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Abstract
Finger vein recognition is very important in the identity authentication, but its performance
is affected significantly by noise. The widely used Conditional Generative Adversarial Nets
(CGAN) de-noising algorithmwithout accurate texture constraints is easy to damage the tex-
ture features of the image. In this paper, we propose a finger vein de-noising algorithm based
onCustomSample-TextureConditionalGenerativeAdversarialNets (CS-TCGAN). The pro-
posed algorithm effectively protects the texture features while removing noise. Firstly, the
proposed algorithm uses texture loss, adversarial loss, and content loss as constraints, which
lead to a better de-noising performance on finger vein image with blurred texture.Secondly,
in order to avoid the checkerboard artifacts effect caused by up-sampling in de-convolution
process which results in the loss of the vein information, the dimension preserving structure
is adopted in the generator network to minimize this problem. Lastly, the noise distribution of
finger vein images obtained in the practical application has been investigated to generate the
training dataset for obtaining a de-noising model with better generalization. Specifically, the
training dataset has been established by combining Poisson noise, salt/pepper noise, Gaus-
sian noise, and speckle noise. The experimental results illustrate that the performance of
the proposed algorithm is better than the traditional filtering de-noising approaches and the
widely used CGAN de-noising algorithms.
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1 Introduction

Finger vein recognition is a new biometric technologywhich has beenwidely used inmilitary
and financial fields since the characteristics in the finger are difficult to be replicated [1].
However, considering the environmental factors (i.e., dust attached to the mirror) or human
factors (i.e., fingers with skin cracks) in practical application, the obtained finger vein images
have a significant noise added to the clean image which has been shown in Fig. 1. Such noises
will seriously affect the recognition performance of finger vein images, making finger vein
de-noising algorithm a challenging task.

The traditional image de-noising algorithms are mainly divided into two categories, trans-
form domain de-noising methods [2–4] and spatial domain de-noising methods [5–7]. The
transform domain de-noising methods project the dusty image to the transform domain for
de-noising, and then collect the clean image through inverse transformation. The process is
mainly based on the distribution difference between the noise image and the clean image in
the transformation domain [2]. Li et al. [3] proposed a de-noisingmodel based on group sparse
coding theory, where the image was transformed into sparse domain with rank minimization
as the objective in order to reproduce the clean image. Su et al. [4] proposed ade-noisingmodel
based on low rank matrix approximation to solve the model with multi-frequency weighted
l p-norm minimization, which achieved the good performance by eliminating the Gaussian
noise and actual noise. There also provides desirable solution for image de-noising [5], which
convolutes the image to de-noising. Yang et al. [6] proposed a de-noising algorithm based
on non-local mean filtering and partial differential equation constraint. The image is restored
according to the similarity between the region around the noise and its external region, and the
fourth-order partial differential equation has been used to constrain the restoration process.
Thanh et al. [7] proposed a de-noising algorithm with adaptive switching weighted mean
filter, which adaptively adjusts the parameters of the filter kernel according to the distribu-
tion of dusty points and clean points in the filtering window. Traditional filtering de-noising
algorithms mainly extract noise features based on empirical settings, with relatively low gen-
eralization ability. Specifically, due to the complex effects of dusty mirror and finger crack,
the noise characteristics of finger vein are relatively complicated. It is very difficult to con-

Fig. 1 The noise of finger vein image in actual use: dust adhering to mirror, finger skin crack
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struct the vein noise distribution completely through the above traditional filtering de-noising
algorithms.

Recently, deep learning algorithms show superior performance in computer vision tasks.
Fu et al. [8] proposed dual variational generation for low-shot heterogeneous face recognition,
solving the problem of the large domain discrepancy and a lack of heterogeneous data. This
method is aimed at improving the recognition accuracy. Song et al. [9] proposed a novel
framework based on active pseudo-labeling, to reduce the domain gaps between synthetic
images and real images. Researchers have also addressed the potential effectiveness of the
deep learning algorithms to solve the de-noising problem. The de-noising model based on
deep learning shows better generalization performance and higher feature mining accuracy
than the traditional de-noising model. Burger et al. [10] used Convolutional Neural Network
(CNN) to denoise the image, and realized the transformation from noisy image to clean image
by leveraging the mapping relationship between them. However, due to the insufficient use of
shallow network, the de-noising algorithm based on CNN leads to the lost of high-frequency
details. Tian et al. [11] proposed an attention oriented CNN de-noising model. The model
increased the shallow network influence on deep network, thus improving the de-noising
performance of actual noise. CNN de-noising model obtains the mapping from noisy image
to clean image by stacking more convolutional layers, but when more specific details are
required for de-noising, thismethod is difficult tomeet the target [12]. Lyu et al. [13] proposed
a de-noising model based on Generative Adversarial Network (GAN), which further restored
vein details. GAN [14] adopts the idea of competition, and strengthens the mapping effect
from noisy image to clean image through the competition between a generator network and
a discriminator network.

Although the de-noising methods based on GAN have made some achievements in Peak
Signal to Noise Ratio (PSNR), visual effect, and other evaluation parameters, they are all
based on the image which has the clear texture. For the finger vein image with blurred texture,
the de-noising performance decreases significantly. The loss function of the GAN de-noising
model is the adversarial loss and the content loss. The content loss takes the gray difference
between the noisy images and the denoised images as the constraint. For the finger vein image
with blurred texture, it is difficult to remove the noise and restore the texture details only
by the constraint based on the images gray difference. Therefore, it is necessary to design a
specific de-noising model according to the texture characteristics of finger vein image.

A finger vein de-noising algorithm based on CS-TCGAN is proposed in this paper. The
main contributions of this paper are as follows. Firstly, since the content loss has poor con-
straint effect on finger vein image with blurred texture, the texture loss has been considered
in the loss function to recover more vein texture details. Secondly, the de-convolution in
neural network generates images by describing the rough structure of the image and then
filling in the details. However, in the process of de-convolution, up-sampling is easy to cause
the checkerboard artifacts effect, which leads to the loss of vein information [15]. Thus, the
dimension preserving structure is adopted in the generator network to minimize this problem.
Lastly, a training dataset with salt/pepper noise as the main part, Gaussian noise, Poisson
noise, and speckle noise as auxiliary are designed according to the noise density and charac-
teristics of actual vein noise, so as to obtain a de-noising model with better generalization.
Compared with the traditional filtering de-noising algorithm and the de-noising algorithm
based onGAN, the proposed finger vein de-noising algorithmbased onCS-TCGANperforms
better in visual effect, PSNR, and recognition performance.

The remainder of the paper is organized as follows. The Sect. 2 describes the structure of
the proposed network. The Sect. 3 describes the constitution of the proposed training dataset.
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Fig. 2 The structure of the proposed CS-TCGAN

In Sect. 4, we present our experimental results from visual effects, PSNR, and recognition
performance. Finally, conclusions are given in Sect. 5.

2 De-noising Algorithm Based on CS-TCGAN

In order to avoid the problems of vein texture blurred and structure discontinuity after de-
noising process, the corresponding network structure, loss function, and training dataset need
to be carefully designed. Firstly, the feature dimension preserving structure is adopted for the
generator [15], and a residual block is added. Secondly, we designed a loss function with an
adversarial loss, a content loss, and a texture loss. Lastly, a specific training dataset is well
designed by combining Poisson noise, salt/pepper noise, Gaussian noise, and speckle noise.

TheCS-TCGANproposed in this paper consists of a generator network and a discriminator
network. The notation of the proposed network are presented in Fig 2. Inoise denotes the image
to be denoised. Iclean represents the original clean image. Ide-noise denotes the image as a result
of de-noising. Ic represents conditional input image as the constraint of the whole network
to guide the de-noising process [16]. Under the guidance of Ic, the image generated by the
generator will tend to be the distribution of finger vein image. In this paper, we consider
Inoise as the conditional input of the network (i.e., Ic=Inoise). The objective of the generator
network is to generate Ide-noise, whose distribution is close to Iclean, given Inoise as the input
image. The discriminator network is trained to classify Ide-noise to a fake label and Iclean to
a real label. S&P stands for the salt/pepper noise, GN stands for the Gaussian noise, PN
denotes the Poisson noise, SN denotes the speckle noise, and FDK denotes the structure of
feature dimension keeping in the generator network. ladv is the adversarial loss, lcont is the
content loss, and llbp represents the texture loss. The dashed lines represent the actual image
transmission, the dotted lines represent the network feedback, and D_result represents the
output of the discriminator network.

2.1 Generator Network Architecture

The purpose of the finger vein image de-noising process is to project the noisy image onto
a clean image space and keep the vein information as much as possible. In this paper, the
generator network adopts the structure of feature dimension preserving, which ensures the
vein information can be recovered successfully. Meanwhile, the input Inoise is added to the
output of the last convolutional layer, and connected to the de-convolutional layer [17]. The
range of receptive field in convolution is related to the results of learning [18]. In order to
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Fig. 3 Generator network architecture

Fig. 4 Discriminator network architecture

further enhance the recovery effect of vein details, the size of convolutional kernel varies
with the number of channels, so as to learn the detailed information under different receptive
fields. Detailed architecture of the proposed network is shown in Fig. 3.

2.2 Discriminator Network Architecture

The objective of the discriminator network is to classify the denoised image (input from the
generator network) to a fake label “0”, and classify the original clean image to a real label
“1”. The discriminator network needs to be concerned with the generator network [19]. If
the discriminator network is too strong, the generator network will fail in the competition,
leads to the failure of de-noising. On the other hand, if the generator network is too stronger
that results in poor performance to classify the denoised image versus the clean image. There
are five convolution layers in our discriminator network. The detailed discriminator network
architecture is shown in Fig. 4.

2.3 Design of Loss Function Based on Texture Loss

The objective function of the proposed CS-TCGAN is expressed as follows [20],

min
G

max
D

V (D,G) = Ex∼pdata(x)(log2 D(x |c)) + Ez∼pnoise(z)(log2(1 − D(G(z|c)))) (1)

whereG represents the generator network, D represents the discriminator network, V (D,G)

is the objective function, D(x |c) denotes the probability of judging the real sample x given
sample c in the discriminator network, G(z|c) represents the generated sample obtained
by inputting the input sample z given c in the generator network, and E(∗) represents the
mathematical expectation value of the distribution function. G minimizes the objective func-
tion and D maximizes the objective function. Therefore, the loss function of CS-TCGAN
mainly consists of the generation loss and the discriminator loss. The loss function of the
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discriminator network is shown in Eq. (2),

lD = 1

N
×

N∑

i=1

S_CE(D(Iclean, Ic), 1) + S_CE(D(G(Inoise, Ic), Ic), 0)

S_CE(logi t, label) = −label · log2(sigmoid(logi t)) + (1 − label)

· (− log2(1 − sigmoid(logi t))

(2)

where i represents the pixels in the image, and the sum is N . S_CE(∗) represents cross
entropy loss function, which is used to calculate cross entropy after activation of sigmoid
function. logi t represents the input image and label represents the classification result, where
label ∈ {0, 1}.

For the finger vein image with blurred texture, we also need to consider the texture restora-
tion. Thus, we introduce Local Binary Patterns (LBP) as the texture constraint. LBP is an
effective texture description operator, which can measure and extract local texture informa-
tion effectively.

The loss function of CS-TCGAN proposed in this paper consists of the adversarial loss,
the content loss, and the texture loss, which is shown in Eq. (3),

lG = λaladv + λclcont + λlllbp, λa + λc + λl = 1 (3)

where ladv is the adversarial loss, lcont is the content loss, and llbp is the texture loss. λa, λc,
λl are the weighting coefficients of the adversarial loss, the content loss, and the texture loss.
In order to improve the effect of finger vein texture restoration and avoid the generation of
false vein caused by too large weight coefficient of texture loss item, according to the results
of many experiments, this paper sets roughly λa=0.3, λc=0.5, and λl=0.2.

The adversarial loss can be expressed as the probability that the denoised image is con-
sidered clean by the discriminator network, which is shown in Eq. (4),

ladv = 1

N
×

N∑

i=1

S_CE(D(G(Inoise, Ic), Ic), 1) (4)

The content loss can be expressed as the average difference of gray value between the
denoised finger vein image and the corresponding clean image. The specific formula is shown
in Eq. (5),

lcont = 1

N
×

N∑

i=1

||G(Inoise, Ic) − Iclean|| (5)

In order to improve the performance of vein texture restoration after de-noising, llbp uses
the classic LBP to represent the texture features of the image. Then, themean square error loss
of the obtained features is calculated, which acts as a texture constraint on G. The equation
is explained as follows,

llbp = 1

N
×

N∑

i=1

||LBP(Ide-noise) − LBP(Iclean)|| (6)
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Table 1 Noise density distribution of noisy images in practical application

Noise type Number of
images

Minimum
noise den-
sity (%)

Maximum
noise den-
sity (%)

Average
noise den-
sity (%)

Dust noise 600 9.04 24.64 18.95

Skin crack noise 600 1.80 22.79 9.68

where LBP(∗) is the local binary pattern texture extraction function, and its formula is shown
in the following equation,

LBP(I ) =
7∑

p=0,(xi ,yi )∈Ωc

s(I (xc, yc) − I (xi , yi )) · 2p

s(x) =
{
1, x ≥ 0

0, x < 0

(7)

where Ωc is the neighborhood of the central point (xc, yc) with the range of 1, and s(∗) is
the symbolic function.

3 Training Dataset Build-up Based on Finger Vein Noise Distribution

In the Sect. 2, we described the proposed network model. The input of the model is the
noisy image and the corresponding clean image. There must be a one-to-one correspondence
between the pixels of the noise image and the corresponding clean image. However, in the
practical application of finger vein recognition technology, noise image usually refers to
finger vein image with dusty mirror and skin crack. Thus, it is difficult to find a clean finger
vein image corresponding to the image with actual noise in order to build-up the training
dataset. In this section, a training dataset is generated by using simulated noise on target
testing images.

Firstly, the finger vein images with noise in practical application are collected, and the
noise density is evaluated through the ratio of noisy points number to the total image points
number. The results are shown in Table 1.

Secondly, the particle size of actual noise and simulated noise are compared, and the
comparison results are shown in Fig. 5. Fig. 5a and b are actual noise, Fig. 5c–f are simulated
noise.

According to the results of image comparison, the particle size of salt/pepper noise is
the closest to the actual noise, followed by Gaussian noise. From the results in Table 1 and
Fig. 5, the most important part of our training dataset is finger vein image with salt/pepper
noise, followed by the Gaussian noise, and finally the Poisson noise and the speckle noise.
Specifically, the composition of the training dataset in this paper is shown in Table 2. These
different types of noise correspond to different fingers and each finger contains 10 finger vein
images collected in different periods.
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(a) dust (b) skin-crack (c) salt/pepper (d) Gaussian (e) Poisson (f) speckle

Fig. 5 Noisy vein images with different noise types

Table 2 The Composition of the Training Dataset

Noise type Noise density Number of fingers Number of pictures

Salt/pepper noise 0.02 68 680

Salt/pepper noise 0.06 68 680

Salt/pepper noise 0.10 68 680

Salt/pepper noise 0.14 68 680

Salt/pepper noise 0.18 68 680

Salt/pepper noise 0.22 68 680

Gaussian noise 0.10 68 680

Gaussian noise 0.20 68 680

Poisson noise Default 68 680

Speckle noise Default 68 680

4 Experimental Results

The server used in this experiment has NVIDIA TITAN RTX GPU. The deep learning
framework used in this research is PyTorch. The batch size is 32, number of iterations is 105,
and the global learning rate is 0.004. We consider Adam optimizer in our experiment.

In order to verify the performance of the proposed de-noising model after training, the test
dataset in this paper consists of two parts. Specifically, the composition of the test dataset in
this paper is shown in Table 3. The fingers in the test dataset and the fingers in the training
dataset are not repeated, and these different types of noise correspond to different fingers,
and each finger contains 10 finger vein images collected in different periods.

In this paper, the visual effects, PSNR, and recognition performance is analyzed in the
following experiments: (1) Traditional: the traditional de-noising method based on adaptive
switch space domain filter [7]; (2) CGAN: the CGAN de-noising model [13] trained by
randomly selected salt/pepper noise; (3)CS-CGAN: theCGANde-noisingmodel [13] trained
by the training dataset designed in this paper; (4) CS-DPCGAN: the CS-CGAN de-noising
model with dimension preserving structure; (5) CS-TCGAN: the proposed de-noising model
based on CS-TCGAN.
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Table 3 The composition of the
test dataset

Noise type Number of fingers Number of pictures

Salt/pepper noise 60 600

Gaussian noise 60 600

Poisson noise 60 600

Speckle noise 60 600

Dust noise 60 600

Skin-crack noise 60 600

(a) Untreated (b) Traditional[7] (c) CGAN[13] (d) CS-CGAN[13] (e) CS-DPCGAN (f) S-TCGAN

Fig. 6 Consider the dust noise, the visual effect of different de-noising methods

4.1 Evaluate De-noising Performance via Visual

In this section, we evaluate the de-noising performance through visual effect, which reflects
the effect of image de-noising.

Figure 6 shows the finger vein images with dusty mirror, considering five different de-
noising methods. It can be seen from block 1 in Fig. 6b that by using the traditional filtering
de-noising method [7], the noise is removed, but the vein information features are blurred. It
can be seen from block 2 of Fig. 6c that although the texture preserved by using the CGAN
model [13], which is clearer than that of the traditional filtering de-noising method [7], there
is still a problem of vein edge blurring. From block 3 of Fig. 6d that by using the CS-CGAN
de-noising model [13], the vein blurred problem has been significantly improved, however,
we can see the contrast between the vein and the surrounding background area still needs
to be further improved. From block 4 of Fig. 6e that by using the CS-DPCGAN de-noising
model, we can see that the contrast between the vein and the surrounding background area
has been improved, but the vein details are a little blurred. From block 5 of Fig. 6f, we can
see that by using the proposed CS-TCGAN de-noising model, the problem of vein blurring
can be solved successfully, and the contrast between vein information and the surrounding
background area is improved.

Figure 7 shows the finger vein images with skin-crack, considering five different de-
noising methods. It can be seen from block 1 of Fig. 7b that the vein damaged by skin crack
has poor continuity of vein structure by using the traditional filtering de-noising method
[7]. From block 2 of Fig. 7c, we can see that although the CGAN de-noising model [13]
improves the continuity of vein structure, the generalization of the model is weak, which
leads to the problem of vein broken after de-noising. It can be seen from block 3 of Fig. 7d
that the generalization of the CS-CGAN de-noising model [13] has been enhanced, but after
de-noising, the restored vein area becomes blurred. From block 4 of Fig. 7e that by using
the CS-DPCGAN de-noising model, the blurred problem of vein area has been improved in
some certain areas. From block 5 of Fig. 7f, we can see by using the proposed CS-TCGAN
de-noising model, the vein is well restored, and the vein edge sharpening degree is higher.
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(a) Untreated (b) Traditional[7] (c) CGAN[13] (d) CS-CGAN[13] (e) CS-DPCGAN (f) CS-TCGAN

Fig. 7 Consider the skin crack noise, the visual effect of different de-noising methods

4.2 Evaluate De-noising Performance via PSNR

PSNR is an index of evaluating image quality, which represents the ratio of the maximum
possible power of the signal to the destructive noise power . The higher the PSNR, the
higher the image quality [21]. It can be seen from the comparison results in Table 4 that
for different noise types, the de-noising performance of the proposed algorithm has been
improved significantly compared with the traditional filtering de-noising algorithms, CGAN
[13], CS-CGAN [13], and CS-DPCGAN, which shows that the proposed de-noising model
based on CS-TCGAN has a stronger robustness for different noise types. The combination
of noises is a random combination of salt/pepper noise, Gaussian noise, Poisson noise, and
speckle noise.

4.3 Recognition Performance

In order to make the comparative experiments more comprehensive, the CNN de-noising
model [11] is shown in the recognition performance experiment. The Receiver Operating
Characteristic Curve (ROC) curves in Figs. 8, 9 and 10 show that the vein texture of finger
vein image is seriously damaged by noise. When False Accept Rate (FAR) is 0, False Reject
Rate (FRR) of finger vein images with simulated noise, dust noise, and skin-crack noise
are only 92.21%, 92.17%, and 59.84% without de-noising. By using the traditional filtering
de-noising algorithm [7], FRR is decreased to 67.46%, 62.67%, and 52%. By using the
CNN de-noising model [11], FRR is decreased to 63.67%, 60.56%, and 51.66%. Although
the recognition performance has been improved by these algorithm, there are still some
problems such as poor texture recovery which has been discussed in Sect. 3. By using the
CGAN de-noising model [13], FRR is decreased to 51.89%, 58.8%, and 51.34%. By using
the CS-CGAN de-noising model, the de-noising performance is further improved. FRR is
decreased to 42.12%, 55.5%, and 49.84%, but the vein texture recovery is still incomplete.
By using the CS-DPCGAN de-noising model, FRR is decreased to 41.35%, 54.69%, and
46.69%. The comparison between CS-CGAN and CS-DPCGAN proves the effectiveness of
the dimension preserving structure. Through the proposed CS-TCGAN de-noising model,
the problem of incomplete texture repair has been solved, and the restoration ability of
de-noising model to vein details was further improved, and FRR was further decreased to
39.17%, 52.5%, and 43.35%, the comparison betweenCS-DPCGANandCS-TCGANproves
the effectiveness of the texture loss.

In order to further explore whether the proposed CS-TCGAN really indeed preserves the
texture features, we select two test datasets with 230 images in each group according to
texture richness, namely texture rich test dataset (TR-TDS) and texture sparse test dataset
(TS-TDS). The ROC curves in Fig. 11 show that when FAR is 0, FRR of CS-CTCGAN is
5.27% lower than that of CS-CGAN on those images with sparse textures. When FAR is
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Fig. 8 Recognition performance
of four kinds of simulated noises
under different de-noising models

Fig. 9 Recognition performance
of dust noise under different
de-noising models

Fig. 10 Recognition performance
of skin crack noise under
different de-noising models
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Fig. 11 Recognition performance
of images with different texture
richness under different
de-noising models

0, FRR of CS-CTCGAN is 7.12% lower than that of CS-CGAN on those images with rich
textures. It proves that the proposed method is better at keeping the textures.

5 Conclusions

In order to improve the recognition performance of finger vein technology in noisy envi-
ronment, a de-noising algorithm of finger vein image based on CS-TCGAN is proposed.
Firstly, the optimization process of the texture constrained de-noising model is investigated.
Secondly, the dimension preserving structure has been used to reduce the information lost.
Finally, the generalization of the de-noising model has been improved by using the training
dataset constructed based on the characteristics of finger vein noise. The experimental results
show that, compared with the traditional filtering de-noising algorithm and the CGAN de-
noising model, the proposed CS-TCGAN approach restores the vein better from the noisy
image.
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