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Abstract
By the rapid development of the Internet and online applications, traffic classification not 
only has changed to an interesting topic in the field of computer networks but also plays a 
key role in cyber-security and network management. Although numerous studies have been 
conducted in recent years, encrypted traffic classification still remains a major challenge 
and unbalanced data is known as one of the most important problems in this field. Even 
though previous researches have focused on dealing with the class imbalance problem in 
the pre-processing step via machine learning and specifically deep learning methods, they 
are still confronted with some restrictions. To this end, a new traffic classification method 
is presented in this paper that aims to deal with the problem of unbalanced data along 
the training process. The proposed method utilized a Cost-Sensitive Convolution Neural 
Network (CSCNN) where a cost matrix was employed to assign a cost to each misclas-
sification based on the distribution of each class. These costs were then utilized during the 
training process to increase the final classification accuracy. Various experiments were car-
ried out to explore the performance of the proposed method for the tasks of traffic classifi-
cation, traffic description, and application identification.‌ According to the obtained results, 
CSCNN achieved higher efficiency compared to both machine learning and deep learning 
based methods on the ISCX VPN-nonVPN dataset.
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1  Introduction

Traffic classification is generally known as a prominent concept in network security and 
management. Enhancing the number of users and online applications has also increased 
Internet traffic while about 80 % of Internet traffic belongs to peer-to-peer applications [1, 
2]. The growth of bandwidth requirements and the restricted capacity of communication 
lines have made a remarkable need for enhancing the quality of network resource utiliza-
tion. To this end, network traffic classification can help enhance network quality, licensing, 
accounting, and security [3].

The asymmetric architecture of today’s network access links can be considered as one 
of the most important network classification examples that is based on this hypothesis that 
clients generally download more than what they upload. Furthermore, the pervasiveness 
of symmetric-demand applications (like peer-to-peer (P2P) applications, voice over IP 
(VoIP), and video call) led to alternations in clients’ demands to deviate from the men-
tioned assumption [4]. Therefore, it is necessary to provide application-level knowledge for 
allocating enough resources to such applications to be able to supply a satisfactory experi-
ence for the clients. Traffic identification and classification of the various applications and 
services on the network are considered as the primary step for managing the networks. 
Furthermore, according to the rapid growth of malware, while they try to conceal their 
traffic to escape intrusion detection systems and firewalls, traffic classification is changed 
to a necessary initial step in network security systems and intrusion detection against cyber 
threats [5–7].

Network traffic classification methods are generally categorized into four groups of 
port-based, payload inspection, statistical, pattern matching, and machine learning methods 
[2, 8, 9]. Port-based methods employ port communications in the TCP/UDP header. In 
spite of the simplicity and speed of these methods, they cannot classify all protocols owing 
to the existence of dynamic and private ports. Furthermore, payload inspection is a very 
public term for acquiring the payload of a packet and it is referred to deep packet inspec-
tion. Although many techniques have been presented to increase the efficiency of payload 
inspection, privacy, encryption, complexity, and high processing time are still identified as 
their drawbacks [2].

According to the fact that those traffic classification methods that do not need access to 
the load capacity of packets cannot be used for specifying all protocols, some legal restric-
tions may be performed to prevent access to the load capacity of packets and protect user 
privacy. Additionally, by encrypting the load capacity, access to the load capacity will be 
also denied. Consequently, statistical classification methods prevent these issues by utiliz-
ing independent load capacity parameters including arrival time packet length and flow 
length. It must be mentioned that although statistical methods cannot provide remarkable 
accuracy, they are able to carry out the classification at a high speed [10, 11].

Pattern matching methods are known as another group of network traffic classification 
methods that have been utilized in this field for a long time. Based on the fact that they 
need to read the contents of packets and reading the encrypted data is hard, they are con-
fronting with some barriers and need to overcome some problems like scalability for pro-
cessing multi-GB connections and supporting large volumes of signatures [2, 12]. On the 
other hand, with the growth of machine learning methods, they have changed to signifi-
cant methods in the field of network traffic classification. Although machine learning based 
methods are able to overcome some of the existing limitations and insufficiencies of the 
previous methods, besides requiring feature engineering, they are still confronted with two 
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crucial challenges [6, 13]. Firstly, they cannot support real-time classification owing to the 
high processing load of the large amounts of data on the network. Secondly, they are suf-
fering from overfitting while they are confronted with unbalanced data due to their unbal-
anced distribution among various classes [5, 6].

Specifically, unbalanced data not only decrease the classification efficiency but also 
enhance the incorrect classification rate that leads to an impracticable cost to the network 
and causes crucial challenges to the security and management of network resources. To 
overcome these issues, a re-sampling method at the pre-processing step of machine learn-
ing methods has been used to balance the data. Nonetheless, loss of information and false 
information production are also known as the potential disadvantages of these methods [1, 
14].

In recent years, deep learning methods have also achieved remarkable attention for net-
work traffic classification owing to the fact that they do not need handcraft features and 
are able to extract efficient features automatically without human intervention [15, 16]. 
Noteworthy, class imbalance has also a negative influence on the classification efficiency 
of these methods. To overcome this insufficiency, a deep learning based encrypted traffic 
classification framework is proposed in this paper. The proposed method utilizes the Con-
volutional Neural Network (CNN) integrated with cost-sensitive learning to provide a clas-
sification model that aims to manage the problem of unbalanced data, which is entitled as 
Cost-Sensitive CNN (CSCNN). The proposed method employs a cost matrix that assigns a 
cost to each misclassification according to the distribution of each class. This cost is then 
applied to the network during the training phase. The cost matrix is created in the preproc-
essing step using data distribution of various classes where higher cost is assigned to the 
minority classes in comparison to the majority classes.

To evaluate the efficiency of the proposed method for tasks of traffic classification, 
application identification, and traffic description, the ISCX VPN-nonVPN [17] dataset 
was used in our experiments. According to the obtained results, CSCNN not only achieved 
higher performance in comparison to other existing methods but also was able to identify 
more minority class samples correctly. It can be owing to the fact that CSCNN assigns 
higher cost to the minority classes and lower cost to the majority classes. CSCNN then 
used these costs to update weight along with the training phase that made the model more 
sensitive to the minority classes. The advantages of the proposed traffic classification 
method that makes it superior compared to other classification schemes are mentioned in 
the following:

•	 The proposed method is based on deep neural networks and therefore there is no need 
for experts to extract features related to the network traffic.

•	 The proposed method can decrease the influence of unbalanced data, especially class 
imbalance, on the efficiency of traffic classification using a cost-sensitive matrix which 
yields to assigning higher cost to the minority classes and lower cost to the majority 
classes.

•	 To the best of our knowledge, deep learning has been rarely employed for the task of 
traffic classification. However, we did our best to compare our proposed method with 
two of the most famous deep learning based methods for all tasks of traffic classifica-
tion, application identification, and traffic description on the ISCX VPN-nonVPN data-
set.

We also compared our proposed method with machine learning based methods that 
have conducted their experiments on this dataset. Based on the empirical results, it can be 
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claimed that CSCNN has superior classification performance than both deep learning and 
machine learning based methods.

The rest of this paper is categorized as follows. Various kinds of network traffic clas-
sification methods besides the solutions for the problem of unbalanced data in traffic clas-
sification are completely explained in Sect. 2. The proposed method which tries to enhance 
the traffic classification performance on unbalanced data via training a cost-sensitive CNN 
is described in Sect. 3. Section 4 includes the results of the experiments and analysis while 
the conclusion and possible future research are mentioned in Sect. 5.

2 � Related Work

An overview of the most significant traffic classification methods as well as techniques 
for overcoming the class imbalance problems are provided in this section. Particularly, 
network traffic classification methods are classified into five categories as follows [6]: (1) 
port-based method, (2) payload inspection, (3) pattern matching, (4) statistical, and (5) 
machine learning.

Port-based methods are known as the oldest and the most famous methods in this field 
where the classification is carried out utilizing the information in the TCP/UDP header of 
the packets [18]. In other words, port-based methods use the information existing in the 
packet headers to extract port numbers that are related to a specific application. Consider-
ing the fact that extraction is not a difficult process and port numbers are not also affected 
by encryption programs, these methods are not only famous for being easy and fast but also 
are generally used in firewalls and Access Control List (ACL) [19]‌. However, it is neces-
sary to mention that besides their potential advantages, problems such as port misuse, port 
transmission, network address translation, and port randomness have decreased their effi-
ciency [20], and only 30–70 % of current internet traffic can be classified using port-based 
classification methods [21, 22].

Payload inspection methods, commonly known as Deep Packet Inspection (DPI), 
employ the information existing in the application layer to perform classification where 
the predefined patterns like signature and regular expression of each protocol are used to 
distinguish protocols from each other [2]. Noteworthy, updating patterns after releasing 
each new protocol as well as user privacy can be considered as the main weaknesses of 
these methods. In this regard, Sherry et al. [23] presented a system that could solve the pri-
vacy issue by inspecting encrypted payload without decryption. However, their proposed 
method was only able to process HTTP secure traffic.

Following a similar line of research, Pattern matching methods are another group of net-
work traffic classification methods that have been used in this field for a long time [24] that 
try to compare the packet content with a set of predefined rules in the string format. How-
ever, these methods are also confronted with particular limitations like expression limita-
tion while they are not able to cope with complex services. To overcome these drawbacks, 
regular expression and dual-finite automata are commonly employed in these methods to 
derive suitable patterns for classification [25, 26].

Statistical methods try to overcome these problems by utilizing independent factors, 
such as arrival time, packet length, and flow length to perform classification [27, 28]. In 
other words, they are based on this assumption that the traffic of each application has some 
unique statistical features that can be efficiently used in classifying their underlying traffic. 
However, having access to a little part of statistical flow information in real-time traffic 
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may also jeopardize their performance. In this regard, protocol fingerprints based on the 
Probability Density Function (PDF) of packets inter-arrival time and normalized thresh-
olds were presented by Crotti et al. [29] and their obtained accuracy was about 91 % for a 
group of protocols like HTTP, Post Office Protocol 3 (POP3), and Simple Mail Transfer 
Protocol (SMTP). Similarly, PDF of the packet size was also considered by Wang et  al. 
[30]. Their proposed technique accuracy was about 87 % while it was able to determine a 
broader range of protocols like File Transfer Protocol (FTP), Internet Message Access Pro-
tocol (IMAP), SSH, and TELNET.

By the advancement of machine learning methods, they have attracted many researchers 
for the task of traffic classification due to the fact that they are able to automatically create 
a model from a dataset [2]. Generally, machine learning methods are divided into super-
vised and unsupervised techniques. Supervised techniques require labeled data to perform 
classification while unsupervised techniques can be performed without any prior informa-
tion about the samples. In this regard, Auld et al. [31] used a Bayesian neural network to 
classify P2P protocols and obtained 99 % accuracy. Moore et al. [22] also used the Naïve 
Bayes classifier on the same application and achieved 96 % accuracy. Additionally, artifi-
cial neural networks have been used for traffic classification and acquired superior perfor-
mance compared to Naïve Bayes [32]. It is worth mentioning that two of the most prom-
inent methods that have conducted their experiments on the ISCX VPN-nonVPN traffic 
dataset were also based on machine learning methods. Particularly, Gil et al. [17] utilized 
time-related features to specify the network traffic using the C4.5 decision tree and k-near-
est neighbor technique and obtained 92 % recall for classifying the six major classes of the 
traffic. Yamansavascilar et al. [33] also used the k-nearest neighbor technique and obtained 
an accuracy of 94 % for classifying 14 classes of applications on the same dataset.

Although machine learning based methods have obtained remarkable results, they are 
still facing obstacles including feature extraction and feature selection that are mostly per-
formed with the help of an expert. Hence, it can be stated that feature engineering is very 
costly, time-consuming, and prone to human mistakes. To overcome these issues, using 
deep learning methods has obtained considerable attention in the field of traffic classifi-
cation while they do not require any handcraft features and their highly flexible architec-
tures can learn directly from raw data [34–36]. In this regard, Chen et al. [34] proposed a 
method, named Seq2Img, that utilized CNN to classify IP traffic. Based on their proposed 
method, stream sequences were converted into an image and CNN was employed to per-
form traffic classification. Wang et al. [35] proposed a method that learned the low-level 
spatial features of network traffic using deep CNN and Long Short-Term Memory (LSTM) 
network. Notably, a combination of CNN and Recurrent Neural Network (RNN) has been 
also recently utilized for the task of traffic classification [37, 38]. Following a similar line 
of research, the Datanet method [37] was proposed to efficiently manage distributed smart 
home networks where the classification was performed using three deep learning models 
including multilayer perceptron, stacked auto-encoder, and CNN. Particularly, Wang et al. 
[39] and Lotfollahi et al. [1] used deep neural networks for traffic classification and per-
formed their experiments on the ISCX VPN-nonVPN traffic dataset. In this regard, Wang 
et al. [39] presented a method that integrated feature extraction, feature selection, and clas-
sifier into a unified end-to-end method. Lotfollahi et al. [1] also presented the Deep Packet 
method that leveraged a combination of stacked auto-encoder and CNN to classify the net-
work traffic.

Noteworthy, in spite of the fact that deep learning based methods have made signifi-
cant improvements in traffic classification [1, 37], the class imbalance is still known as 
a common problem in this field which can generally result in discriminatory and biased 
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classification towards majority classes. There are two prominent approaches for dealing 
with unbalanced data: (1) Data-level approaches that re-balance the distribution of classes 
in the pre-processing phase. Since data-level approaches are independent of the classifica-
tion algorithms, they are flexible. Re-sampling techniques including Random Under-Sam-
pling (RUS) and Random Over-Sampling (ROS) are two famous re-sampling techniques 
that are used for this aim. In RUS, some samples are randomly selected and eliminated 
from the majority classes. In contrast, in ROS some minority samples are randomly 
duplicated [40]. Information loss and fake knowledge production are known as the pri-
mary problems that RUS and ROS techniques are respectively confronted with [41]. (2) 
Algorithm-level approaches that alter the learning process by inserting an extra specialized 
mechanism into the original algorithm to determine the classifier’s sensitivity toward the 
minority classes. Cost-sensitive is a technique that is commonly utilized to deal with class 
imbalance problems where variable costs are assigned to each class and then the algorithm 
adapts these costs during the training process to update weights. The goal of this technique 
is to assign a higher cost to minority class samples as well as decreasing the overall learn-
ing cost.

In this area of research, some methods have been recently presented that tried to inte-
grate class-specific costs into deep neural networks, such as CNN [15, 42], DNN [43, 
44], and auto-encoders [45]. Khan et al. [44] incorporated a cost-sensitive setting in CNN 
to learn feature representations and classifier parameters for both majority and minority 
classes. This approach can be used for both binary and multiclass problems. To the best 
of our knowledge, no studies have been previously conducted on using cost-sensitive tech-
niques along with deep neural networks for the task of traffic classification aiming to over-
come the class imbalance problem. It can be claimed that it is the first study that tries to 
deal with class imbalance problem in encrypted traffic classification by generating a cost 
matrix based on the class distribution and using it during the model training process and 
updating weight.

3 � Background in Deep Neural Network

Neural networks are commonly recognized as computing systems that consist of many 
basic and highly interconnected elements for processing information. These networks are 
made of an extensive number of building blocks (neurons) that are connected to each other 
via links (connection) with a particular weight. Along with the training process, a large 
number of data samples are fed to the neural network and a learning algorithm (backpropa-
gation) is performed to adjust the weights to obtain the desired output. Specifically, deep 
neural networks are also known as a particular kind of neural network that contains many 
hidden layers that have become more feasible in recent years due to the rapid enhancement 
of computational powers and accessibility of Graphical Processing Units (GPU) [46]. They 
have been also successfully utilized in various domains including computer vision, image 
processing, natural language processing, information retrieval, and especially traffic classi-
fication [8, 47]. While the focus of the proposed method of this paper is on using CNN for 
traffic classification, more details about this network and how it is used for traffic classifica-
tion are provided in the following section.

CNN is one of the typical deep neural networks that can perform automatic feature 
extraction using layers comprised of convolutional operations and is generally suitable for 
sequential data like language [1, 48, 49]. The main concept of CNN is to achieve local 
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features from the input at higher layers and then combine them into more complex features 
at lower layers. In this regard, CNN leverages the convolutional layer as a basic building 
block which takes N × N square neurons and a filter of wwith the size of m × m as input. 
By applying the convolutional operation on these two matrices, the output features of each 
layer cl with the size of (N − m + 1) × (N − m + 1) are obtained. Thereafter, f  is applied 
as the activation function to learn more complex features (Eq. 1). Pooling operation is also 
applied over the obtained feature maps to aggregate multiple low-level features and reduce 
computational costs [8].

Due to the fact that network traffic is essentially sequential data and the structure of 
byte, packet, session, and the whole traffic are very similar to the structure of character, 
word, sentence, and the whole document in the natural language processing, CNN can be 
also used for encrypted traffic classification. In this regard, consider Xi ∈ ℝ is a k-dimen-
sional vector that corresponds to the ith traffic byte in the session or flow. Therefore, 
X1∶n = x1 ⊕ x2 ⊕⋯⊕ xn represents a flow of length n where ⊕ is the concatenation opera-
tion. Generally, xi∶i+j presents the concatenation of traffic bytes x1, xi+1,… , xi+j . Then, the 
convolutional operation with the filter w ∈ ℝ is applied to a window of h traffic bytes to 
generate a new feature ci ∈ ℝ(Eq. 2).

Here b is the bias term, f  is the activation function (ReLU), and◦ refers to the dot prod-
uct between the convolutional filter and traffic submatrix. The filter is applied to each pos-
sible window of traffic bytes {x1∶h, x2∶h+1,… , xn−h+1∶n} to generate feature mapsci (Eq. 3).

Then, a max-pooling operation is applied over the obtained feature maps to obtain the 
maximum value as the next feature (Eq. 4)

The achieved features are passed to a fully connected SoftMax to determine the prob-
ability distribution of the input session or flow (Eq. 5).

Overall, that it can be stated that CNN can be an ideal choice for network traffic classifi-
cation because it is able to capture spatial dependencies between adjacent bytes in network 
packets which results in finding discriminative patterns for every class of protocols/appli-
cations that can lead to the accurate traffic classification.

(1)cl
ij
= f

(
m−1∑
a=0

m−1∑
b=0

wabc
l−1
(i+a)(j+b)

)

(2)ci = f (w◦xi∶i+h−1 + b)

(3)ci =
{
c1, c2,… , cn−h+1

}

(4)ĉ = max
(
ci
)

(5)y = Softmax(W (s)ĉ + b)
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4 � Methodology

According to the fact that unbalanced data have a considerable influence on the efficiency 
of CNN and can cause over-fitting during the training process [42], different methods have 
been proposed to fill these lacunae. Existing methods [1, 35] generally utilized re-sampling 
techniques that needed expert knowledge to specify the majority and minority classes. 
Besides being time-consuming and costly, this technique not only yields to the removal 
of many data patterns but also results in false data patterns generation. In this regard, a 
Cost-Sensitive CNN- (CSCNN) method for the task of encrypted traffic classification is 
proposed in this paper. The schematic representation of the proposed method is illustrated 
in Fig. 1.

As it is obvious, the proposed method includes two separate phases. Accordingly, the 
network traffic data are cleaned to become suitable as the input of the neural network in the 
first phases. while the second phase consists of the proposed CSCNN method. More details 
about the used dataset and the proposed method are provided in the following.

4.1 � Dataset

Generally, self-collected traffic or security companies’ private traffic have been used for 
the evaluation of encrypted traffic classification methods that resulted in incompatibility 
between their obtained results. In other words, public datasets have been rarely employed 
for evaluation in this field and while classical machine learning requires handcraft fea-
tures as input, most of the existing public datasets are feature datasets rather than traf-
fic datasets. However, Gil et al. [17] generated a public dataset for the task of encrypted 
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Fig. 1   Schematic representation of the proposed method
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traffic classification (ISCX VPN-nonVPN dataset) that includes captured traffic of different 
applications in pcap format files. Each file was labeled according to the application pro-
duced the packets (e.g., Skype, and Hangouts) along with the activity the application was 
engaged during the capture session (e.g., voice call, chat, file transfer, or video call). The 
dataset also contains packets captured over Virtual Private Network (VPN) sessions. Like 
non-VPN traffic, VPN traffic is captured for different applications, such as Skype, while 
performing different activities, like voice calls, video calls, and chat.

Having the above-mentioned issues in our mind, the “ISCX VPN-nonVPN” dataset was 
used in our experiments in order to be able to provide a fair comparison between our pro-
posed method and other existing methods for the task of encrypted traffic classification.

4.2 � Pre‑Processing

While the “ISCX VPN-nonVPN” dataset file format is not suitable to be used as the input 
of the proposed CSCNN method, the raw traffic of this dataset must be pre-processed to 
generate the required format. The pre-processing phase contains seven fundamental steps 
that are explained in the following:

(1)	 Data integration and re-labeling: All pcap files are merged to form a single dataset in 
the integration phase. While pcap files are labeled according to their applications, they 
must be re-labeled for application identification and traffic description. Re-labeling 
respectively resulted in 17 and 14 classes for application identification and traffic 
description. More details about re-labeled classes are reposted in Table 1.

(2)	 Converting bit to byte: The values ​​in the dataset are stored as bits between 0 and ff, 
including eight bits. To reduce the input size, the data is first converted to byte format 
and then is converted to a value between 0 and 255.

(3)	 Discarding irrelevant information: While the dataset is collected in a real-world simula-
tion, it consists of several useless packets that are not suitable for modeling and must 

Table 1   Number of samples per class: (A) Traffic description (B) Application Identification

A B
Class name Size Application Size

Browsing
Chat
Email
File transfer
Streaming
Torrent
VoIP
Vpn: Browsing
Vpn: chat
Vpn: File transfer
Vpn: Email
Vpn: Streaming
Vpn: Torrent
Vpn: VoIP

2500
890
249
1018
482
1000
2826
2500
1196
1932
491
475
928
2271

AIM chat
Email
Facebook
FTPS
Gmail
Hangouts
ICQ
Netflix
SCP
SFTP
Skype
Spotify
Torrent
Tor
VoIP buster
Vimeo
YouTube

5k
28k
2502k
7872k
12k
3766k
7k
299k
448k
418k
418k
2872k
40k
70k
202k
842k
146k
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be removed. As matter of fact, the ISCX VPN-nonVPN dataset consists of some TCP 
segments with SYN, ACK, or FIN flag sets that are essential for a three-way handshak-
ing procedure or establishing or finishing a connection. In contrast, these segments are 
not carrying any suitable information about the application that had generated them 
and must be discarded. Moreover, Domain Name Service (DNS) segments that are not 
relevant to application identification and traffic classification must be also removed 
from the dataset.

(4)	 Packet truncation: Due to the fact that neural networks need fixed-length inputs and 
the packet length varies a lot through the dataset, the length of packets must be united. 
To this end, the size of all packets is fixed to 1480 by cutting or zero-padding.

(5)	 Normalization: To achieve higher efficiency, all the packet bytes are divided by 255 
while the input values are in the range [0–1].

(6)	 Cost matrix formulation: The cost matrix γ is formulated in the last level of the pre-
processing phase and is then ​​applied to the output of the last layer of CNN to alter the 
network’s weights based on various costs. While in CNN higher score is commonly 
assigned to the output class, the goal of the cost matrix is to assign the maximum cost 
to the minority classes while lower costs are assigned to other classes (majority ones). 
In a cost matrix, the diagonal of the matrix is known as the utility vector. This vec-
tor presents the correct classification and is set to zero. For other classifications, all 
costs are non-negative, i.e. 𝛾i,j > 0 . An example of a cost matrix for a dataset with four 
classes is presented in Table 2 where a 4 × 4 matrix is ​​generated when all the cells of 
the matrix are larger than zero, except those in the diagonal row that are always set to 
zero.

(6)	 Removing data-link header: According to the fact that the ISCX VPN-nonVPN data-
set is captured at the data-link layer and the data-link header includes physical link 
information like a Media Access Address (MAC) that is also necessary for transmitting 
frames over the network but is not essential and informative for application identifica-
tion or traffic description, the Ethernet header must be eliminated in the pre-processing 
phase

Consequently, it can be stated that if the algorithm accurately classifies the sample, 
there is no cost. In other respect, the proposed algorithm assigns a cost to misclassification 
based on the distribution of the corresponding classes. The cost of each class is also com-
puted using the following equation (Eq. 6).

Table 2   Traffic description 
performance

Classes
C1 C2 C3 C4

Classes C1 0 Cost
c1→c2

Cost
c1→c3

Cost
c1→c4

C2 Cost
c2→c1

0 Cost
c2→c3

Cost
c2→c4

C3 Cost
c3→c1

Cost
c3→c2

0 Cost
c3→c4

C4 Cost
c4→c1

Cost
c4→c2

Cost
c4→c3

0
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4.3 � Cost‑Sensitive Convolutional Neural Network (CSCNN)

Based on previous studies, it can be concluded that using cost-sensitive learning along 
with the training of a neural network can result in higher efficiency compared to data-
level methods. As a matter of fact, cost-sensitive learning is a subfield of machine learn-
ing which considers the cost of prediction errors along with the training of a model. It is 
also closely related to the field of imbalanced learning which involves explicitly defin-
ing and using cost during the training process. In this regard, a Cost-Sensitive CNN 
(CSCNN) is proposed in this paper that tries to learn appropriate features for the minor-
ity and majority classes automatically to improve the efficiency of traffic classification.

The main notion behind cost-sensitive learning is to make a priority on minority class 
instances while facing misclassification. Accordingly, a cost is assigned to each misclas-
sification type while misclassifications of the minority classes obtain higher values com-
pared to misclassifications of the majority classes. Once a misclassification happens, the 
cost function is then activated and attempts to enhance the cost value by applying the 
corresponding cost that was pre-defined by the user or automatically assigned by a tech-
nique. Therefore, cost-sensitive learning results in a higher cost value when a minority 
class instance is misclassified in comparison to the time when a majority class instance 
is misclassified. Considering this cost along with updating the parameters of the neu-
ral networks, the training process becomes more sensitive to minority classes. Despite 
previous methods that utilized a user-defined matrix, the proposed CSCNN automati-
cally adjusts the cost of each classification using the data distribution. The details of the 

(6)Costci→cj =

⎧
⎪⎪⎨⎪⎪⎩

1 −
Nci
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proposed CSCNN are presented in Fig. 2 which includes three primary steps: (1) form-
ing a cost matrix, (2) learning features using CNN, and (3) a cost-sensitive function.

Noteworthy, the goal of the proposed method is to decrease the influence of unbal-
anced data on the efficiency of encrypted network traffic classification as well as focus-
ing on learning data that have uneven penalties or costs when making a prediction. To 
this end, a cost matrix is ​​formed by computing the distribution of samples of all classes 
in the first step. Thereafter, the data is fed to CNN to carry out the classification in the 
second step which can be considered as an end-to-end strategy that is able to directly 
learn the nonlinear relationship between traffic input and expected output label rather 
than diving the problem into subproblems. It is worth mentioning that a two-layers CNN 
where a convolution layer is followed by a ReLU activation function and a max-pooling 
layer is also utilized. SoftMax classifier, which is a multi-class version of logistic regres-
sion, is finally used to specify the output classes.

Noteworthy, due to the fact that the compromise is to train on the training dataset but 
to stop training at the point when performance on a validation dataset starts to degrade, 
an early stop technique is also utilized to intercept over-fitting. Accordingly, If the value 
of the loss function of the validation set does not change for several iterations, the training 
process stops. To standardize the input and stabilize the learning process besides reducing 
the number of training epochs and accelerating the learning process, batch normalization 
technique is also used during the training process.

Thereafter, the actual and predicted classes are first specified using a cost-sensitive layer 
(third step) after each misclassification. The misclassification cost is then determined uti-
lizing the cost matrix to be used for output modification. Ultimately, the specified cost is 
then applied to the outputs of actual and predicted classes. In summary, the classification 
process is determined as follows:

(1)	 The first convolutional layer makes use of a set of learnable filters where the input data 
is processed with 8 filters (filter size= [1, 3]). Each filter moves 1 step after one con-
volutional operation. Convolving the same filters at every position in the input matrix 
allows the features to be extracted automatically.

(2)	 Features obtained from the convolution layer are fed to ReLU as an activation function 
to learn complex patterns in the data (Eq. 7).

(3)	 After applying ReLU function, the results are then processed through the pooling 
layer to reduce the dimension of the features. The pooling layer operates upon each 
feature map separately to create a new set of the same number of pooled feature maps. 
Max-pooling is used in the proposed method which processes a [1, 2] input as follows 
(Eq. 8). The max-pooling has a step size of 1.

(4)	 Three aforementioned layers (i.e., convolutional layer, ReLU, and max-pooling) are 
then added to the network with the same settings described in layers 1, 2, and 3.

(5)	 These features are then passed to a fully connected SoftMax layer whose output is the 
probability (Eq. 9).

(7)ReLU(x) = max[0∶x]

(8)maxpooling
[
x1, x2, x3,x4

]
= max(x1, x2, x3, x4)
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A cost-sensitive strategy is then utilized to address the class imbalance problem along 
with the feature learning process via improving the efficiency of the cost function where 
weight and bias parameters are learned by the SoftMax classifier to minimize cost. In fact, 
the purpose of a cost-sensitive strategy is to punish all kinds of classification errors based 
on certain costs. The basic idea behind this strategy is that the larger output values in the 
output layers yield to higher probability in comparison to the smaller output values in the 
SoftMax layer. Consequently, CSCNN tries to decrease the predicted class output value and 
enhance the actual class output using Eqs. (10) and (11).

Here the terms yP and yA respectively refer to the predicted class and the actual class 
outputs. The yi and yk values also respectively present the new outputs for actual and pre-
dicted classes. The cross-entropy cost function is then altered and a new cost function is 
introduced. The new function obtains y and p values as inputs and returns a loss value for 
each class. After modifying the output of the two actual and predicted classes, the prob-
ability values are again calculated utilizing the SoftMax function (that are known as pk and 
pi respectively for the predicted (yk) and actual (yi) classes). The new loss value for the pre-
dicted and the actual classes are computed using Eqs. (12) and (13) respectively.

Since the value of y is equal to1 for the predicted class and is zero for the actual class, 
the predicted class activates the first part of the equation, i.e. −  log(p). On the contrary, 
the actual class activates the second part of the equation, i.e. − log(1 − p). Since the prob-
ability value of p for the predicted class is decreased (by enhancing the value in the output 
layer, yk), the − log(p) value becomes larger. Furthermore, as the probability value (p) of 
the actual class is enhanced (by reducing the output yi), the p value in the  − log(1 − p−1) 
is reduced. Consequently, the outputs of the loss function are enhanced for both classes that 
leads to an enhancement in the overall loss cost of various classes.

In general, the proposed CSCNN aims to decrease the neural network cost by impos-
ing punishments on various misclassifications. These costs are specified utilizing the 
classes’ distribution in such a way that classes with fewer samples obtain higher costs and 
the majority classes obtain lower costs aiming to train a network that is more sensitive to 
minority classes.

(9)f�(x) =
1∑C

j=1
eyj

�
ey1ey2 … eyC

�
=
�
p(yi = 1�xi)p(yi = 2��xi

�
… p(yi = C�xi)

�

(10)yk = yP − �i,k × yP

(11)yi = yA + �i,k × yA

(12)−
(
yloglog

(
pk
)
+ (1 − y)loglog

(
1 − pk

))

(13)−
(
yloglog

(
pi
)
+ (1 − y)loglog

(
1 − pi

))



3510	 S. Soleymanpour et al.

1 3

5 � Results and Discussion

In order to prove the efficiency of our proposed method, we decided to carry out various 
experiments in terms of traffic classification, traffic description, and application identifica-
tion. It is worth mentioning that all implementations were conducted using Python as the 
programming language, Anaconda as a library for implementing deep neural networks, and 
Tensorflow as its backend. Furthermore, the learning rate and the number of epochs were 
respectively set to 0.1 and 100. The size of convolutional filters and pooling filter were 
respectively set to 1 × 12 and 1 × 3. To prevent overfitting, the dropout layer with a mask-
ing probability of 0.4 was applied for regularization. A fully connected network with two 
hidden layers was also implemented to perform the final classification. Stochastic Gradient 
Descent (SGD) and cross-entropy were respectively utilized as optimizer and loss function. 
To perform training, 90 % of data was randomly selected as a training set and the remained 
10 % of data was used as a test set. Implementations were conducted on a system with an 
Intel Xeon 2 E5-2620 2.0 GHz processor and 8 GB of RAM running windows server 2008.

To evaluate the proposed method, five commonly used metrics, known as Accuracy, 
Recall, Precision, F1 Score, and False Alarm Rate (FAR) were employed in our experi-
ments and their equations are provided in the following. Where TP, TN, FP, and FN respec-
tively refer to the true positive, true negative, false positive, and false negative.

As previously mentioned, deep neural networks have been rarely employed for the 
task of traffic classification and most of the existing methods also have used a particular 
self-collected traffic dataset in their experiments. Moreover, the efficiency of deep learn-
ing based methods is highly related to the used hardware. In this regard, comparing the 
proposed method with other state of the art is very complicated and confusing. However, 
in order to prove the superior performance of the proposed method, we compared it with 
two of the most prominent methods in this field, namely Deep Packet [1] and Datanet [37] 
in terms of traffic classification, traffic description, and application identification on ISCX 
dataset. Noteworthy, the proposed method is also compared with a machine learning based 
method while their results were taken from their original papers. More details about the 
obtained results are provided in the following.

(14)Accuracy =
TP + TN

FP + FN + TP + TN

(15)Recall =
TP

TP + FN

(16)Precision =
TP

TP + FP

(17)F1 Score =
2 ∗ Recall ∗ Percision

Recall + Percision

(18)FAR =
FP

FP + TN
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5.1 � Classification Results

The performance of the proposed method in terms of classification between VPN and Non-
VPN classes compared to the Deep Packet [1] and Datanet [37] methods is investigated 
in this section. The Confusion matrices for all three methods are illustrated in Fig. 3. As 
can be seen, the proposed CSCNN method is able to detect VPN and Non-VPN with 98 % 
accuracy while only 0.02 % of traffic was misclassified. On the other hand, Deep Packet [1] 
and Datanet [37] respectively obtained the accuracy of 97 and 94 % for Non-VPN classifi-
cation and 96 and 92 % for VPN classification. Apparently, the proposed CSCNN method 
has superior performance for the task of classification.

In order to provide more comparison, the results obtained from the confusion matrices 
of Fig. 3 are illustrated in Fig. 4 based on five metrics of accuracy, recall, f-measure, pre-
cision, and false alarm rate. As can be seen, although CSCNN has slightly higher perfor-
mance than Deep Packet [1] and Datanet [37] based on four measures of accuracy, recall, 
f-measure, and precision, their performances can be also considered relatively identical 
which can be attributed to the balanced distribution of each class data while each of the 

BROWSING
CHAT
MAIL

FT
P2P 

STREAMING
VOIP

VPN-BROWSING
VPN-CHAT
VPN-MAIL

VPN-FT
VPN-P2P 

VPN-STREAMING
VPN-VOIP

BROWSING
CHAT
MAIL

FT
P2P 

STREAMING
VOIP

VPN-BROWSING
VPN-CHAT
VPN-MAIL

VPN-FT
VPN-P2P 

VPN-STREAMING
VPN-VOIP

BROWSING
CHAT
MAIL

FT
P2P 

STREAMING
VOIP

VPN-BROWSING
VPN-CHAT
VPN-MAIL

VPN-FT
VPN-P2P 

VPN-STREAMING
VPN-VOIP

B
R

O
W

SI
N

G
C

H
A

T
M

A
IL FT P2
P 

ST
R

EA
M

IN
G

V
O

IP
V

PN
-B

R
O

W
SI

N
G

V
PN

-C
H

A
T

V
PN

-M
A

IL
V

PN
-F

T
V

PN
-P

2P
 

V
PN

-S
TR

EA
M

IN
G

V
PN

-V
O

IP

B
R

O
W

SI
N

G
C

H
A

T
M

A
IL FT P2
P 

ST
R

EA
M

IN
G

V
O

IP
V

PN
-B

R
O

W
SI

N
G

V
PN

-C
H

A
T

V
PN

-M
A

IL
V

PN
-F

T
V

PN
-P

2P
 

V
PN

-S
TR

EA
M

IN
G

V
PN

-V
O

IP
B

R
O

W
SI

N
G

C
H

A
T

M
A

IL FT P2
P 

ST
R

EA
M

IN
G

V
O

IP
V

PN
-B

R
O

W
SI

N
G

V
PN

-C
H

A
T

V
PN

-M
A

IL
V

PN
-F

T
V

PN
-P

2P
 

V
PN

-S
TR

EA
M

IN
G

V
PN

-V
O

IP

CSCNNDeep Packet

Datanet 
Predicted Labels Predicted Labels 

Predicted Labels 

T
ru

e 
La

be
ls

T
ru

e 
La

be
ls

T
ru

e 
La

be
ls

Fig. 5   Confusion matrices of traffic description (14 classes)



3513CSCNN: Cost‑Sensitive Convolutional Neural Network for…

1 3

VPN and Non-VPN classes includes about 50 % of the total data. Moreover, the false alarm 
rate of CSCNN is lower on Non-VPN traffic compared to two other mentioned methods.

5.2 � Traffic Description Results

Traffic description is another factor that can be considered for evaluating the performance 
of the proposed method. In this regard, the confusion matrices of CSCNN, Deep Packet 
[1], and Datanet [37] are illustrated in Fig. 5 where the rows of the confusion matrices cor-
respond to the actual class and the columns are related to the predicted labels and therefore 
the matrices are row normalized. Noteworthy, the darker color of the diagonal elements 
states that the method can classify each application with minor confusion because they 
present the accurately classified results. By carefully observing the confusion matrices of 
these three methods, it is clear that the number of misclassification of the CSCNN is lower 
compared to the other two methods that can clearly prove the efficiency of our proposed 
method.

In order to provide more comparison, the results obtained from the confusion matrices 
of Fig. 5 are illustrated in Fig. 6 based on five metrics of accuracy, recall, f-measure, pre-
cision, and false alarm rate. As it can be seen, CSCNN presented better results compared 

Fig. 6   Comparison of the traffic description performance of CSCNN, Deep Packet, and Datanet methods
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to the other two methods. The better performance of CSCNN is clearer in false alarm rate 
comparison that can be due to the higher error rate for the minority class samples leads to 
higher values compared to Deep Packet [1] and Datanet [37].

Moreover, this value is higher for Chat، File transfer، Streaming, and VPN: Streaming 
compared to other classes. The accuracy of the CSCNN is about 96.9 % while this value 
is equal to 94.3 and 96.71 % for Deep Packet [1] and Datanet [37] respectively. Therefore, 
it can be concluded that the accuracies of all three methods are relatively low which can 
be due to the fact that this measure of classification cannot consider all the classes. In this 
regard, it can be claimed that accuracy is not an appropriate measure for evaluating unbal-
anced data classification. In contrast, recall and precision have better efficiency in evaluat-
ing the classification of unbalanced data. Notably, the recall and precision values are about 
97.4 % for CSCNN while these values are lower for Deep Packet [1] and Datanet [37]. The 
comparison of the CSCNN, Deep Packet [1], and Datanet [37] methods for traffic descrip-
tion according to five metrics of accuracy, recall, f-measure, precision, and false alarm rate 
is also presented in Table 3. The higher performance of the CSCNN in all evaluation met-
rics proves that it has entirely extracted and learned the discriminative features from the 
training set and can successfully classify traffic description.
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Fig. 7   Confusion matrices of application identification (17 classes)
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5.3 � Application Identification Results

Application identification is another factor that was used to evaluate the performance 
of the proposed method. In this regard, the confusion matrices of CSNN, Deep Packet 
[1], and Datanet [37] are illustrated in Fig. 7 where the rows of the confusion matrices 
correspond to the actual class and the columns are related to the predicted labels and 
therefore the matrices are row normalized. As it is clear, CSCNN can correctly clas-
sify Youtube, Tor‌, Torrent, and AIM Chat classes. Moreover, by carefully observing the 
confusion matrices of these three methods, it is obvious that CSCNN can classify sam-
ples more efficiently while its misclassification rate is lower compared to the other two 
methods for application identification.

In order to provide more comparison, the results obtained from the confusion matri-
ces of Fig. 7 are illustrated in Fig. 8; Table 4 based on five metrics of accuracy, recall, 
f-measure, precision, and false alarm rate. As it can be seen, CSCNN presented better 
results compared to the other two methods. The accuracy of the CSCNN is about 97.9 % 
while this value is equal to 96.2 and 96.1 % for Deep Packet [1] and Datanet [37] respec-
tively and the recall average is about 98.6, 96.4  and 93.9 % for CSCNN, Deep Packet 

Fig. 8   Comparison of the application identification performance of CSCNN, Deep Packet, and Datanet 
methods
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[1], and Datanet [37] respectively. The higher performance of the CSCNN in all evalua-
tion metrics proves that it has entirely extracted and learned the discriminative features 
from the training set and can successfully distinguish each application.

Application identification is another factor that was used to evaluate the performance 
of the proposed method. In this regard, the confusion matrices of CSNN, Deep Packet [1], 
and Datanet [37] are illustrated in Fig. 7 where the rows of the confusion matrices corre-
spond to the actual class and the columns are related to the predicted labels and therefore 
the matrices are row normalized. As it is clear, CSCNN can correctly classify Youtube, 
Tor‌, Torrent, and AIM Chat classes. Moreover, by carefully observing the confusion matri-
ces of these three methods, it is obvious that CSCNN can classify samples more efficiently 
while its misclassification rate is lower compared to the other two methods for application 
identification.

In order to provide more comparison, the results obtained from the confusion matrices 
of Fig. 7 are illustrated in Fig. 8; Table 4 based on five metrics of accuracy, recall, f-meas-
ure, precision, and false alarm rate. As it can be seen, CSCNN presented better results 
compared to the other two methods. The accuracy of the CSCNN is about 97.9 % while this 
value is equal to 96.2 and 96.1 % for Deep Packet [1] and Datanet [37] respectively and the 
recall average is about 98.6 , 96.4 , and 93.9 % for CSCNN, Deep Packet [1], and Datanet 
[37] respectively. The higher performance of the CSCNN in all evaluation metrics proves 
that it has entirely extracted and learned the discriminative features from the training set 
and can successfully distinguish each application.

Fig. 9   Training accuracy comparison based on the number of epochs



3519CSCNN: Cost‑Sensitive Convolutional Neural Network for…

1 3

5.4 � Training Time Analysis

Considering the fact that the training time of deep neural networks is highly related to the 
hardware that they are implemented on, namely modern GPUs can significantly reduce the 
training time, it cannot be considered as a fair measure for comparing the efficiency of 
deep learning based methods and it has been rarely explored as a metric for evaluation. 
However, in order to provide an analysis of the time complexity of our proposed method, 
we decided to plot the training accuracy of our proposed method (CSCNN) compared to 
Deep Packet [1] and Datanet [37] that is illustrated in Fig. 9. As it is clear, the classification 
accuracy of these three methods based on the number of epochs is very close to each other 
in two-class classification (Fig. 9.A) which can be due to the fact that the data are unbal-
anced and there is a balanced rate for both classes. In the case of traffic description and 
application identification, it is obvious that not only CSCNN has higher accuracy but also 
it obtained the maximum accuracy only after four epochs and therefore it was converged 
faster compared to the other two methods. 

Training time per epoch is another factor that can be considered for time analysis. In 
this regard, the runtime of these three methods, namely CSCNN, Deep Packet [1], and 
Datanet [37], based on the number of epochs for the tasks of traffic description and appli-
cation identification is depicted in Fig. 10. As it is clear, Deep Packet [1] and Datanet [37] 
required training time is very close to each other while CSCNN requires more time for 
training in each epoch. After all, although CSCNN requires more training time per each 
epoch, it is converged in a lower number of epochs (about after four epochs) compared 
to the other two methods. Therefore, it can be concluded that the difference between their 
training time is not very critical. However, it is necessary to mention that choosing an opti-
mal model for traffic classification task is not possible while the definition of “optimal” is 
not well-defined and there is always a tradeoff between the model complexity (training and 
test speed) and its performance.

5.5 � Discussion

As previously mentioned, in order to prove the efficiency of our proposed method, we car-
ried out various experiments and explored its efficiency for the tasks of traffic classifica-
tion, traffic description, and application identification compared to two of the most famous 

Fig. 10   Training time comparison based on the number of epochs
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methods, namely Deep Packet [1] and Datanet [37]. Apparently, CSCNN presented higher 
performance while its F1-score was about 97.4 and 96.3 % respectively for traffic descrip-
tion and application identification which is not only higher than the two other methods 
(Tables 3 and 4) but also implies that it is capable of accurately classifying the packets.

In order to provide more comparison, we aimed at comparing our proposed method with 
other existing methods that evaluated their methods on the “ISCX VPN-nonVPN” dataset. 
As mentioned in Sect. 2, Gil et al. [17] and Yamansavascilar et al. [33] used this dataset 
in their experiments. However, it must be emphasized that they utilized handcraft features 
based on network traffic flow while CSCNN does not require any hand-craft features and 
consider the network traffic at the packet level and therefore can be more applicable in real-
world applications. Table 5 includes the results for comparing the performance of CSCNN 
with other existing methods. Having the previously mentioned analysis in our mind, it can 
be concluded that CSCNN has higher performance than both machine learning and deep 
learning based methods.

It is worth mentioning that Wang et al. [39] also proposed a similar method for traffic 
description on ISCX VPN-nonVPN” dataset and obtained 100 % precision. However, their 
obtained result is seriously questionable because their best result was obtained by utilizing 
packets having all headers from every five layers of the Internet protocol stacks. Consider-
ing the fact that the source and destination IP addresses are unique for each application, 
they presumably only utilized this feature for classification and in that case a much simpler 
classifier could properly handle the classification task. Particularly, we masked IP address 
fields in our pre-processing steps to avoid this phenomenon.

6 � Conclusion

By the rapid development of the Internet and particularly online applications, accurately 
classifying Internet traffic has changed to one of the prominent issuers in the field of the 
computer network. On the other hand, by the enormous growth of deep learning models 
in various application and their remarkable results considering the fact that they do not 
need any handcraft features and are able to learn a high representation of input data besides 
extracting precious features automatically, they have also obtained considerable attention 
for the task of traffic classification.

Due to the fact that the standard learning methods are particularly designed to minimize 
the overall error without considering the class distribution, they are generally biased toward 
the majority classes and result in less sensitivity to minority class samples. In this regard, 
convergence and generalization of a classification method can be easily influenced by the 
problem of unbalanced data. To fill this lacuna, a Cost-Sensitive Convolutional Neural Net-
work (CSCNN) is proposed in this paper that tries to deal with the class imbalance issue 

Table 5   Comparison between 
CSCNN and other existing 
methods on ISCX VPN-
nonVPN” dataset

Method Application Metric Result

CSCNN Application Identification Accuracy 97.9
K-NN [33] 93.94
CSCNN Traffic description Precision 97.7
C4.5 [17] 90.0
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in encrypted traffic classification. Accordingly, a cost matrix is generated based on the 
class distribution which is then utilized during the training process to modify the weights. 
In order to prove the efficiency of our proposed method, it was compared with machine 
learning and deep learning based methods on ISCX VPN-nonVPN” dataset for the task of 
traffic classification, traffic description, and application identification. Based on the results 
of experiments, it can be concluded that CSCNN has higher efficiency compared to both 
machine learning and deep learning based methods.

Following a similar line of research, CSCNN can be utilized in various complex opera-
tions including multi-channel classification, distinguishing between different types of 
Skype traffic like chat, voice, and video calls, and Tor traffic. Performing a cost-sensitive 
strategy to other models like SAE or RNN can be also worth exploring.
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