalize
well so that few anomalous activities might also be reconstructed well. To avoid this issue,
the memory-guided network is used to capture and store the significant normal patterns in
MemAE [13] approach. Inspired by this approach,wepropose aSkip-Connected andMemory
Guided Network (SMGNet) as an extension to our R-STAE [7] based approach. Unlike the
MemAE [13] approach where the memory module is augmented in the convolution autoen-
coder (CAE), we propose the skip connected memory module in the R-STAE architecture
instead of CAE to improve detection performance. The proposed architecture captures sig-
nificant normal patterns for normality modeling. Memorizing the significant normal patterns
sometimes leads to loss of information while reconstructing normal foreground objects since
only a minimal set of significant normal patterns are used while reconstruction. To overcome
this issue, a skip connection is also introduced in the SMGNet approach to compensate for
this kind of loss of information. The proposed SMGNet approach is capable of performing
better than the state-of-the-art models.

2 RelatedWork

So far in the literature, the techniques proposed for VAD fall under the following cate-
gories: (1) Modeling events using hand-crafted feature based techniques which make use
of features such as histogram of gradients [4], histogram of optical flow [5], trajectories
[36], 3D-gradients [19], etc. Extracting hand-crafted features is time-consuming, and also
their representation capabilities are limited for complex visual interactions. (2) Unsupervised
deep learning-based methods which involve training an autoencoder based on normal video
events and the anomalous activities are then identified based on the reconstruction error. In
this section, a few important normlaity modeling methods are discussed for VAD.

Feng et al. [10] propose to use PCANet [2] modeled using spatiotemporal gradients of
normal image patches to derive the deep features. Then to train a generative model for
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these normal patterns, the Deep GMMs [33] are used. The likelihood scores given the deep
GMM for the testing patterns are used as anomaly scores to detect abnormal activities.
Srivastava et al. [37] proposed a composite FC-LSTMmodel that merges an autoencoder and
predictive LSTM model. Basically, the autoencoder sometimes learns insignificant features
of the input data by memorization. But the memorization of input patterns does not help
much in probabilistically predicting the future frames. Consequently, the role of a future
frame predictor is to incorporate the memory of the previous frames. But it does not cope
well with the generalized loss function of the autoencoder. But the composite LSTM [10]
model alleviates these issues in forming more significant video representation to predict the
future frames.

In [31], the C-LSTM model was used along with a composite LSTM model that follows
an encoder-decoder architecture. Interestingly, this architecture consists of two streams, one
is used for reconstruction, and another is used for prediction. In [6], a recurrent autoencoder
model is combined with an LSTM to learn the temporal features from input image patches
to detect video forgery.

Hinami et al. [15] proposed a novel approach for recounting the anomalous events as they
are detected. In this approach, firstly they train a Fast-RCNN model [12] on the large-scale
Visual Genome [20] and COCO [25] datasets to detect the activities and objects. The frame-
wise features are extracted from the last fully connected layer, and anomalies are detected
using a one-class SVM. Alternatively, the likelihood score is also obtained with respect to
kernel density estimate with Radial Basis Function (RBF) kernel for further decisionmaking.

The 2D-ConvNets are highly effective in learning representations for image classification,
but they are unable to capture the temporal changes present in consecutive frames to solve
video related problems. For this purpose, the 3D-Convolution architectures used for action
recognition [39] are used to design the 3D-autoencoders to obtainmeaningful representations
that are invariant to intra-class spatiotemporal changes [45]. This approach uses stacked
frames as an input to the 3D-filters as done in Fully connected AE [14] approach. The
feature maps obtained out of 3-D filters are used to model the spatiotemporal changes. The
prediction stream better handles the issue of poorly reconstructed normal events by the
autoencoder stream. Local temporal coherence was taken into consideration while designing
the prediction loss.

Sun et al. [38] proposed a normality model by exploring the Growing Neural Gas (GNG)
[11] algorithm with Spatio-temporal interest point features as inputs extracted from video
snippets. They incorporate online updates in GNG using techniques such as neuron deletion,
insertion, early stopping criteria, and imposing adaptive learning rates. During the testing
phase, the patterns that are far away from the nearest neighbors in the trained model are
considered anomalies.

As an extension to normality clustering-based approach [17], Ionescu et al. extended
anomaly detection as a binary classification problem [16]. Initially, an unsupervised feature
learning framework was proposed with the help of object-centric autoencoders to learn the
motion and appearance based features. Secondly, the training data is partitioned into clusters
of normal patterns. Then they use a one-vs-rest approach by treating one of the clusters as
normal, and the rest acts as dummy anomalies. During testing, a video patch is labeled as
abnormal if the binary classifier provides a negative score for the patch.

Ramachandran et al. [34] explore the Siamese neural network to develop the nearest
neighbour scheme as an alternative to the hand-crafted feature-based representations. They
model a Siamese neural network to classify between normal and anomalous video patches by
using similarity measures. Firstly, an exemplar model comprised of unique normal patterns is
built using training data of normal events only. The anomaly scores for the test video patches
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are assigned based on the nearest neighbour scoring between the new testing patches and the
exemplar model learned beforehand.

Li et al. [23] proposed aMultivariateGaussianFullyConvolutionAdversarialAutoencoder
(MGFC-AAE) for anomaly detection and localization in videos. Their approach works based
on the fact that the latent representations of normal video segments will be under a prior
distribution obtained out of the trained autoencoder. Whereas the anomalous videos do not
fall under this distribution. To derive the latent representations, CNN layers are used in the
encoder part of the network. An energy-based technique is utilized to get the anomaly score of
a video segment based on the probability score obtained out of the trained model. Employing
a two-stream network with gradients and optical flow as inputs proved to be effective in
attaining meaningful representations of the video segments, which in turn comprehensively
improves the detection results. Finally, a multi-scale patch-based structure is also employed
to handle the varying perspective of a few scenes.

A semi-supervised learning approach for VAD using dual discriminator based GAN
architecture is proposed in [9]. Unlike the other techniques, this approach focuses more
on representing the motion representation. During training, the future frames are predicted
through the generator, and they try to coerce the predicted frames to be similar to the ground
truth. Both the frame andmotion discriminators are utilized to force the generator to construct
much realistic successive frames. The role of the frame discriminator is to evaluate whether
the upcoming frames are real. The purpose of the motion discriminator is also the same with
optical flows as inputs. The generated sequence of frames is used to estimate the fake optical
flow fields. During testing, the predicted frames are evaluated based on a regularity score.
By intuition, the frames providing low regularity scores are detected as abnormal frames.

3 Skip Connected andMemory Guided Network (SMGNet) for Video
Anomaly Detection

Recent approaches pose detecting video anomalies as an outlier detection problem, where
the focus is on modeling the patterns of normal events, and the events that deviate from the
normality model are treated as anomalies. The existing autoencoder architectures use 3D-
Convolution layers and LSTM layers to effectively capture the spatiotemporal information
present in the videos. In a recent work [24], a two-stream autoencoder architecture is used to
extract appearance and motion information, respectively.

A notable issue with the conventional autoencoder models is that there is always a possi-
bility for the autoencoder to generalize well, even for anomalous frames, thereby reducing
the reconstruction error, which is unfavorable. To alleviate this issue, a memory module was
used to capture and store the prototypical normal patterns inMemAE [13] approach. Inspired
by this approach, we propose Skip connected and Memory Guided Netowork (SMGNet) as
an extension to our R-STAE [7] based approach. Unlike theMemAE [13] approach where the
memory module is augmented in the convolution autoencoder (CAE), we propose the skip
connected memory module in the R-STAE architecture instead of CAE to improve detection
performance. The proposed architecture memorizes significant normal patterns for recon-
struction based normality modeling. Memorizing the significant normal patterns sometimes
leads to loss of information while reconstructing normal foreground objects since only a
minimal set of prototypical normal patterns are used while reconstruction. To overcome this
issue, a skip connection is also introduced in the SMGNet approach to compensate for this
kind of loss of information.
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3.1 Normality Modelling Using SMGNet

The architecture of the proposed SMGNet is shown in Fig. 1. The encoder consists of two
3-D convolution layers one Convolution-LSTM (C-LSTM) layer. The output channels of the
3D-convolution layers are fixed as 128, and 64 units respectively. Simple LSTMs are not able
to hold on to appearance information of video sequences. To address this issue, C-LSTM
was introduced where all the states are 3D tensors and can accommodate spatial dimensions.
Let xt be the value of input sequence at time step t , and hidden state is given by h. The gates
are denoted as i, f, o and the cell output is given by C. The convolution operator is given by
�, � is the Hadamard product, W denotes the weight matrices and bias vectors are given by
b. As mentioned in [42], Conv.LSTM is given by:

it = σ(Wi�[xt , ht−1] + Wi � Ct−1 + bi ) (1)

ft = σ(W f �[xt , ht−1] + W f � Ct−1 + b f ) (2)

ot = σ(Wo�[xt , ht−1] + Wo � Ct + bo) (3)

Ct = ft � Ct−1 + it � tanh(Wc�[xt , ht−1] + bc) (4)

ht = ot � tanh(Ct ) (5)

Residual Networks: The residual blocks used in the proposed SMGNet architecture is pre-
sented in Fig. 1, and the architecture configuration is presented in Table 1. The residual
network makes use of a skip connection apart from the existing layers. This helps in avoiding
the loss of meaningful information from the previous convolution layers and also bestow
for gradient flow while backpropagation, thus helps in taking control over the vanishing
gradients. The equation of a residual block with input x is given by,

yr = F(x) + x (6)

Here, x denotes encoded feature maps before passing them into the residual block. F(x)
refers to encoded feature maps obtained from the residual blocks, and yr denotes the encoded
representation obtained by adding x and F(x). ReLUactivation function is used in the residual
layers. Also, Batch Normalization (BN) is employed to improve the training efficiency of the
SMGNet. The hyper-parameters such as strides, number of kernels, and the kernel size were
chosen empirically, whereas the kernel values are initialized randomly.

3.2 Skip Connected andMemory Guided Representation

The encoded representation from the last layer of the residual block is referred as yr, which
is then fed to the memory-guided network to obtain ŷr as shown in Fig. 1. The memory
matrix M is randomly initialized with weights of dimension NxC . N is empirically chosen
to be 2000, and the dimension of C is assumed to be the same as that of yr. The row vector
mi denotes each memory item in M , where mi ranges from 1 to N . The memory unit M is
updated via backpropagation and gradient descent while training. During the backward pass,
gradients for the memory items mi which have non-zero addressing weights wi can remain
non-zero. Once an encoded representation yr is passed into the memory-guided network, the
distance of yr with respect to all the memory items mi is calculated as given below:

s(yr,mi) = yrmi
T

‖yr‖ ‖mi‖ (7)
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Fig. 1 Architecture of Skip Connected and Memory Guided Network (SMGNet)

Once the similarity s(yr,mi) is computed for the encoded representation of the test seg-
ment with every memory item, each weight wi of the weight vector w is computed using the
softmax operation as follows:

wi = es(yr,mi)

∑N
j=1 e

s(yr,mj)
(8)

Therefore, the memory-guided network redeems the memory items which are similar to
yr, to obtain the memory-based representation ŷr for reconstruction. After finding the weight
vector w, a ReLU activation function is applied on w to obtain ŵ for inducing sparsity. The
newly updated sparse weight vector ŵ is used to select the features from the memory matrix
that represent the normality in the input frame.

The reconstructed frame will have a large margin of error when the model receives a
frame that contains anomalous activity. But there is still a possibility for the calculated ŷr to
reconstruct the anomaly by combining several parts of the normality feature vectors contained
in the memory matrix. This happens especially with a dense w.

One of the potential solutions is to make sure that reconstruction uses only relevant normal
patterns. This can be imposed if the vector w is sparse, which is achieved based on a certain
threshold chosen with respect to the size (N ) of the Memory matrix M (threshold range:
[1/N to 3/N]). The values in the w vector that are lesser than the threshold are made as 0,
which makes the vector ŵ sparse. One of the simpler methods of implementing this is to use
a ReLU activation function to obtain ŵ.

ŵ = h(wi ; threshold) =
{
wi , i f wi > threshold
0 otherwise

(9)

After the shrinkage operation, the new latent representation ŷr is obtained using the equa-
tion,

ŷr =
N∑

i=1

ŵimi (10)

Since the network is forced only to store the most significant normality patterns, the
reconstruction is performed only based on a small set of memory items stored in the memory.
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Table 1 Architecture of the proposed R-STAE

Layer Output-Map Dim. Kernel Stride Output Channel

Image 227 × 227 × 10 – – –

Conv-3D 2 (tanh) 55×55×10 11×11×11 4 128

Conv-3D 3 (tanh) 26×26×10 5×5×1 2 64

C-LSTM (Conv) 26×26×10 3×3 1 64

Residual Block 1

Conv-3D 4 (ReLU) 26×26×10 3×3×1 1 64

Conv-3D 5 (ReLU) 26×26×10 3×3×1 1 64

Residual Block 2

Conv-3D 6 (ReLU) 26×26×10 3×3×1 1 64

Conv-3D 7 (ReLU) 26×26×10 3×3×1 1 64

Residual Block 3

Conv-3D 8 (ReLU) 26×26×10 3×3×1 1 64

Conv-3D 9 (ReLU) 26×26×10 3x3x1 1 64

Memory Guided Network

Conv.LSTM (De-Conv) 26×26×10 3×3 1 128

DeConv-3D 1(tanh) 55×55×10 5×5×1 2 128

DeConv-3D 2(tanh) 227×227×10 11×11×1 4 128

Bold indicates the configuration of residual blocks

This sometimes leads to loss of information while reconstructing normal foreground objects
since only a minimal set of significant normal patterns are used while reconstruction. To
overcome this issue, a skip connection is also introduced in the SMGNet as shown in Fig. 1
to compensate this kind of loss of information. Using the skip connection, the encoding yr
obtained before the memory-guided network is concatenated to the encoding ŷr obtained
after the memory-guided network along the channel dimension to form a representation P,
and this representation is used for reconstruction by the decoder. This concatenation helps the
decoder to reconstruct the incoming frames using significant normal patterns present in the
memory, slightly compromising the representation capacity of the convolution layers during
normality modeling.

3.3 Anomaly Detection Using SMGNet

The architecture details of the SMGNet approach are presented in Table 1. A normality
model is learned using normal video segments given as input to the SMGNet network. Means
Squared Error (MSE) is computed using the frame-wise difference between the reconstructed
and actual frame. It becomes evident that the reconstruction error for normal frames will be
higher than that of abnormal frames. The normality scores for all the frames in a segment
are computed as given below, where T is the number of frames in a test segment.

normality score = 1 − (MSE − min(MSEt ))/max(MSEt )), t = 1.....T (11)

The scores will be in the range [0 − 1]. Finally, a threshold value is empirically chosen and
compared with the normality scores to detect the anomalous frames.
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Fig. 2 Normal foreground objects are reconstructed well with a skip connection - Ped 2 dataset

The aim is to achieve a meaningful reconstruction of the normal video segments. Dur-
ing the training phase, the reconstruction error has to be minimized for normal events only
through architectural stability. No pre-trained models are used in the spatio-temporal autoen-
coder architecture to extract the latent representations. Instead of RGB images, the SMGNet
network uses grayscale images to avoid the reconstruction of unnecessary information.

The dimension of the input video segment is 227*227*1*10, where 1 denotes one channel
of the gray-scale image, and 10 is the number of continuous frames forming a video segment.
The effect of adding skip connections to the SMGNet network is observed in Fig. 2. The skip
connection helped in achieving meaningful reconstruction of normal events without losing
much spatiotemporal information. Hence, the proposed memory-guided network with skip
connection is expected to improve the abnormality detection performance.

4 Experimental Studies

4.1 Datasets Used

The CUHK-Avenue dataset contains 16 training videos(15,328 frames) and 21 test
videos(15,324 frames) with 47 abnormal events, which include a person walking in the
wrong direction, running, throwing objects, etc. The resolution of each image is 360*640
with a frame rate of 25 frames per second (fps).

The UCSD Ped2 dataset contains 16 train videos and 12 test videos with 12 abnormal
events, which include driving a vehicle, skating, riding a bike, etc. The resolution of each
image is 240*360.

The Live Video (LV) dataset consists of 30 videos with unique scenarios, each containing
both the train and test sequences with abnormal events such as vehicle accidents, robbery,
etc. The frame rate varies from 7.5 to 30 frames per second, and its resolution varies from a
minimum of 176*144 to a maximum of 1280*720.

4.2 Training

The training videos are first converted to image frames and are resized to 227 × 227. A
set of 10 consecutive frames is considered as one video segment. The configuration of the
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Table 2 Influence of memory
guided network in the SMGNet
architecture

Configuration Avenue (AUC) LV (AUC)

W/o memory 0.82 0.68

With memory 0.83 0.71

Table 3 Influence of skip connections in the SMGNet architecture

Configuration Avenue (AUC) LV (AUC)

With memory and w/o skip connection 0.83 0.71

With memory and skip connection 0.84 0.73

architecture, as shown in Table 1, is used for training. The proposed model uses Adam
Optimizer with a learning rate of 0.01, and the size of the memory unit is chosen as 2000.
The proposedmodel is implemented usingKeras deep learning framework. The dataset is split
into batches of size 16. All the datasets are trained for 900 epochs. The proposed model has
1,580,801 parameters. Studies were carried out with data augmentation technique reported
in [14] and achieved 1% improvement over the UCSD-Ped2 dataset. But there was almost
no improvement with data augmentation for Avenue and LV datasets.

Run-time The proposed SMGNet detects abnormality at 150 fps with experiments carried
out on an NVIDIA QUADRO-P5000 graphics card. Anomaly detection in one frame takes
only about 0.0026s, which is much faster than the previous deep learning approaches [26],
[29] and [29] proving the lightweight nature of the SMGNet model.

4.3 Ablation Studies and Performance of the SMGNet

In the basic RSTAE architecture, the number of residual blocks and C-LSTM layers are
empirically chosen as 3 and 2, respectively [7]. This section compares the effects of the
following: (1) Effect of the memory-guided network, (2) Influence of skip connections. (3)
Influence of inducing sparsity in the SMGNet architecture.

Table 2 clearly contrasts the difference in the performance of the proposed approach with
and without the memory-guided network. Augmenting memory guided network improves
the AUC score by 2% for the CUHK-Avenue dataset. There is an 3% improvement in the
AUC score for the LV dataset, which clearly shows that the proposed model is capable of
performing better with the memory guided network. As observed in Tables 5, 6, and 7,
addition of memory-guided network in the R-STAE architecture improves the accuracy of
from 2% to 3% for all datasets.

The effect of adding skip connections is studied for the CUHK-Avenue and LV datasets,
and presented in Table 3 and in Fig. 3. It can be inferred that using only the output of the
memory-guided networkwithout a skip connection from the residual block for reconstruction
resulted in the reconstruction of frames which does not completely preserve the foreground
details. To ensure the reconstruction of normal foreground objects, the output of the residual
layer is also appended to the output of the memory guided network. Adding skip connection
shows a result improvement of 1% and 2% for CUHK-Avenue and LV datasets, respectively.

The influence of inducing sparsity is studied for UCSD-Ped2 and LV datasets, and pre-
sented in Table 4. Inducing sparsity to the memory module highly helped capturing only the
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Fig. 3 ROC Curve LV - With skip connection vs Without skip connections (Scores are sampled alternatively
to obtain better clarity of the curve)

Table 4 Influence of inducing sparsity in the SMGNet architecture

Configuration UCSD-Ped2 (AUC) LV (AUC)

With memory, skip connection and w/o sparsity 0.85 0.70

With memory, skip connection and sparsity 0.86 0.73

relevant normal patterns, which in turn improve the anomaly detection performance by 1%
and 3% for UCSD-Ped2 and LV datasets respectively.

4.4 Comparison with the State-of-the-Art

Comparisons among existing VAD approaches and the SMGNet are carried out for CUHK-
Avenue, LV, and Ped 2 datasets. Table 5 presents the comparison results for the CUHK-
Avenue [27]. A convolutional autoencoder [14] architecture is proposed with standard HOG,
HOF, and raw videos as inputs to model the spatiotemporal information with the help of
reconstruction loss. Allison et al. [8] proposed a novel sliding window based discriminative
learning framework for anomaly scoring. The approach is also independent of contextual
assumptions of anomalies. It was able to perform quite well on the avenue dataset with an
AUC of 0.78.

Another work [40] explores a convolutional winner-take-all autoencoder (CONV-WTA)
with optical flowsequences as inputs to learn the normalitymodel. TheCONV-WTAapproach
incorporates OC-SVM instead of normality scores to detect anomalies. The ST-CaAE [24]
approach detects anomalies based on a cuboid-patch-patch based technique with the optical
flow as inputs to the spatiotemporal autoencoder network. Still, the approach could only
achieve similar results as the SMGNet on the CUHK-Avenue dataset. The proposed Deep
SMGNet approach is comparable to [26], and outperforms other state-of-the-art methods.
The Frame-pred [26] approach outperforms the proposed SMGNet approach since it uses an
adversarial learning framework for which the computational complexity is high compared to
the proposed approach. Compared to the sRNN [29] approach, the proposed SMGNet shows
a 1% increase in the AUC score.
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Table 5 Performance over
Avenue dataset

S. no Method AUC

1 Conv-Autoencoder [14] 0.70

2 Discriminative Framework [8] 0.78

3 STAE-Grayscale [45] 0.77

4 STAE-optflow [45] 0.81

5 Sparse Dictionary [27] 0.81

6 Conv-WTA+SVM [40] 0.82

7 sRNN [29] 0.82

8 ST-CaAE [24] 0.83

9 Frame-pred [26] 0.85

10 R-STAE [7] 0.82

11 MemAE [13] 0.83

12 SMGNet 0.84

Bold indicates the highest result achieved for the corresponding
approach/technique

Table 6 Performance over LV
dataset

S. no Method AUC

1 Sparse Dictionary [27] 0.11

2 H.264 [1] 0.15

3 Binary Features [21] 0.18

4 K-Means with BS [18] 0.25

5 KUGDA with BS [18] 0.26

6 Conv-Autoencoder [14] 0.34

7 Conv.LSTM-Autoencoder [28] 0.39

8 R-STAE [7] 0.68

9 SMGNet 0.71

Bold indicates the highest result achieved for the corresponding
approach/technique

The LV dataset is very challenging since the context of every video is different. The
SMGNet model significantly outperforms other state-of-the-art techiniques as shown in
Table 6. Khan et al. [18] proposed a rejection of motion outlier approach using KUGDA
(Univariate Gaussian Discriminant Analysis) for anomaly detection. Few baseline studies
have been experimented by Levya et al. [22] such as [1,27]. The H.264 [1] approach was
computationally less intensive, but the detection results were low since no standard tech-
niques for feature extraction such as optical flow were not used. Since the LV dataset has
videos with different scenarios, it demands a model that is capable of classifying anomalies
in any general scenario. The performance of the proposed SMGNet approach is significantly
better in handling varying contexts than the state-of-the-art approaches.

The UCSD-Ped2 is a small and less complex dataset when compared to the other datasets
used for studies. The SMGNet approach outperformed the MPPCA+Social Force [30]
approach with a 14% improvement in the AUC score. Compared to the Unmasking and
R-STAE techniques, the proposedmodel shows a 4% and 3% increase in AUC scores, respec-
tively. But, when compared to the other approaches in Table 7, the SMGNet is observed
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Table 7 Performance over
UCSD-Ped 2 dataset

S. no Method AUC

1 Social Force [32] 0.56

2 MPPCA+Social Force [30] 0.69

3 Unmasking [41] 0.82

4 Conv.Autoencoder [14] 0.90

4 Abnormal GAN [35] 0.93

5 R-STAE [7] 0.83

6 MemAE [13] 0.94

7 SMGNet 0.86

Bold indicates the highest result achieved for the corresponding
approach/technique

Fig. 4 Frame difference between the original and abnormal frame - UCSD-PED-2 dataset

Fig. 5 Frame difference between the original and abnormal frame- Avenue dataset

to exhibit slightly degraded performance. The AbnormalGAN [35] with Generative adver-
sarial network as its base, is a very heavy weight model and takes more time for training
and testing when compared to the proposed model. One possible justification for degraded
performance of the SMGNet compared to Convolution Autoencoder [14] and MemAE [13]
in UCSD-Ped2 dataset would be that the proposed approach did not augment training data
in any form inspite of having smaller number of training examples in the dataset.
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Fig. 6 Frame difference between the original and abnormal frame- LV dataset

Fig. 7 Normality score-Avenue

4.5 Qualitative Analysis

The difference between the original abnormal frame and reconstructed frame from the testing
sets of UCSD-Ped 2, CUHK-Avenue and LV datasets are shown in Figs. 4, 5 and, 6
respectively. In case of UCSD-Ped2 dataset, as illustrated in Fig. 4, the reconstruction of a
vehicle in an abnormal frame is not clear, indicating high reconstruction error. In case of
CUHK-Avenue dataset, as illustrated in Fig. 5, a person walking in wrong direction is not
reconstructed properly. In the case of LV dataset, crashing of a vehicle in the anomalous
frame is not reconstructed properly by the SMGNet model as shown in Fig. 6. Thus, these
figures demonstrate poor reconstruction of abnormal frames and so high reconstruction error
leading to effective detection of anomalous frames.

Figure 7 shows the variation of normality scores compared to the ground truth over a certain
number of test frames for CUHK-Avenue dataset. The ground truth value of 1 denotes the
normal frames, and the ground-truth value of 0 signifies abnormal frames. The reduction in
normality score depicts higher reconstruction error of abnormal frames. The plot depicts the
fact that the variation in the ground truth values and the normality score is very similar, which
justifies the capability of the proposed model to discriminate between normal and abnormal
frames.
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5 Conclusion

In this work, we have introduced a skip connected and memory-guided network (SMGNet)
for anomaly detection in videos. The addition of a memory guided network to capture and
store significant normal patterns helps in the effective reconstruction of normal events so
that the decoder reconstructs the abnormal events with relatively high error. Further, induc-
ing sparsity with the help of the ReLU activation function in the memory guided network
helped in achieving meaningful latent representations by using only a minimal number of
memory items in the memory, which is further used for reconstruction. The addition of skip
connection also helped in avoiding the loss of meaningful foreground patterns present in the
input frames. Experiments on the standard benchmark datasets prove the effectiveness of the
proposed approach than most of the existing state-of-the-art approaches in terms of detection
performance and computational complexity.
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