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Abstract
This article is devoted to the synchronization of delayed inertial neural systems by virtue
of intermittent control scheme. In the proposed inertial models, a type of mixed delays is
introduced which is composed of discrete delays and infinite distributed delays. Particulary,
the finite distributed delays can be easily obtained by selecting specific kernel functions in
infinite distribute delays. To realize exponential synchronization, different from the previous
continuous designs for the first-order systems obtained by suitable substitutions of reduced-
order, an intermittent control scheme is directly developed for the response inertial systems.
Furthermore, a direct analysismethod is proposed to derive the synchronization conditions by
constructing a Lyapunov functional formed by the state variables and their derivatives. Lastly,
the designed control scheme and established criteria are verified via providing a numerical
example.

Keywords Exponential synchronization · Intermittent control · Inertial neural network ·
Mixed time-varying delay

1 Introduction

Neural network models are regarded as complex nonlinear dynamic learning systems com-
posed of numerous processing elements (called neurons) extensively connected to each other.
In recent years, a variety of neural network models, including Cohen-Grossberg types [1],
Hopfield types [2], Cellular neural networks and BAM neural systems [3,4], have been suc-
cessfully proposed in the form of the first-order differential equations. In 1996, Babcock and
Westervelt [5] introduced the inductance into the circuit models and proposed a type of new
neural models, which are called as inertial neural networks and represented by means of
the second-order differential equations. Nowadays, inertial neural systems have been exten-
sively utilized inmany practical fields including processing signals, image encryption, secure
communication [6–8].
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It is well known that it is inevitable for time delay in the inertial neural system [9–
11] because of the inherent delay time in neurons and the finite speeds for information
transmission, signals acquisition and collection processing among neurons. So it is great
significance for researchers to investigate inertial neural systems with time delay. Nowadays,
dynamic features of numerous inertial neural systems with discrete delay have been analyzed
in [10,12–14]. The authors of [15–20] introduced the mixed delays for several inertial neural
models, where discrete delays and distributed delays are involved, and several stability or
synchronization conditions were established.

Currently, the stability [21–24], dissipativity [16,25–28], synchronization [9,19,29,30] of
inertial neural models have attracted extensive attention of scholars at home and abroad. It
is generally known that synchronization plays an important role in nonlinear systems due
to its potential applications in secure communications, optics cryptography, robot control,
image processing and optimal combination. At present, to achieve synchronization of neural
networks, many control techniques including adaptive control [31], feedback control [32],
pinning control [33–36], impulsive control [22,37] and intermittent control [9,19,38–44],
have been designed. Particulary, the intermittent control scheme is a kind of discontinuous
control strategy, which is only active in the control interval and is off during the rest period.
Since the discontinuous control technique can greatly reduce the cost of control, the synchro-
nization problem of the first-order networks under intermittent control has caused extensive
research. For example, the the pinning cluster synchronization in [45] for colored commu-
nity networks was proposed via adaptive aperiodically intermittent control. The problem of
exponential synchronization in [46] for delayed dynamical networks with hybrid coupling
was discussed via pinning periodically intermittent control. In addition, the exponential sta-
bility [47] and exponential synchronization [43] of delayed neural networks are investigated
by Lyapunov-Krasovskii functional approach. However, there are few reports on the second-
order neural networks based on intermittent control. By combining intermittent control and
the reduced-order transforms, the exponential or fixed-time synchronization of inertial neural
systems was investigated in [9,19,41].

Actually, the method of the reduced-order transforms has been widely utilized in the
current results on inertial neural networks. Themain idea of it is that the second-order models
are rewritten as the first-order systems by proper variable transforms, and the dynamics is
revealed by analyzing the obtained first-order models. For example, under the framework
of the reduced-order technique, the exponential synchronization problem of inertial neural
system was investigated in [19,48], the global exponential convergence was discussed in [26,
49,50] for delay-dependent inertial neural networks by means of matrix measure theory, and
the finite time synchronization of delayed inertial neural system was discussed in [51] based
on integral inequality technique. Note that the inertial term disappears with the reduction
of the order, which means that the important role of inertial term cannot be obtained from
the reduced order model. In addition, the dimension of the reduced-order system is twice
that of the original second-order system, which makes the theoretical analysis more difficult,
and the conditions more complex and conservative. In order to avoid and conquer those
problems caused by the reduced-order method, the authors in [52] proposed a newmethod to
discuss the stability and control of inertial neural systemswithout applying any reduced-order
transform. At present, there have beenmany relevant results on the inertial networks based on
non-reduced order idea, such as the globally exponential stability [14,53–55] and exponential
synchronization of inertia neural models [32,56]. However, under the intermittent control and
the non-reduced order means, it is still challenging and there seems to be no related report
on the exponential synchronization of the second-order inertial neural models with discrete
and infinitely distributed delays.
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Based on the above analysis and discussion, this paperwill endeavour to solve the exponen-
tial synchronization problem of inertial neural networks withmixed delays under intermittent
control. The main innovative contents are listed as follows:

(1) A kind of mixed time delays, composed of discrete-time delays and infinite distributed
delays, is proposed in inertial neural networks, which is more general compared with the
types of delays given in the previous inertial neural models [14,22,57]. Particulary, the finite
distributed delay investigated in [22] can be easily obtained by selecting specific kernel
functions in infinite distributed delay.

(2) Different from the continuous control for inertial neural networks in [48,55], an inter-
mittent control scheme is designed to study the exponential synchronization of the inertial
neural systems with mixed delays.

(3) Unlike the traditional reduced-order method used in the most of published results
[15,19], a direct analysis is proposed to investigate the synchronization of inertial neural
networks by directly constructing a suitable Lyapunov functional in this paper.

The rest structure is organized as follows. In Sect. 2, some necessary preliminaries and the
model descriptions are given. In Sect. 3, the exponential synchronization of the addressed
inertial models is investigated. In Sect. 4, a numerical example is given to guarantee the
validity of the established synchronization criteria.

2 ProblemDescription and Preliminaries

In this article, a type of inertial neural system with mixed delays is described as

ẍi (t) = −ai ẋi (t) − bi xi (t) +
∑

j∈�

ci j f j (x j (t)) +
∑

j∈�

di j f j (x j (t − ν(t)))

+
∑

j∈�

ri j

∫ t

−∞
Ki j (t − η) f j (x j (η))dη + Ii (t), i ∈ �, (1)

where � = {1, 2, · · · ,m}, xi (t) is the state of the i th neuron at time t , the second-order
derivative is intituled as an inertial term of (1), ai > 0 and bi > 0, ci j , di j and ri j represent
connection weights, f j (·) is the activation function of the j th neuron, ν(t) is time-varying
discrete delay, which satisfies 0 < ν(t) ≤ ν, ν̇(t) ≤ ν1 < 1, the kernel function Ki j (·) :
[0,+∞) → [0,+∞) is nonnegative and continuous, Ii (t) is an external input.

The initial conditions are provided by

xi (ς) = ϕi (ς), ẋi (ς) = ψi (ς), ς ∈ (−∞, 0],
in which i ∈ �, ϕi (ς), ψi (ς) : (−∞, 0] → R are continuous and bounded.

Remark 1 Obviously, compared with the models proposed in [10,12,14,15,60], the model of
system (1) is more general. For example, when distributed delays are ignored, system (1) is
reduced to the inertial neural mondel in [10,12,15], and system (1) is degenerated into the
first-order model in [60] if inertial term is not considered and Ii (t) = I .

Considering model (1) as the drive system, the response system is given as below:

ÿi (t) = −ai ẏi − bi yi (t) +
∑

j∈�

ci j f j (y j (t)) +
∑

j∈�

di j f j (y j (t − ν(t)))

+
∑

j∈�

ri j

∫ t

−∞
Ki j (t − η) f j (y j (η))dη + Ii (t) +Ui (t), i ∈ �, (2)
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here yi (t) indicates the state of the i th neuron in the response system, Ui (t) is a controller,
the rest symbols are the same as those of system (1).

The initial condition of system (2) are given as

yi (ς) = ϕ̄i (ς), ẏi (ς) = ψ̄i (ς), ς ∈ (−∞, 0],
where i ∈ �, ϕ̄i (ς) and ψ̄i (ς) are continuous and bounded.

To accomplish synchronization, Ui (t) is designed as the following intermittent form:

Ui (t) =
{−ωi (ṡi (t) + si (t)), nT ≤ t < (n + σ)T ,

0, (n + σ)T ≤ t < (n + 1)T ,
(3)

in which T > 0 is called the control period, σ is called control rate and 0 < σ < 1, ωi > 0
is called the control gain, si (t) = yi (t) − xi (t) is the synchronization error.

From systems (1), (2) and the controller (3), the error system can be written as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s̈i (t) = −ai ṡi (t) − bi si (t) +
∑

j∈�

ci j f̃ j (s j (t)) +
∑

j∈�

di j f̃ j (s j (t − ν(t)))

+
∑

j∈�

ri j

∫ t

−∞
Ki j (t − η) f̃ j (s j (η))dη − ωi (ṡi (t) + si (t)),

nT ≤ t < (n + σ)T ,

s̈i (t) = −ai ṡi (t) − bi si (t) +
∑

j∈�

ci j f̃ j (s j (t)) +
∑

j∈�

di j f̃ j (s j (t − ν(t)))

+
∑

j∈�

ri j

∫ t

−∞
Ki j (t − η) f̃ j (s j (η))dη,

(n + σ)T ≤ t < (n + 1)T ,

(4)

where f̃ j (s j (·)) = f j (y j (·)) − f j (x j (·)).

Definition 1 The response system (2) is said to achieve exponential synchronization with
the drive system (1) under the intermittent controller (3), if there are two positive constants
ε and M which depends on the initial values, such that

‖s(t)‖ ≤ Me−εt , t ≥ 0,

where s(t) = (s1(t), s2(t), · · · , sn(t))ᵀ, ‖s(t)‖ = ( ∑
i∈�

s2i (t)
) 1
2 .

Lemma 1 [38] Suppose that V (t) is differentiable and positive definite on [0,+∞) and its
derivative satisfies

{
V̇ (t) ≤ 0, nT ≤ t < (n + σ)T ,

V̇ (t) ≤ κV (t), (n + σ)T ≤ t < (n + 1)T ,

where n ∈ N = {0, 1, 2, · · · }, T > 0, 0 < σ < 1 and κ > 0, then

V (t) ≤ V (0)eκ(1−σ)t , t ≥ 0.

Assumption 1 There exists l j > 0 such that the activation function f j (·) satisfies
| f j (y) − f j (x)| ≤ l j |y − x |, j ∈ �, x, y ∈ R.
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Assumption 2 For any i, j ∈ �, the real-valued kernel function Ki j (·) is nonnegative con-
tinuous and there exist positive constants k0, k1 and λ such that

∫ +∞

0
Ki j (η)dη = k0,

∫ +∞

0
e2ληKi j (η)dη = k1.

Assumption 3 There exist positive constants αi and βi such that

Ai < 0, 4Ai Bi ≥ C2
i , i ∈ �,

where

Ai = αi
(
λ + 1 − ai + 1

2

∑

j∈�

l j (|ci j | + |di j | + k0|ri j |) − ωi
)
,

Bi = αi
(
λ − bi + 1

2

∑

j∈�

l j (|ci j | + |di j | + k0|ri j |) − ωi
) + λβi +

∑

j∈�

α j li |c ji |

+ e2λν

1 − ν1

∑

j∈�

α j li |d ji | + k1
∑

j∈�

α j li |r ji |,

Ci = βi + αi
(
2λ + 1 − ai − bi − 2ωi

)
.

3 Main Results

The exponential synchronization between the neural systems (1) and (2) are discussed in this
section by directly constructing Lyapunov functionals.

Theorem 1 Under Assumptions 1-3, the exponential synchronization is accomplished
between the driving system (1) and response system (2) under the controller (3) if � =
λ − ω̄(1 − σ) > 0, where ω̄ = maxi∈�{ωi }.

Proof Construct a Lyapunov functional as the following form:

V (t) = 1

2

∑

i∈�

βi s
2
i (t)e

2λt + 1

2

∑

i∈�

αi (si (t) + ṡi (t))
2e2λt

+
∑

i∈�

∑

j∈�

qi j

∫ 0

−∞

∫ t

t+h
Ki j (−h)s2j (η)e2λ(η−h)dηdh

+ e2λν
∑

i∈�

∑

j∈�

pi j

∫ t

t−ν(t)
s2j (h)e2λhdh,

where pi j = αi l j |di j |
1−ν1

, qi j = αi l j |ri j |.
For nT ≤ t < (n + σ)T , the derivative of V (t) along the solution of system (4) is

estimated as follows:

V̇ (t) ≤
∑

i∈�

λβi s
2
i (t)e

2λt +
∑

i∈�

βi si (t)ṡi (t)e
2λt +

∑

i∈�

λαi
(
si (t) + ṡi (t)

)2
e2λt

+
∑

i∈�

αi
(
si (t) + ṡi (t)

)(
ṡi (t) + s̈i (t)

)
e2λt
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+
∑

i∈�

∑

j∈�

qi j
( ∫ 0

−∞
Ki j (−h)s2j (t)e

2λ(t−h)dh −
∫ 0

−∞
Ki j (−h)s2j (t + h)e2λt dh

)

+ e2λν
∑

i∈�

∑

j∈�

pi j
(
s2j (t)e

2λt − (1 − ν1)s
2
j (t − ν(t))e2λ(t−ν)

)

≤
∑

i∈�

e2λt
{
λβi s

2
i (t) + βi si (t)ṡi (t) + λαi

(
si (t) + ṡi (t)

)2 + αi
(
si (t) + ṡi (t)

)
ṡi (t)

+ αi
(
si (t) + ṡi (t)

)[ − ai ṡi (t) − bi si (t) +
∑

j∈�

ci j f̃ j (s j (t)) +
∑

j∈�

di j f̃ j (s j (t − ν(t)))

+
∑

j∈�

ri j

∫ t

−∞
Ki j (t − η) f̃ j (s j (η))dη − ωi ṡi (t) − ωi si (t)

]

+
∑

j∈�

k1qi j s
2
j (t) −

∑

j∈�

qi j

∫ 0

−∞
Ki j (−h)s2j (t + h)dh

+
∑

j∈�

e2λν pi j s
2
j (t) −

∑

j∈�

(1 − ν1)pi j s
2
j (t − ν(t))

}
. (5)

By using Assumption 1, Assumption 2 and the fundamental inequality,

∑

i∈�

∑

j∈�

αi si (t)ci j f̃ j (s j (t))

≤
∑

i∈�

∑

j∈�

αi l j |ci j ||si (t)||s j (t)|

≤ 1

2

∑

i∈�

∑

j∈�

αi l j |ci j |
(
s2i (t) + s2j (t)

)
, (6)

∑

i∈�

∑

j∈�

αi ṡi (t)ci j f̃ j (s j (t))

≤ 1

2

∑

i∈�

∑

j∈�

αi l j |ci j |
(
ṡ2i (t) + s2j (t)

)
, (7)

∑

i∈�

∑

j∈�

αi si (t)di j f̃ j (s j (t − ν(t)))

≤
∑

i∈�

∑

j∈�

αi l j |di j ||si (t)||s j (t − ν(t))|

≤ 1

2

∑

i∈�

∑

j∈�

αi l j |di j |
(
s2i (t) + s2j (t − ν(t))

)
, (8)

∑

i∈�

∑

j∈�

αi ṡi (t)di j f̃ j (s j (t − ν(t)))

≤ 1

2

∑

i∈�

∑

j∈�

αi l j |di j |
(
ṡ2i (t) + s2j (t − ν(t))

)
, (9)

∑

i∈�

∑

j∈�

αi si (t)
∫ t

−∞
ri j Ki j (t − η) f̃ j (s j (η))dη
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≤
∑

i∈�

∑

j∈�

αi l j |ri j ||si (t)|
∫ t

−∞
Ki j (t − η)|s j (η)|dη

≤ 1

2

∑

i∈�

∑

j∈�

αi l j |ri j |
∫ 0

−∞
Ki j (−h)

(
s2i (t) + s2j (t + h)

)
dh

≤ 1

2

∑

i∈�

∑

j∈�

αi l j |ri j |
(
k0s

2
i (t) +

∫ 0

−∞
Ki j (−h)s2j (t + h)dh

)
, (10)

∑

i∈�

∑

j∈�

αi ṡi (t)
∫ t

−∞
ri j Ki j (t − η) f̃ j (s j (η))dη

≤ 1

2

∑

i∈�

∑

j∈�

αi l j |ri j |
(
k0ṡ

2
i (t) +

∫ 0

−∞
Ki j (−h)s2j (t + h)dh

)
. (11)

Submitting (6)–(11) into (5), the following inequalities can be obtained:

V̇ (t) ≤
∑

i∈�

e2λt
{(

βi + αi (2λ + 1 − ai − bi − 2ωi )
)
si (t)ṡi (t)

+ αi

(
λ + 1 − ai + 1

2

∑

j∈�

l j (|ci j | + |di j | + k0|ri j |) − ωi

)
ṡ2i (t)

+
(
αi

(
λ − bi + 1

2

∑

j∈�

l j (|ci j | + |di j | + k0|ri j |) − ωi
) + λβi +

∑

j∈�

α j li |c ji |

+ k1
∑

j∈�

q ji + e2λν
∑

j∈�

p ji

)
s2i (t) +

∑

j∈�

(
αi l j |ri j | − qi j

) ∫ 0

−∞
Ki j (−h)s2j (t + h)dh

+
∑

j∈�

(
αi l j |di j | − (1 − ν1)pi j

)
s2j (t − ν(t))

}

≤
∑

i∈�

e2λt
(
Ai ṡ

2
i (t) + Bi s

2
i (t) + Ci si (t)ṡi (t)

)

=
∑

i∈�

e2λt
{
Ai

(
ṡi (t) + Ci

2Ai
si (t)

)2 +
(
Bi − C2

i

4Ai

)
s2i (t)

}

≤ 0. (12)

For (n + σ)T ≤ t < (n + 1)T , similar to the preceding proof, one has

V̇ (t) ≤
∑

i∈�

e2λt
{(

βi + αi (2λ + 1 − ai − bi )
)
si (t)ṡi (t)

+ αi

(
λ + 1 − ai + 1

2

∑

j∈�

l j (|ci j | + |di j | + k0|ri j |)
)
ṡ2i (t)

+
(
αi

(
λ − bi + 1

2

∑

j∈�

l j (|ci j | + |di j | + k0|ri j |)
) + λβi

+
∑

j∈�

α j li |c ji | + k1
∑

j∈�

q ji + e2λν
∑

j∈�

p ji

)
s2i (t)
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+
∑

j∈�

(
αi l j |ri j | − qi j

) ∫ 0

−∞
Ki j (−h)s2j (s + h)dh

+
∑

j∈�

(
αi l j |di j | − (1 − ν1)pi j

)
s2j (t − ν(t))

}

≤
∑

i∈�

e2λt
{(

βi + αi (2λ + 1 − ai − bi − 2ωi )
)
si (t)ṡi (t) + 2αiωi si (t)ṡi (t)

+ αi

(
λ + 1 − ai + 1

2

∑

j∈�

l j (|ci j | + |di j | + k0|ri j |) − ωi

)
ṡ2i (t) + αiωi ṡ

2
i (t)

+
(
αi (λ − bi + 1

2

∑

j∈�

l j (|ci j | + |di j | + k0|ri j |) − ωi ) + λβi

+
∑

j∈�

α j li |c ji | + ki
∑

j∈�

q ji + e2λν
∑

j∈�

p ji

)
s2i (t) + αiωi s

2
i (t)

≤
∑

i∈�

ωiαi (si (t) + ṡi (t))
2e2λt

≤ 2ω̄V (t). (13)

Combining (12), (13) and Lemma 1, for any t ≥ 0, one gets

V (t) ≤ V (0)e2ω̄(1−σ)t . (14)

Hence,

‖s(t)‖2 =
∑

i∈�

s2i (t) ≤ 2

β̌
e−2λt V (t) ≤ 2

β̌
V (0)e−2(λ−ω̄(1−σ))t ,

where β̌ = mini∈�{βi }. Therefore,

‖s(t)‖ ≤
√
2V (0)

β̌
eλ−ω̄(1−σ)t ,

which means that the exponential synchronization is realized. �	
In the following, Ki j (·) is considered as the following special form:

Ki j (η) =
{
0, η ≥ μ,

1, η < μ,
(15)

where μ > 0. In this case, it is obvious that k0 = μ, k1 = 1
2λ (e2λμ − 1) in Assumption 2.

Moreover, the driving and response systems (1) and (2) are reduced to the following form in
this case:

ẍi (t) = −ai ẋi (t) − bi xi (t) +
∑

j∈�

ci j f j (x j (t)) +
∑

j∈�

di j f j (x j (t − ν(t)))

+
∑

j∈�

ri j

∫ t

t−μ

f j (x j (η))dη + Ii (t), i ∈ �, (16)

ÿi (t) = −ai ẏi (t) − bi yi (t) +
∑

j∈�

ci j f j (y j (t)) +
∑

j∈�

di j f j (y j (t − ν(t)))
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Fig. 1 The phase trajectory of system (18) without control
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Fig. 2 The evolution of synchronized error between systems (18) and (19)

+
∑

j∈�

ri j

∫ t

t−μ

f j (y j (η))dη + Ii (t) +Ui (t), i ∈ �, (17)

which implies that the infinite distributed delays are transformed into bounded distributed
delays.

Corollary 1 Under Assumptions 1-3, the neural models (16) and (17) are exponentially syn-
chronized if � = λ − ω̄(1 − σ) > 0, ω̄ = maxi∈�{ωi }.

Apparently, Ci = 0 if βi = αi
(
ai +bi +2ωi −2λ−1

)
> 0. Assumption 3 in this situation

can be rewritten as follows.

Assumption 4 There exist positive constants αi such that

ai + bi + 2ωi − 2λ − 1 > 0,

Ai < 0, Bi < 0, i ∈ �.
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Fig. 3 The evolution of synchronization between system (18) and (19)
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Fig. 4 The evolution of the intermittent controller

Corollary 2 Based on Assumptions 1–2 and 4, if � = λ − ω̄(1 − σ) > 0 is satisfied, then
systems (1) and (2) can achieve exponential synchronization.

Remark 2 Unlike the traditional variable transformation method in the reports of [19,44]
based on intermittent control scheme, a non-reduced order technique is developed by directly
establishing a Lyapunov functional formed by both the state variables and their derivatives
to discuss the synchronization problem of inertial neural networks.

Remark 3 The dynamic behaviors of delayed neural networks with discrete and infinitely
distributed delays have been sufficiently studied in [58,59]. Compared with the first-order
differential systems, the inertial neural systems with mixed delays in this paper are more
general and practical.

Remark 4 In [17,48,60], the inertial system was converted into two first-order differential
equations by appropriate variable transformation. It is noted that the dimensions of the

123



Intermittent Control Based Exponential Synchronization of… 3975

0 2 4 6 8 10 12 14 16 18
t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

s i(t)
, i

=1
,2

s1(t)

s2(t)

Fig. 5 The evolution of synchronized error between system (18) and (19)
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Fig. 6 The evolution of synchronization between system (18) and (19)

reduced-order system are twice as much as the original second-order system, which makes
the theoretical analysis more difficult and the obtained conditions more complex and con-
servative. In order to conquer these difficulties, in this paper, some novel criteria are derived
based a direct method of the order non-reduction, which are simpler and less conservative
compared with those conditions given in [17,48,60].

4 Numerical Simulations

To illustrate the theoretical work, a numerical example and some detailed simulations are
given in this part.
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Fig. 7 The evolution of the intermittent controller

Consider the following a type of inertial systems composed of two neurons:

ẍi (t) = −ai ẋi (t) − bi xi (t) +
2∑

j=1

ci j f j (x j (t)) +
2∑

j=1

di j f j (x j (t − ν(t)))

+
2∑

j=1

ri j

∫ t

−∞
Ki j (t − η) f j (x j (η))dη + Ii (t), (18)

ÿi (t) = −ai ẏi − bi yi (t) +
2∑

j=1

ci j f j (y j (t)) +
2∑

j=1

di j f j (y j (t − ν(t)))

+
2∑

j=1

ri j

∫ t

−∞
Ki j (t − η) f j (y j (η))dη + Ii (t) +Ui (t), (19)

where f j (x) = tanh(0.1x) for j = 1, 2, ν(t) = et

1+et , Ki j (η) = e−4λη, a1 = a2 = 0.3,
b1 = 0.4, b2 = 0.2, and

C = (ci j )2×2 =
[

0.3 −0.4
−3.4 1.1

]
, D = (di j )2×2 =

[−2.0 −0.1
−0.4 −1.6

]
,

R = (ci j )2×2 =
[
0.1 −0.3
0.5 −2.8

]
.

The dynamic behavior of driving system (18) without control can be shown in Fig.1, where
the initial values are given as ϕ1(ς) = −0.5, ψ1(ς) = 0.6, ϕ2(ς) = 0.4, ψ2(ς) = −0.3
with ς ∈ (−∞, 0].

Next, consider the exponential synchronization between driving system (18) and response
system (19) under intermittent control (3). Note that 0 < ν(t) < ν = 1, 0 < ν̇(t) < ν1 = 1

4 ,
l1 = l2 = 0.1. Choose λ = 0.5, α1 = 0.5, α2 = 0.4, β1 = 4, β2 = 4.5, then, k0 = 0.5,
k1 = 1, A1 = −2.325, B1 = −0.225075, C1 = −1.35, A2 = −2.557, B2 = −0.236542,
C2 = −1.3, ω̄ = max{6, 8} and σ = 0.95 by calculation, which means that all conditions of
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Theorem 1 are satisfied and the exponential synchronization is realized by Theorem 1. The
synchronization is shown in Figs.2–4.

Next, Let’s consider the special caseCi = 0 inCorollary 2. Choose λ = 0.2,α1 = α2 = 1,
β1 = 5.3, β2 = 7.1, then, k0 = 1.25, k1 = 2.5, A1 = −1.935, B1 = −0.585150,
A2 = −2.56875, B2 = −0.507606, C1 = C2 = 0, ω̄ = max{3, 4} and σ = 0.95. From
Corollary 2, the synchronization between system (18) and (19) is achieved, which is revealed
in Fig.5-Fig.7.

5 Conclusion

In this paper, a type of inertial neural systems with mixed delays is proposed. In order to
reduce the control cost, an intermittent control scheme is designed for the second-order
inertial models. Meanwhile, some novel sufficient conditions are established to ensure the
exponential synchronization of drive-response neural models by directly constructing an
appropriate Lyapunov functional. Some numerical simulations are provided to support the
theoretical analysis in the end.
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