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Abstract
This paper mainly investigates the positive effects of delay-dependent impulses on the syn-
chronization of delayed memristor neural networks. Different from traditional impulsive
control, the impulsive sequence in this paper is assumed to have the Markovian property, and
is not always stabilizing. Based on a useful inequality, mean square synchronization criterion
is derived under such a kind of impulsive effect. It can be seen that the stochastic impulses
play an impulsive controller role, if they are stabilizing in an “average” sense. The validity
of the theoretical results is illustrated by a numerical example.

Keywords Memristor neural networks · Exponential synchronization · Average impulsive
interval · Stochastic delayed impulse

1 Introduction

Nowdays, neural networks (NNs) has become a hot research topic, due to itswide applications
[1–4]. In 1971, the concept of memristor was first proposed and some properties of memristor
from theoretical level were discussed [5]. Memristor, as a new passive two-terminal circuit
element, has been applied in designing integrated circuits and artificial NNs due to its good
properties, such as low energy consumption, nanoscale, memory capability and good mimic
of the human brain. Hence, the memristor neural networks (MNNs) have been designed to
emulate human brains recently [6].

In recent years, synchronization, as a typical dynamical behavior of the NNs, has been
studied extensively [7–11]. Compared with the traditional continuous NNs, the synchroniza-
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tion of MNNs is more difficult to investigate because of the switching characteristics of
the connection weights [6,12,13]. In addition, the internal parameters of memristor, such as
length, cross-sectional area and heterogeneity, may also affect the performance of memris-
tor. In [13], the synchronization issue of MNNs with the uncertain parameter is addressed
by using the theory of differential inclusion. In [14], by constructing Lyapunov-Krasovskii
functionals, two effective synchronization criteria are provided for the coupled MNNs.

In many real networked systems, information transmission and exchange between
neighboring nodes will suffer some uncertain factors, such as network attacks [15,16] or
communication delay [17–19]. Undoubtedly, the time-delay has become an important factor
which should be considered for the synchronization problem of MNNs [12,20]. In [12],
it has been shown that the fixed-time synchronization for DMNNs can be achieved by
designing the state-feedback controllers and adaptive controller, respectively. In [20], con-
servatism of synchronization criteria is reduced by using the average impulsive interval (AII)
approach.

Impulsive effect, whether artificial or natural, is common in real networks [21]. In the past
few years, more and more attention is paid to the synchronization of NNs with impulsive
effects [22]. On the one hand, impulsive control is an effective and economical control
technique in networked systems, since it is a discontinuous control and only applied to the
nodes in some discrete time instants [2,23,24]. On the other hand, a real-world network
may suffer from impulsive disturbance. Generally, according to the impulsive intensity, all
impulses can be divided into two types: synchronizing impulses, or desynchronizing impulses
[25,26]. In [27–29], a uniform synchronization criterion for impulsive dynamic networks
is proposed based on AII, where the impulsive strengths are assumed to be determined
constants.

As is well known, when impulsive intensity is assumed to be determined, synchronization
of a network can be destroyed by desynchronizing impulses, and a pre-designed impulsive
controller can synchronize an asynchronous network [30–32]. However, impulsive distur-
bance is often stochastic, while an impulsive controller can also exhibit randomness because
of some unstable factors. Hence, it seems more reasonable that the impulsive strengths
are stochastic [33–35]. The above classification may no longer be applicable when impul-
sive strengths are not determined. An interesting question naturally arises: can a stochastic
impulsive sequence act as an impulsive controller? If yes, what conditions should be satis-
fied?

Inspired by the discussions above, this paper will focus on the positive effects that stochas-
tic impulses might have on synchronizing a DMNNs. The main contributions of this paper
can be listed as follows:

(1) Auseful inequality is proposed in this paperwhich enriches the famousHalanay inequal-
ity. Compared with the previous result in [17], it is no longer required that all impulsive
strengths are a fixed constant.

(2) Different from [17,27], the impulsive sequence in this paper is assumed to have the
Markovian property. An easy-to-verify criterion is derived to guarantee the mean square
synchronization of the concerned DMNNs.

(3) Discussions on the synchronization criterion aremade in this paper. It is revealed that the
stochastic impulsive sequence can act as a controller and contribute to the synchronous
behavior. Unlike the traditional impulsive controller [17], impulses in this paper only
need to be stabilizing in an “average" sense, rather than always be stabilizing.
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Table 1 Table of notations

R
n The set of all n-dimensional real vectors

diag{d1, d2, · · · , dN } N × N diagonal matrix with diagonal elements d1, d2, · · · , dN
‖·‖ 2-norm of matrices (or vectors)

λmin(X) (or λmax (X)) Minimum (or maximum) eigenvalue of matrix X

⊗ Kronecker product of matrices

XT (or xT ) Transposition of matrix X (or vector x)

PC([−τ, +∞), R
n) Bounded variation functions on any compact subinterval of [−τ,+∞)

c̄o[E] The closure of the convex hull of some set E

Notations: See Table 1.

2 Preliminaries &Model Description

In this section, some assumptions, definitions, lemmas and the model description are given
so as to get the main results.

Definition 1 [23]. Consider d x
d t = �(t, x), where �(t, x) is discontinuous in x . Define the

set-valued map of �(t, x) as

Φ(t, x) =
⋂

δ>0

⋂

μ(N )=0

c̄o[�(t,B(x, κ)\N )],

where B(x, κ) = {y : ||y − x || ≤ κ}, μ(N ) is the Lebesgue measure of set N . For this
system, a Filippov solution with initial condition�(0) = �0 is absolutely continuous on any
subinterval t ∈ [t1, t2] of [0, T ], and the differential inclusion d x

d t ∈ Φ(t, x), a.e.t ∈ [0, T ].

Definition 2 [27]. (Average Impulsive Interval(AII)) Ta is said to be the AII of the impulsive
sequence ζ = {t1, t2, · · · }, if there exist positive integer �0 and positive scalar Ta such that

T − t

Ta
− �0 ≤ �ζ (t, T ) ≤ T − t

Ta
+ �0, ∀0 ≤ t ≤ T ,

where �ζ (t, T ) stands for the number of impulses during the time interval (t, T ).

Remark 1 The concept of AII reduces the conservatism for the synchronization of the NNs
under impulsive effects since the positive number Ta can be used to estimate the number of
impulses during the time interval (t, T ).

Definition 3 [17] (Average Impulsive Delay(AID)) τ̄ > 0 is called the AID of a sequence of
impulsive delays {τk}k∈Z+ , if there is a constant τ

(0) > 0 satisfying

τ̄k − τ (0) ≤
k∑

j=1

τk ≤ τ̄k + τ (0), k ∈ Z+.
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Fig. 1 Hysteresis curves of memristor at different frequencies

This paper considers the DMNNs described by the following equations:

ẋi (t) = −Dxi (t) + A(xi (t)) f (xi (t)) + B(xi (t)) f (xi (t − τ)) + Ī (t)

+c
∑N

j=1 Hi j x j (t), i = 1, 2, · · · , N . (1)

where xi (t) = (xi1(t), · · · , xin(t))T ∈ R
n denotes the state variable of the i th neuron at time

t , the matrix D > 0. A(xi (t)) = (al j (xi j (t)))n×n and B(xi (t)) = (bl j (xi j (t)))n×n indicate
the connection weight matrix and the delayed connection weight matrix, respectively. f (·)
represents the activation function. Ī (t) denotes the external input, and τ is a positive constant
which represents the transmission delay.LH = (Hi j )N×N is the negative Laplacianmatrix of
theDMNNs. The initial condition of system (1) is given by xi (t) = ϕi (t) ∈ PC([−τ, 0], R

n).
According to the typical current-voltage characteristics of the memristor (see Fig. 1),

al j (xi j (t)) and bl j (xi j (t)) in (1) are defined as

al j (xi j (t)) =
{
âl j , |xi j (t)| ≤ Tj ,

ǎl j , |xi j (t)| > Tj

and

bl j (xi j (t)) =
{
b̂l j , |xi j (t)| ≤ Tj ,

b̌l j , |xi j (t)| > Tj .

Here, Tj > 0 arememristive switching rules, âl j , ǎl j , b̂l j , b̌l j are constants relating tomemris-
tance. For further discussion, based on [23] and Definition 1, the system (1) can be rewritten
as:

ẋi (t) ∈ −Dxi (t) + c̄o[A(xi (t))] f (xi (t)) + c̄o[B(xi (t))]
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× f (xi (t − τ)) + Ī (t) + c
N∑

j=1

Hi j x j (t), (2)

where c̄o[A(xi (t))] = [A, Ā], c̄o[B(xi (t))] = [B, B̄], A = (ál j )n×n , Ā = (àl j )n×n , B =
(b́l j )n×n , B̄ = (b̀l j )n×n , ál j � min{âl j , ǎl j }, àl j � max{âl j , ǎl j }, b́l j � min{b̂l j , b̌l j },
b̀l j � max{b̂l j , b̌l j }.

Let a∗
l j = 1

2 (àl j+ál j ), b∗
l j = 1

2 (b̀l j+b́l j ), which express the intervals [ál j , àl j ], [b́l j , b̀l j ] in
terms of the midpoints, a∗∗

l j = 1
2 (àl j − ál j ) and b∗∗

l j = 1
2 (b̀l j − b́l j ) represent the half-lengths.

By denoting A∗ � (a∗
l j )n×n and B∗ � (b∗

l j )n×n , we can rewrite system (2) as follows:

ẋi (t) = −Dxi (t) + (A∗ + RA) f (xi (t)) + (B∗ + RB) f (xi (t − τ))

+ Ī (t) + c
N∑

j=1

Hi j x j (t), (3)

where RA = EA�AFA, RB = EB�B FB , �A,B ∈ �, and

� = diag[κ11, · · · , κ1n, · · · , κn1, · · · , κnn] ∈ R
n2×n2 : |κi j | ≤ 1,

EA = [√
a∗∗
11e1, · · · ,

√
a∗∗
1n e1, · · · ,

√
a∗∗
n1en, · · · ,

√
a∗∗
nnen

] ∈ R
n×n2 ,

FA = [√
a∗∗
11e1, · · · ,

√
a∗∗
1n en, · · · ,

√
a∗∗
n1e1, · · · ,

√
a∗∗
nnen

]T ∈ R
n2×n,

EB = [√
b∗∗
11e1, · · · ,

√
b∗∗
1ne1, · · · ,

√
b∗∗
n1en, · · · ,

√
b∗∗
nnen

] ∈ R
n×n2 ,

FB = [√
b∗∗
11e1, · · · ,

√
b∗∗
1nen, · · · ,

√
b∗∗
n1e1, · · · ,

√
b∗∗
nnen

]T ∈ R
n2×n,

where ei stands for the i-th column of the identity matrix In .
To deal with the uncertain terms RA and RB , let E = [EA, EB ] and

Δi (t) = diag{�A, �B}
[

FA f (xi (t))
FB f (xi (t − τ))

]
(4)

Then, we can recast system (2) as

ẋi (t) = −Dxi (t) + A∗ f (xi (t)) + B∗ f (xi (t − τ))

+ Ī (t) + c
N∑

j=1

Hi j x j (t) + EΔi (t). (5)

In this paper, it is assumed that the following assumptions are satisfied.

Assumption 1 The function f is Lipschitz continuous. That is, for some constant 
 > 0
and ∀y1, y2 ∈ R

n , ‖ f (y1) − f (y2)‖ ≤ 
‖y1 − y2‖.
Assumption 2 LH is symmetric and irreducible.

This paper focuses on how a stochastic impulsive sequence can promote the synchro-
nization of network (1). Due to limited transmission speed, imperfect pulse output devices
and some other factors, time delay always inevitably occurs in real-world networks. For this
reason, we consider the one delayed impulsive effect, which can be formulated as follows:

x j (t
+
k ) − xi (t

+
k ) ≤ σk[x j (t−k − τk) − xi (t

−
k − τk)] if Hi j > 0, (6)
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where ζ = {tk}k=1,2,··· is a strictly increasing sequence which represents the impulsive
instants subject to Definition 2, and limk→+∞ tk = ∞. τk is a delay sequence as described
in Definition 3. Moreover, it is assumed that tk − tk−1 ≥ τ > τk ≥ 0, ∀k ∈ Z+. {σk} is the
sequence of impulsive strengths, and satisfies the following assumption.

Assumption 3 Let rk � r(tk) be a discreteMarkov chainwhich is independentwith the initial
conditions ϕi (·). Ω = {1, 2, · · · , β} is the set of states, from which r(tk) takes its values.
P = (pi j )β×β and �1 = (π11, · · · , π1β) are the transition matrix and initial distribution of
r(tk), respectively. r(tk) determines the impulsive strength at tk , that is, σk = σ (rk ), where
σ (i) > 0 are β different constant representing different impulsive strengths, i = 1, · · · , β.

By combining (5) with (6), we can obtain the following DMNNs with delay-dependent
impulsive effect:

⎧
⎪⎪⎨

⎪⎪⎩

ẋi (t) = −Dxi (t) + A∗ f (xi (t)) + B∗ f (xi (t − τ)) + Ī (t)
+c

∑N
j=1 Hi j x j (t) + EΔi (t), t �= tk, i = 1, · · · , N ,

x j (t
+
k ) − xi (t

+
k ) ≤ σk[x j (t−k − τk) − xi (t

−
k − τk)] if Hi j > 0,

xi (t) = ϕi (t), t ∈ [t0 − τ, t0].
(7)

Remark 2 Under Assumption 3, the impulsive network (7) can be regarded as a Markovian
mode-jump system which switches among β different “impulsive modes” σ (1), · · · , σ (β).
As mentioned in [37], systems with Markovian jump can be used to describe many real-
world applications, such as economic systems, chemical systems, power systems and so on.
Dynamic systems that experience random abrupt variations in their structures or parameters
can bewell described byMarkovian jump systems. Hence, it is meaningful to study impulsive
DMNNs with such Markovian property.

To proceed, we introduce x̄(t) � 1
N

∑N
i=1 xi (t) as the average state. Denote the synchro-

nization error as εi (t) = xi (t)− x̄(t) and define ε(t) � (εT1 (t), · · · , εTN (t))T . The following
definition and lemmas are needed in the rest of this paper.

Definition 4 System (7) is said to achieve global exponential synchronization (GES) in mean
square, if

E[‖ε(t)‖] ≤ M‖εt0‖τ e
−χ(t−t0), ∀t ≥ t0,

where M and χ are two positive constants.

Lemma 1 Assume that there exist μ > 0 and μ̄ ≥ 1 such that μ ≤ μk ≤ μ̄. Let w(·) ∈ R be
a piecewise continuous function satisfying

{
D+w(t) ≤ −q1w(t) + q2w(t − τ), t �= tk,
w(t+k ) ≤ μkw(t−k − τk),

(8)

where q1 ∈ R, q2 ∈ R+, tk − tk−1 ≥ τ ≥ τk ≥ 0. Then, it holds that

w(t, x(t)) ≤ ‖wt0‖τ

k∏

j=1

μ j exp
[
κ̄(t + τ − t0 −

k∑

j=0

τ j )
]
, ∀t ∈ [tk, tk+1), (9)

where constant κ̄ > 0 satisfies −q1 + μ̄
μ
q2 − κ̄ < 0.
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Proof It directly follows from Theorem 3.9 in [17] that (9) is true on [t0 − τ, t1). Assume (9)
is true for all k ≤ m − 1, then

w(t+m ) ≤ μmw(t−m − τm)

≤ μm‖wt0‖τ

m−1∏

j=1

μ j exp
[
κ̄(tm − τm + τ − t0 −

m−1∑

j=0

τ j )
]

= ‖wt0‖τ

m∏

j=1

μ j exp
[
κ̄(tm + τ − t0 −

m∑

j=0

τ j )
]
. (10)

It can be showed by contradiction that (9) is true for k = m. Otherwise, there must exists a
t́ ∈ [tm, tm+1) such that (9) is true on [t0, t́),

w(t́) = ‖wt0‖τ

m∏

j=1

μ j exp
[
κ̄(t + τ − t0 −

m∑

j=0

τ j )
]

� ξm(t) (11)

and

D+w(t)|t=t́ ≥ d

d t
ξm(t)|t=t́ = κ̄ξm(t́). (12)

But according to (8), (9) and tm − tm−1 ≥ τ ≥ τk , we have

D+w(t)|t=t́ ≤ −q1w(t́) + q2w(t́ − τ)

= −q1ξm(t́) + q2w(t́ − τ)

≤ −q1ξm(t́) + q2μ̄ξm−1(t́ − τ)

≤ (−q1 + μ̄

μ
q2)ξm(t́)

< κ̄ξm(t́) = D+ξm(t)|t=t́ , (13)

which contradicts with (12). The proof is completed. �

Remark 3 In particular, if μk ≡ μ0 ∈ (0, 1), then Lemma 1 reduces to Theorem 3.9 in [17]
by letting μ = μ0 and μ̄ = 1. Hence, Lemma 1 can be seen as a generalization of the
previous results in [17].

Lemma 2 [36] Assume a matrix G = (gi j )n×n ∈ R
n×n satisfying the following:

(a) G is irreducible and symmetric;
(b) ∀i �= j , gi j ≥ 0;
(c) gii = −∑n

j=1, j �=i gi j , ∀i = 1, · · · , n.

Then,

(1) All eigenvalues of G are non-positive;
(2) G has an eigenvalue 0 with multiplicity 1. In addition, (1, · · · , 1)T is an eigenvector of

0.

3 Main Result

For the sake of convenience, we denote q1 = cι−λmax {−D+ 1
2 B

∗B∗T + 1
2 EET }−
‖A∗‖−


 2

2 ‖FA‖2 and q2 = 
 2

2 (1 + ‖FB‖2), where c, 
, A∗, B∗, FA, E, FB are given in Sect.
2, ι = −λ2(LH ) represents opposite number of the second largest eigenvalue of LH .
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Now we are ready to provide the main theoretical result.

Theorem 1 Suppose that Assumptions 1–3 hold for DMNNs (1). Let κ̄ > 0 satisfy −q1 +
σ̄ 2

σ 2 q2 − κ̄ < 0. Then, system (1) under impulsive effect (6) achieves GES in mean square if

μ̃ < 1 (14)

and

κ̄(τ̄ − Ta) − ln μ̃ = ρκ̄ > 0, (15)

where σ̄ = maxi∈Ω {1, σ (i)}, σ = mini∈Ω {σ (i)} and μ̃ = ∑β
l=1[(σ (l))2 maxi∈Ω {pil}].

Proof Recall that εi (t) = xi (t)− 1
N

∑N
i=1 xi (t) and construct a Lyapunov candidate function

V (t) = 1
2

∑N
i=1 εTi (t)εi (t). By repeatedly using the fact that

∑N
i=1 εi (t) = 0, the derivation

of V (t) on [tk, tk+1) can be estimated as

D+V (t) =
N∑

i=1

εTi (t)[ẋi (t) − 1

N

N∑

l=1

ẋl(t)]

=
N∑

i=1

εTi (t)[−Dxi (t) + A∗ f (xi (t)) + B∗ f (xi (t − τ)) + Ī (t)

+ c
N∑

j=1

Hi j x j (t) + EΔi (t)]

=
N∑

i=1

εTi (t)[−D(εi (t) + x̄(t)) + A∗( f (xi (t)) − f (x̄(t)))

+ B∗( f (xi (t − τ)) − f (x̄(t − τ)) + c
N∑

j=1

Hi jε j (t) + EΔi (t)]

≤ −
N∑

i=1

εTi (t)Dεi (t) + 


N∑

i=1

‖A∗‖‖εTi (t)‖‖εi (t)‖

+ 1

2

N∑

i=1

[εTi (t)B∗B∗T εi (t) + 
 2εTi (t − τ)εi (t − τ)]

+ cεT (t)(LH ⊗ In)ε(t) +
N∑

i=1

εTi (t)EΔi (t), t ∈ [tk, tk+1). (16)

Recall (4) and E = [EA, EB ], we have
ΔT

i (t)Δi (t) ≤ 
 2‖FA‖2εTi (t)εi (t) + 
 2‖FB‖2εTi (t − τ)εi (t − τ), (17)

which further indicates that

D+V (t) ≤
N∑

i=1

εTi (t)
[ − D + (
‖A∗‖ + 
 2

2
‖FA‖)In + 1

2
B∗B∗T + 1

2
EET ]

εi (t)

+
 2

2
(1 + ‖FB‖2)

N∑

i=1

εTi (t − τ)εi (t − τ) + cεT (t)(LH ⊗ In)ε(t), (18)
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where Assumption 1 is used. Considering Assumption 2, LH can be decomposed as

U�HU
T = LH , (19)

where U = (u1, u2, · · · , uN ) is an orthogonal matrix, �H = diag{λ1(LH ), λ2(LH ),

· · · , λN (LH )}, and 0 = λ1(LH ) > λ2(LH ) ≥ · · · ≥ λN (LH ) are eigenvalues of LH .
In addition, u1 = 1√

N
(1, · · · , 1)T according to Lemma 2. Let y(t) = (UT ⊗ In)ε(t) =

(yT1 (t), · · · , yTN (t))T , we have y1(t) = (uT1 ⊗ In)ε(t) = 1√
N

∑N
i=1 εi (t) = 0. Hence,

cεT (t)(LH ⊗ In)ε(t) = cyT (t)(�H ⊗ In)y(t)

= c
N∑

i=2

λi (LH )yTi (t)yi (t)

≤ cλ2(LH )yT (t)y(t)

= −cιεT (t)ε(t). (20)

(18) and (20) yield that

D+V (t) ≤
(


‖A∗‖ + 
 2

2
‖FA‖2 + λmax {−D + 1

2
B∗B∗T + 1

2
EET } − cι

)
V (t)

+
(


 2

2
(1 + ‖FB‖2)

)
V (t − τ)

= −q1V (t) + q2V (t − τ), t ∈ [tk, tk+1). (21)

On the other hand, according to Assumption 2, for any two nodes i and j , there is at least
one path between i and j . More precisely, there exist some integers m1, m2, · · · , ms , such
that Him1 > 0, Hm1m2 > 0, · · · , Hms j > 0. Hence, at an impulsive instant tk , we can infer
from (7) that

V (t+k ) =
N∑

i=1

εTi (t+k )εi (t
+
k )

=
N∑

i=1

(
1

N 2

N∑

j=1

[xi (t+k ) − x j (t
+
k )]T

N∑

j=1

[xi (t+k ) − x j (t
+
k )]

)

=
N∑

i=1

(
1

N 2

N∑

j=1

[
xi (t

+
k ) − xm1(t

+
k ) + xm1(t

+
k ) − · · · + xms (t

+
k ) − x j (t

+
k )

]T

×
N∑

j=1

[
xi (t

+
k ) − xm1(t

+
k ) + xm1(t

+
k ) − · · · + xms (t

+
k ) − x j (t

+
k )

])

≤
N∑

i=1

(
σ 2
k

N 2

N∑

j=1

[
xi (t

−
k − τk) − xm1(t

−
k − τk) + · · · + xms (t

−
k − τk) − x j (t

−
k − τk)

]T

×
N∑

j=1

[
xi (t

−
k − τk) − xm1(t

−
k − τk) + · · · + xms (t

−
k − τk) − x j (t

−
k − τk)

])

123



4358 L. Li et al.

=σ 2
k

N∑

i=1

(
1

N 2

N∑

j=1

[xi (t−k − τk) − x j (t
−
k − τk)]T

N∑

j=1

[xi (t−k − τk) − x j (t
−
k − τk)]

)

= σ 2
k V (t−k − τk). (22)

According to (21) and (22), V (t) satisfies all conditions in Lemma 1 by letting σ 2
k = μk ,

σ̄ 2 = μ̄ and σ 2 = μ. Hence, for κ̄ > −q1 + μ̄
μ
q2, we have

V (t) ≤ ‖Vt0‖τ

k∏

j=1

μ j exp
[
κ̄(t + τ − t0 −

k∑

j=0

τ j )
]
, ∀t ∈ [tk, tk+1). (23)

Taking expectation on both sides of (23), we have

E[V (t)] ≤ E
[ k∏

j=1

μ j
]‖Vt0‖τ exp

[
κ̄(t + τ − t0 −

k∑

j=0

τ j )
]
, ∀t ∈ [tk, tk+1). (24)

Define μ(i) = (σ (i))2, i = 1, · · · , β. Considering Assumption 3, we have

E
[ k∏

j=1

μ j
] = E

[
E

[ k∏

j=1

μ(r j )|r1 = i1, · · · , rk = ik
]]

=
β∑

i1=1

· · ·
β∑

ik=1

([ k∏

j=1

μ(i j )
] × P(r1 = i1, · · · , rk = ik)

)

=
β∑

i1=1

· · ·
β∑

ik=1

(
μ(i1)

k∏

j=2

μ(i j ) × π1i1

k∏

l=2

pil−1il

)

≤
β∑

i1=1

μ(i1)π1i1

( β∑

i2=1

· · ·
β∑

ik=1

( k∏

j=2

μ(i j ) max
i∈Ω

{pii j }
))

=
β∑

i1=1

μ(i1)π1i1

k∏

j=2

( β∑

l=1

μ(l) max
i∈Ω

{pil}
)

= μ̃k−1
β∑

i=1

μ(i)π1i . (25)

By (24), (25) and the fact that μ̃ < 1, we have

E[V (t)] ≤ μ̃k−1
β∑

i=1

μ(i)π1i‖Vt0‖τ exp
[
κ̄(t + τ − t0 −

k∑

j=0

τ j )
]

≤ μ̃
−�0−1+ t−t0

Ta

β∑

i=1

μ(i)π1i‖Vt0‖τ exp
[
κ̄(t + τ − t0 − τ̄k + τ (0))

]

≤ (
μ̃−�0−1

β∑

i=1

μ(i)π1i‖Vt0‖τ

)
exp

( ln μ̃

Ta
(t − t0)

)

× exp
(
κ̄(t − t0 + τ + τ (0)) + κ̄[τ̄�0 − τ̄

Ta
(t − t0)]

)
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= μ̃−�0−1
β∑

i=1

μ(i)π1i‖Vt0‖τ e
κ̄(τ+τ (0)+τ̄�0)

× exp
[

− 1

Ta
[κ̄(τ̄ − Ta) − ln μ̃](t − t0)

]

= M‖Vt0‖τ e
− ρκ̄

Ta
(t−t0), ∀t ∈ [tk, tk+1), (26)

where the second and third inequalities use the AII and AID assumptions, ρκ̄ is defined in
(15). This completes the proof. �

Remark 4 In order to achieve synchronization, the impulsive strengths should be stabilizing
in a sense of “average” as shown in (14). It is worth mentioning that (14) does not require
μ(i) < 1 for all i ∈ Ω , which is different from traditional impulsive controller [17].

Remark 5 According to (15), small κ̄ and μ̃ are helpful for synchronous behavior of the
network. This can be explained by the following physical meaning: smaller κ̄ means a better
dynamic property of the network without impulses, while smaller μ̃ indicates higher costs
at an impulsive instant. Another interesting fact is that the impulsive delay τ̄ may promote
synchronization in some way according to (15). In fact, (15) is equivalent to

τ̄ >
ln μ̃

κ̄
+ Ta .

Obviously, a larger τ̄ is preferred in order to meet the requirement of (15).

Remark 6 It should bementioned that, the criterion in Theorem 1 is just a sufficient condition,
and has some conservatism. This ismainly caused by some imprecise inequalities in the proof.

An important special case of Theorem 1 is when all τk are the same, that is, τk ≡ τ1. In
this case, we have the following two corollaries by utilizing Theorem 1.

Corollary 1 In Theorem 1, let the impulsive delays τk ≡ τ1. Then, system (1) under impulsive
effect (6) is globally exponentially synchronized, if

μ̃ < 1 (27)

and

κ̄(τ1 − Ta) − ln μ̃ > 0, (28)

where the parameters μ̃, κ̄ and Ta are the same as in Theorem 1.

Proof When τk ≡ τ1, we have τ̄ = τ1. The proof can be completed by directly using Theorem
1. �

Corollary 2 Let the impulsive delays τk ≡ 0 in Theorem 1. Then, system (1) under impulsive
effect (6) is globally exponentially synchronized, if

μ̃ < 1 (29)

and

− κ̄Ta − ln μ̃ > 0, (30)

where the parameters μ̃, κ̄ and Ta are the same as in Theorem 1.
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When the impulsive sequence has no randomness, we have the following corollary.

Corollary 3 Let the impulsive strengths σk ≡ σ1 in Theorem 1. Then, system (1) under
impulsive effect (6) is globally exponentially synchronized, if

σ1 < 1 (31)

and

κ̄(τ̄ − Ta) − 2 ln σ1 > 0, (32)

where the parameters τ̄ , κ̄ and Ta are the same as in Theorem 1.

Proof Noticing that μ̃ = σ 2
1 , the proof is trivial. �


4 Numerical Example

This section gives a simple example to illustrate the validity of our theoretical results. More-
over, the case of τ̄ = 0 is also simulated to reflect the promotion of impulsive delay.

Example 1 Consider DMNNs (1) with N = 50 and n = 1. A(xi (t)) and B(xi (t)) are chosen
to be

A(xi (t)) =
{
0.15, |xi (t)| ≤ 1,
0.25, |xi (t)| > 1,

and

B(xi (t)) =
{−0.95, |xi (t)| ≤ 1,

−1.05, |xi (t)| > 1.

Moreover, D = 0.5, f (xi ) = 1.5xi + 0.5 tanh (xi ), τ = 1, Ī (t) = 0, c = 1, LH is randomly
generated with λ2(LH ) = −0.6239 and the initial conditions are randomly chosen from
[−5, 5]. Figure 2 shows the state trajectories of all nodes when the DMNNs is free from
impulsive effects. It is shown that the system is not synchronized without impulses.

Nowwe exert the delay-dependent impulsive effect (6) on (1). Letσ (1) = 0.6,σ (2) = 1.05.

The initial distribution and the transition matrix are �1 = (0.8, 0.2) and P =
[
0.7 0.3
0.8 0.2

]
,

respectively. Furthermore, we choose Ta = 1.05 and τ̄ = 0.98. Figure 3a shows the randomly
generated impulsive sequence, and Fig. 3b is the impulsive delays.

Using the parameters above, we easily calculate that q1 = −0.0761, q2 = 2.2000,

μ̃ = 0.6187, σ̄ = 1.05 andσ = 0.6. Choosing κ̄ = 6.8236,which satisfies−q1+ σ̄ 2

σ 2 q2−κ̄ =
−0.01 < 0, we obtain κ̄(τ̄ −Ta)− ln μ̃ = 0.0024 > 0. By applying Theorem 1, the DMNNs
(1) under delayed impulsive effect (6) can achieve synchronization, which can be seen from
Fig. 4.

Asmentioned at the end of Remark 5, the impulsive delay τ̄ may promote synchronization
in some way. To illustrate this, the impulsive delay is changed to be τ̄ = 0, and all other
parameters are the same as above. Figure 5 shows the state trajectories under such impulsive
effects without impulsive delay, and it can be seen that synchronization is not achieved before
t = 12. To some extent, this can reflect the promotion of impulsive delay τ̄ .
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Fig. 2 State trajectories of all nodes without impulsive effect in Example 1
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Fig. 3 Impulsive strengths and delays in Example 1

Remark 7 In Example 1, σ (1) = 0.6 < 1 is a stabilizing impulsive intensity, and σ (2) =
1.05 > 1 is destabilizing [17,27]. Hence, the impulsive sequence in Example 1 is neither
synchronizing nor desynchronizing according to the classification in [27]. By calculating μ̃,
this paper provides a method to judge whether a stochastic impulsive sequence promotes
synchronization or not.

5 Conclusion

This paper investigated the positive effects that stochastic delayed impulsesmight have on the
synchronization of DMNNs. Based on an extended Halanay inequality, sufficient condition
was derived to guarantee the mean square synchronization. It was revealed that the impulsive
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Fig. 4 State trajectories of all nodes under delayed impulsive effects in Example 1
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Fig. 5 State trajectories under impulsive effects with τ̄ = 0 in Example 1

effect should be stabilizing in an “average” sense, rather than always be stabilizing. The
theoretical results were verified by a numerical example.

It is worth mentioning that our main results are sometimes conservative. For instance, the
hypothesis tk − tk−1 ≥ τk , ∀k ∈ Z+ is hard to be satisfied in many cases, especially when the
interval between two consecutive impulses is short. An interesting future work is to reduce
the conservatism by allowing tk − tk−1 < τk . Another interesting future topic is to study the
case with stochastic impulsive interval.
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