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Abstract
We propose, in this paper, a novel technique for large Laplacian boundary deformations
using estimated rotations. The introduced method is used in the domain of Region of Interest
(ROI) to align features of mesh based onMulti MotherWavelet Neural Network (MMWNN)
structure found in several mother wavelet families. Thewavelet network allows the alignment
of the characteristic points of the original mesh towards the target mesh. The key component
of our correspondence scheme is a deformation energy that penalizes geometric distortion,
encourages structure preservation and simultaneously allows mesh topology changes. To
ensure the design of wavelet neural network architecture, an optimization algorithm should
be applied to estimate and optimize the network parameters. Therefore, we compare our
approach of 3d mesh deformation using MMWNN architecture based on genetic algorithm
and our approach relying on Levenberg-Marquardt Method. We also discuss the existing
comparison metrics for static and deformed triangle meshes employing the two mentioned
approaches. Besides, we enumerate their strengths, weaknesses and relative performance.

Keywords Genetic algorithm · Levenberg Marquardt · Multi mother wavelet neural
network · 3D mesh deformation

1 Introduction

With technological advances in multimedia, telecommunication, hardware and computer
design, the use of 3D data is now well established in several industrial domains, such as sci-
entific visualization, entertainment, computer-aided design, etc.Mesh-based deformation has
recently developed,which allowed the interactive deformation of the objectswhile preserving
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various types of constraints. The deformation of 3D surface mesh starts by the displacement
of the control vertices. It consists in setting the target positions of the control vertices (directly
or by using an affine transformation applied to a control vertex or a range of control vertices).
Then, a rotation or a translation of a control vertex is constantly applied on its last target
position set. In this technique, the object is encoded, using differential equations, and the
mesh is deformed by modifying the boundary conditions of the differential equations. In
fact, it is a fundamental modeling operation used to change the local shape of a mesh. Defor-
mation transfer applies the deformation showed by a source triangle mesh onto a different
target triangle mesh. It computes the set of transformations induced by the deformation of the
source mesh and maps the transformations through the correspondence from the source to
the target. In the area of function approximation, 3D system modelling the wavelet network
and the neural network are generally used as non-parametric estimators. Mostly, the neural
network modeling consists of two steps: determining the network structure and adjusting the
network parameters using back-propagation (BP) algorithms. For example, in [1–3] wavelet
networks represent an implementation of wavelet decomposition. This recently-developed
technique, is an efficient tool utilized in many applications applied in the signal processing
domain; such as function approximation and 3D data modeling [4,5]. The wavelet network
structure has also been applied in nonlinear system identification [6–8]. In the last decades,
many research studies on the wavelet network algorithms have been carried out.We proposed
in [9] a novel and an efficient framework of 3D mesh deformation, based on multi-mother
wavelet neural network architecture and trust region spherical parameterization to edit the
mesh, was proposed. These processes were considered, as an approximation tool for feature
alignment between the source and the target models considered in the deformation process.
To initialize the weights of wavelet neural network [10], many algorithms were developed.
The main goal of these algorithms is to accelerate the convergence [11,12] and to adapt the
wavelet network architecture [11] when the error back-propagation is applied to the train-
ing algorithms. To train the wavelet network, other techniques, such as Kalman filter [13],
genetic algorithms [14–16] and immune algorithms [17], were developed. These methods
stem mainly from the typical neural network. Some other studies used the excellent wavelets
properties [18] in the frequency domain though they have accelerated convergence, avoided
local minimum and overcome over fitting to some extent.

In [9] we, we proposed a 3D mesh deformation technique based on multi-mother wavelet
neural network architecture relying on Gradient-based Optimization methods, to estimate
the network parameters, optimize them and maximize the probability of selecting the best
wavelets that approximates better the signal. The first step of applying the classic forming
algorithms consists in using a predetermined network architecture that may be insufficient
or too complicated. In addition, the resolution of wavelet neural network training problems
is described by their perceived inability to escape local optima. In the current manuscript,
we develop new learning algorithms using the improved version of Levenberg–Marquardt
technique and genetic algorithm to solve the problem of best wavelet selection and that of
determining the wavelets number to be selected to construct the network, So, we present
a comparative study between our results obtained in [9] and those provided by applying
our proposed deformation technique based on multi-mother wavelet neural network archi-
tecture using Genetic Algorithm and Levenberg–Marquardt method. The main objective of
our work is to overcome the inability to escape of local optima when implemented on high
dimensional meshes, and to estimate more advanced visual similarity measures for meshes
with noise or large-scale deformations. The key component of our correspondence scheme is
a deformation energy that penalizes geometric distortion, encourages structure preservation
and simultaneously allows mesh topology changes.
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2 Wavelet Networks

Wavelet networks combine some of the useful classification properties of neural networks
with the localization and feature extraction properties of wavelets. They replace the global
sigmoidal activation units of the classic feedforward wavelet network with wavelets, while
preserving the networks universal approximation property. For function approximation and
3D modelling, both wavelet network and neural network are extensively used as non-
parametric estimators. Generally, the wavelet network modeling consists of two steps:
determining the network structure and adjusting the network parameters using a back-
propagation algorithm. A new mapping network, called wavelet neural network or wavenets
(WNN), is proposed by combining the wavelet transform theory with the basic concept of
neural networks as an alternative to feedforward neural networks for approximating arbitrary
nonlinear functions. The fundamental idea behind applying wavelets is to analyze the signal
at different scales or resolutions, which is called multiresolution analysis [19,20]. Wavelets
are a class of functions used to localize a given signal in both space and scaling domains.
A family of wavelets can be constructed from a mother wavelet. Compared to Windowed
Fourier analysis, a mother wavelet is stretched or compressed to change the size of the win-
dow. In this case, large wavelets give an approximate image of the signal, while smaller
wavelets zoom in on small details. Therefore, wavelets can be automatically adapted to both
high-frequency and low-frequency components of the signal having different window sizes.
A wavelet network with one output y, Ni inputs x1, x2, . . . , xNi and N wavelets can be
parameterized as follows:

ŷ(x) =
Np∑

i=1

ωiΨi (x) +
Ni∑

k=0

akxk + b (1)

where Ψi (x) = Ψ
(
x−bi
ai

)

x = [x1, x2, . . . , xNi ]T is the input vector (xk is the sampled input). The network param-
eters are ωi ∈ �, di ∈ �∗ and ti ∈ �, correspond respectively to the wavelet coefficient,
dilation parameter and translation parameter. Concerning the other parameters: ak ∈ �,
b ∈ � are the linear coefficients and the biais term. The Wavelets Ψi are dilated and trans-
lated versions of a single function Ψ termed the “mother wavelet”: �d → �

Ψi (x) = Ψ (di (x − ti )) (2)

with

Ψ (di (x − ti )) = 1√
di

Ψ

(
x − ti
di

)
(3)

The role of the wavelet network is to construct a discretized wavelet family by adapting
the network parameters to the displacement data. To obtain the best set of wavelets to be
used in the network, these steps are followed. Firstly, an initial set of wavelets is defined on
the basis of the available data. Secondly, considering the wavelets as regression candidates,
a regressor selection algorithm is applied to identify the members of the wavelet set. Finally,
to further enhance the quality of the used model [21], a training algorithm can be applied to
adjust the network parameters.

The latter is estimated by an optimization algorithm. The wavelet network learning imple-
ments then iterative methods such as back-propagation.
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3 Training Algorithms: Multi-MotherWavelet Neural Network
(MMWNN)

Wavelet neural networks which employ wavelets as basis function have various interesting
properties including fast training and good generalization performance. Several approaches
have been recently proposed for structure selection and wavelet neural networks training
based on the limited band of wavelet networks, in which the input weights are determined by
the sampling period or the frequency band of the target function (if available). This approach
has shownglobal convergence and has allowed avoiding overfitting for non-noisy equi-spaced
samples. In many practical situations, a finite number of samples of the target function are
known and there is not a priori information about the frequency contents and frequency band
of the target function. Without using information about the target signal and relying on the
sampling period to find the input weights of neural network causes complex structure and
a serious overfitting. To overcome this problem, a suitable model selection approach for
complexity control and overfitting prevention should be used.

Once the initialization setW of wavelet basis functions has been constructed, the next step
is to select the best M-size subset (M < L) of wavelet basis functions inW to estimate f (x).
However, in general, a search through all the M-size subsets is a computationally expensive
procedure suffering from a combinatorial optimization problem [4].

One nonlinear optimization technique consists in using genetic algorithms which have
been utilized successfully by Echauz et al. in [4], for radial wavelet networks, and Chen in
[22] for RBF networks. In fact, genetic algorithms can provide optimal or near-optimal net-
work topologies, at the expense of extensive computational requirements [22]. The proposed
network structure is similar to that of the classic network, but it has some differences. Indeed,
the classic network uses dilation and translation versions of only one mother wavelet and it
is constructed by the new version by implementing several mother wavelets in the hidden
layer [23,24]. The objective of the new architecture is to maximize the potentiality of wavelet
selection [25] that approximates better the signal.

The new wavelet network structure with one output f , can be expressed by the following
equation:

ŷ(x) =
N1∑

i=1

W 1
i Ψ 1

i (x) +
N2∑

i=1

W 2
i Ψ 2

i (x) + · · · +
NM∑

i=1

WM
i Ψ M

i (x) +
Ni∑

k=0

akxk (4)

we propose a new training procedure that permits to make:

– The initialization of weights, as well as translations and dilations of the wavelet network
(generation of the Multi-mother).

– An automatic selection and increment of the wavelet in the hidden layer.
– The choice of the optimal wavelet numbers opt Nopt .
– The update and construction of the wavelet network. Since the new wavelet network

structure based on several mother wavelets families is defined, we can ask the question
of model construction, consisting of wavelet network for a given process. The parameters
that determine the network construction are:

– The values that give the different network parameters: the structural parameters of
wavelets, and the linear coefficient.

– The necessary wavelet numbers to reach a wanted performance.

The essential difficulty resides in the determination of the network parameters. Since these
parameters take discreet values, conceive wavelets selection methods can be applied in a
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discreet wavelets library. The performance depends on the initial choice of the wavelets
library as well as on a discriminating selection in this library. Thus, the problem of selecting
the number of wavelets in the hidden layer is presented here. The criteria considered to
calculate the parameters already proposed in the literature are often developed for a particular
modeling framework under restrictive hypotheses and using important approximations. The
improvement of the developed learning algorithms can provide good solutions to solve the
problem of best wavelet selection and that of determining the wavelets number to be selected
to construct the network. The multi wavelet families library is constructed by forming several
mother wavelet families for the network construction (M wavelets). The library elements,
generated by distributing the parameters on a dyadic grid, are grouped in levels according to
the dilation and translation parameters. This architecture is to maximize the potentiality of
wavelet selection that approximates better the signal. This choice allowsnot only enriching the
library, but also getting a better performance for a given wavelet number, by using regressor
selection techniques to choose the best wavelets is often shorter than the training of the
dilations and translations. Therefore, the supplementary cost introduced by different versions
can be acceptable.

In the current study our proposed architecture has a new structure, made up of multi-
mother wavelet families, a hidden layer formed by N wavelets of M mother wavelets. The
components of each mother wavelet families belong to a family of wavelets having different
sizes.

To design our wavelet neural network architecture, an optimization algorithm should be
applied to estimate and optimize the network parameters.

In this context, the genetic algorithm is considered as an optimization algorithm used
to treat important research spaces, while the Levenberg–Marquardt algorithm is one of the
most efficient training algorithms utilized in neural network modeling. Gradient-based Opti-
mization Methods have been applied with the improved version of Levenberg–Marquardt
technique. It is based on steepest descent principle which is relatively easy to implement.
However, the error surface of wavelet network training usually contains planes with a gentle
dope due to the squashing functions commonly used in wavelet networks. This gradient is
too small for weights to move rapidly on these planes, which reduces the rate of conver-
gence. The rate of convergence could also be very slow when the steepest descent method
encounters “narrow valley” in the error surface where the direction of gradient is close to the
perpendicular direction of the valley. The update direction oscillates back and forth along the
local gradient. Since supervised learning of wavelet networks can be viewed as a function
optimization problem, higher order optimization methods employing gradient information
can be adopted in wavelet network training to enhance convergence rate. The genetic algo-
rithm is a global search technique (i.e. stochastic metaheuristics) utilized to find approximate
solutions to optimization and search problems. It is also an efficient, and effective techniques
employed in both optimization and machine learning applications. In our experiments, we
used the genetic algorithm to overcome the inability of the signal to escape local optimawhen
implemented on high dimensional data set and to ensure the design of wavelet neural network
meshes. This algorithm minimized the error between the original object and the target object
and gave good results in several cases. Our main objective is to present a genetic algorithm
that makes it possible to decrease or to increase the dimension of the multi-mother wavelet
library and to evade local minima; thanks to the ability of genetic algorithm to examine the
entire search space. This method may plainly initialize the wavelet network facilitating the
employment of the gradient descent.
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4 Our TrainingMMWNNUsing Levenberg–Marquardt Algorithm for 3D
Mesh Deformation

Lately, various,researchers applied a newly developed wavelet neural network, to function
approximations [2,5,26] and, more recently, to nonlinear time series predictions [27–29].
All these studies indicated that wavelet network structures were better than either back-
propagation neural network (BPNN) and radial basis function neural network (RBFNN)
structures at approximating nonlinearities, generated better prediction and approximation
results. In this study, we introduce a novel multi-mother wavelet neural network based on
Levenberg method for 3D huge mesh deformation technique. The Levenberg–Marquardt
algorithm is used to train the wavelet network structure. This training process can be con-
sidered as an unconstrained nonlinear optimization problem that can be founded by several
optimization tools. In our study the Levenberg–Marquardt method is used to train the pre-
sented wavelet network prediction architectures. The Levenberg–Marquardt algorithm is
founded on the standardNewtonmethod and has been exposed to be a very powerful optimiza-
tion technique [30,31]. In [30] Hagan et al. found that the Levenberg–Marquardt algorithm is
more efficient than the popular conjugate gradient algorithm, and in various cases it can con-
verge when the conjugate gradient algorithm cannot. Our preliminary experiment also shows
that the Levenberg–Marquardt algorithm is the most efficient algorithm among those, such
as gradient descent, gradient descent with momentum, and gradient descent with adaptive
learning rate.

The Levenberg–Marquardt (LM) algorithm is an iterative technique that locates the
minimum of a multivariate function that is expressed as the sum of squares of non-linear real-
valued functions. It has become a standard technique for non-linear least-squares problems,
widely adopted in a broad spectrum of disciplines. LM can be thought of as a combination
of steepest descent and the Gauss-Newton method. When the current solution is far from
the correct one, the algorithm behaves like a steepest descent method, slow, but guaran-
teed to converge. When the current solution is close to the correct solution, it becomes a
Gauss-Newton method.

The Levenberg–Marquardt Optimization algorithm is a virtual standard in nonlinear opti-
mization that notably outperforms gradient descent and conjugate gradient methods for
medium sized problems. It is a pseudo-second order algorithm which means that it works
with only function evaluations and gradient information but it estimates the Hessian matrix
using the sum of outer products of the gradients.

Gradient-based optimization algorithms were used with the improved version of
Levenberg–Marquardt method.

It is founded on steepest descent principle which is comparatively easy to implement. The
only variance is in the introduction of a parameter λ , called Levenberg–Marquardt parameter,
enabling to stabilize the Newton method. This parameter λ is updated automatically, based
on the convergence of every iteration. Stabilization is feasible through a reiterative process
(if one iteration diverges, it starts again by increasing the parameter λ to obtain a convergent
iteration). However, this process has a strong divergence when approaching the optimum
inherent in Newton method. The divergence can be reduced. Succeeding Newton method, it
is suggested to switch automatically to the conjugate gradient method when the phenomenon
of divergence appears.

First, we must note that initialization step is so necessary: that if we have a good initializa-
tion, the local minimum problem can be avoided, it is sufficient to select the best regressions
(the best based on the training data) from a finished set of regressors. The initialization of
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weights, as well as translations and dilations of the wavelet network (generation of theMulti-
mother), Now, the wavelet network is considered with the linear coefficients ak and the biais
term. In order to more easily capture linear properties in regressions, the terms ak and the
biais are always first selected. One a jm and b jm are obtained from the initialization by a
dyadic grid, they are used in computing a least squares solution.

Training the wavelet network models is to determine β = {w(0), w(m), u( j), a jm, b jm}
where w(0) is the biais; w(m) is the weights connecting input layer and output layer, m =
1, 2, . . . , I n; u( j) is theweights connecting hidden layer and output layer, j = 1, 2, . . . , Hd;
a jm is the dilation coefficient for the j th hidden neuron and the mth input neuron; b jm is
the translation coefficient for the j th hidden neuron and the mth input neuron such that
the discrepancy between the observed data and the predictions is minimized. This training
process may be regarded as an unconstrained nonlinear optimization problem that can be
solved by various optimization tools.

For training our multi-mother wavelet network architecture, we want to minimize the
training error represented by Eq. 5.

E(β) = 1

2

M∑

i=1

e2i = 1

2

M∑

i=1

(y(i) − ŷ(i))2 (5)

where ŷ(i), y(i) is the predicted and observed outputs respectively for the i th input, M is
the number of training inputs; and E(β) is the training error to be minimized. The variables
to be optimized are the parameters in vector β. The training error E(β) is minimized by
refining these parameters. The Levenberg–Marquardt algorithm uses Eq. 6 to search for the
best parameters [30,31].

βk+1 = βk − (J T J + λk I )
−1 J T e (6)

where I is the identity matrix that has the same size as J T J , λk is the constant parameter,
e = [e1e2e3, . . . , eM ]T is the error vector and the Jacobian matrix is:

J =

⎡

⎢⎢⎢⎢⎢⎣

∂e1
∂w(0)

∂e1
∂w(m)

∂e1
∂u( j)

∂e1
∂a jm

∂e1
∂b jm

∂e2
∂w(0)

∂e2
∂w(m)

∂e2
∂u( j)

∂e2
∂a jm

∂e2
∂b jm

· · · · · · · · · · · · · · ·
∂eM
∂w(0)

∂eM
∂w(m)

∂eM
∂u( j)

∂eM
∂a jm

∂eM
∂b jm

⎤

⎥⎥⎥⎥⎥⎦
(7)

We require to calculate the Jacobianmatrix and define the parameter λk in Eq. 6. Based on the
proposed wavelet network structure, using mother wavelet, the expression for every element
in the Jacobian matrix are:

∂ei

∂w(0)
= −1,

∂ei

∂w(m)

= −x(m),

∂ei

∂u( j)
= −Ψ j (X(i)),
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∂ei

∂b jm

= −u( j)Ψ j (X(i))

(
1

Z jm
− Z jm

) ( −1

a jm

)
,

∂ei

∂a jm

= ∂ei

∂b jm

Z jm,

Z jm = xm(i) − b jm

a jm
, and

i = 1, 2, . . . , M, j = 1, 2, . . . , Hd, m = 1, 2, . . . , I n (8)

By the defined Jacobian matrix, our multi-mother wavelet network prediction structure can
be trained for 3D mesh deformation following the process exposed in Fig. 1. In this figure,
Mu, MuInc, and Mumax are parameters used to control the training process. The training
process of our multi mother wavelet neural networks can appropriate the underlying non-
linear trend in the training data set, but it can also learn the noise contained in the data and
lead to overfitting. This training is based on the formation of a training set consisting of
pairs inputs/outputs (xk, yk). The training algorithm aims to reduce the error of the wavelet
network on the training set examples, adjusting the network parameters. It then implements
iterative methods such as back-propagation. Besides the choice of selection method, we must
choose an optimization algorithm to optimize the parameters. From the Levenberg method,
originally scheduled for solving linear systems by least squares. Marquart modifies the algo-
rithm to enable solving nonlinear systems of statistical problems.The method combines two
algorithms into one. The simple gradient method (the steepest descent method) which is
merely a less accurate estimate but has a slow convergence and the Gauss-Newton which has
a quadratic convergence but requires an initial vector near to the solution. Thus, leading the
gradient method to a local optimum makes the Gauss-Newton ineffective since the Jacobian
becomes singular. One frequently used way of preventing overfitting and improving gener-
alization is to present a validation error term, and the best network parameters in vector β

are selected founded on validation errors rather of training errors. With a good initialization
of the network parameters and with the proposed optimization scheme using LM algorithm
to adjusting the network parameters the efficiency of training increases to have a good 3D
mesh deformation process. As we previously noted, classical approaches begin often with
predetermined wavelet networks. Consequently, the network is often insufficient. After that,
new works are used to construct a several mother wavelets families library for the network
construction every wavelet has different dilations following different inputs. This choice has
the advantages of enriching the library, and offering a better performance for a given wavelets
number. Supervised learning of wavelet networks can be viewed as a function optimization
problem, higher order optimization methods using gradient information can be adopted in
wavelet network training to improve the rate of convergence.

5 Our TrainingMMWNNUsing Genetic Algorithm for 3DMesh
Deformation

In our work we presents the implementation of the genetic algorithm in the multi-mother
wavelet network training which aims at searching for an optimal or near optimal solution
to the 3D objects deformation problem. The idea is to integrate genetic algorithms into the
wavelet network to avoid both insufficiency and local minima in the 3D mesh deformation
technique. Our wavenet learning algorithms consist of two processes: the self-construction
of networks and the minimization error.
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Fig. 1 Multi-mother wavelet
neural network training based
Levenberg–Marquardt method

5.1 Network Initialization Parameter

Once ti and di are obtained from the initialization by a dyadic grid, they are used in computing
a least square solution for w, a, b. The variable Ni represents the number of displacement
pairs data. Using families of wavelets, we have a library that contains Nl wavelets. To every
waveletΨ j i we associate a vector whose components are the values of this wavelet according
to the examples of the training sequence. Now, the wavelet network is considered with the
linear coefficients ak and the biais term b. In order to more easily capture linear properties
in regressions, the terms ak and b are always first selected. One ti and di are obtained from
the initialization by a dyadic grid, they are used in computing a least squares solution for w,
a, b.

⎡

⎢⎢⎢⎢⎢⎢⎣

Ψ 1
1 (X1) · · · Ψ M

N (X1) x1 1
. · · · . . .

. · · · . . .

. · · · . . .

. · · · . . .

Ψ 1
1 (XNi ) · · · Ψ M

N (XNi ) xNi 1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

⎡

⎢⎢⎢⎢⎢⎢⎣

w1

.

.

wL

a
b

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

y1
.

.

.

.

yNi

⎤

⎥⎥⎥⎥⎥⎥⎦
(9)

where y1, . . . , yNi are the sampled outputs in Z and L = M ∗ N .
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5.2 Selection of the BestWavelets

A wavelet library having several wavelet families is more voluminous than the one that pos-
sesses the samewaveletmother. It implies amore elevated calculation cost during the selection
process. Because the model size M is usually excessively large, the subset model selection
is required. The optimal subset selection techniques are computationally prohibitive and
impractical. The practical method is the forward selection, and the OLS procedure (Orthog-
onal Least Squares) which are an efficient implementation of this subset selection procedure.
For the best selection, we propose an improved version of OLS procedure for the subset
model selection. Nevertheless, using regressor selection techniques to choose the best mother
wavelets is often shorter than the training of the dilations and translations; the supplementary
cost introduced by different versions can be therefore acceptable. The library being con-
structed, a selection method is applied in order to determine the most meaningful wavelet
for modelling and deforming 3D mesh. Generally, the wavelets in W are not all meaningful
to estimate the signal. Lets suppose that we want to construct a wavelets network with M
wavelets, the problem is to select M wavelets from the wavelet library W . The proposed
selection is based on Orthogonal Least Square (OLS) [32,33]. A selection method is applied
in order to determine the most meaningful wavelet to model the considered signal. Generally,
the regressors in VMW are not all meaningful to estimate the signal. Let’s suppose that we
want to construct a wavelet network f (x) with NMW wavelets, the problem is how to select
NMW wavelets from VMW . To the first iteration, the signal is defined as Y = [y1, . . . , yNi ]
and the regressors vectors are the VMW (t, d) defined by Eq. 10. The selected regressor is the
one for which the absolute value of the cosine with the signal Y is maximal. We constitute a
matrix that is constituted of VMW of blocks of the vectors representing the wavelets of every
mother wavelet where the expression is:

VMW = {V j
i }i=[1,...,N ], j=[1,...,M[ (10)

The VMW matrix is defined as follows:

VMW =

∣∣∣∣∣∣∣∣∣∣∣∣∣

V 1
1 (x1) · · · V 1

N (x1) · · · V M
1 (x1) · · · V M

N (x1)
... · · · ... · · · ... · · · ...
... · · · ... · · · ... · · · ...
... · · · ... · · · ... · · · ...

V 1
1 (xNi ) · · · V 1

N (xNi ) · · · V M
1 (xNi ) · · · V M

N (xNi )

∣∣∣∣∣∣∣∣∣∣∣∣∣

(11)

5.3 Change of the Library Dimension

5.3.1 Crossover Operators

This algorithm used two crossover operators: One of them changes the number of columns
of chromosome so it changes the number of mother wavelets and introduce in the library a
new version of wavelets issued of the new mother wavelet. The second operator does not
change the number of columns of each chromosome.

The Crossover1 Operator: After the selection of the two chromosomes to which we
will apply this operator, we choose an arbitrary position a in the first chromosome and a
position b in the second according to a. After that, we exchange the second parts of the two
chromosomes (Fig. 2).
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Fig. 2 Crossover1 operator

The Crossover2 Operator: For the second operator, we choose an arbitrary position c
in the first chromosome and a position d in the second chromosome according to c. Let
Minpoint = Min(c, d). First, we change the values of c and d to Minpoint . Then, we
exchange the second parts of the two chromosomes. In this case, we have necessarily first
children having the same length as the second chromosome and the second children having
the same length as the first chromosome.

5.3.2 Mutation Operator

Generally, the initial population does not have all the information that is essential to the solu-
tion. The goal of applying the mutation operator is to inject some new information (wavelets)
into the population. Mutation consists in changing one or more gene(s) in chromosome cho-
sen randomly according to a mutation probability pm. Nevertheless, the muted gene may be
the optimal one therefore, the new gene will not replace the old but it will be added to this
chromosome.

5.4 Change of SettingsWavelets

In this step,we have a uniform crossover operator and amutation operator applied to structural
parameters of wavelet network (translations and dilatations).

5.4.1 Uniform Crossover Operator

Let T = (t1, t2, . . . , tN ) the vector representing the translations: A coefficient is chosen and
a vector T = (t ′1, t ′2, . . . , t ′N ) is constructed as follows:

t1 = α.t1 + (1 − α).t2 (12)

t2 = α.t2 + (1 − α).t1 (13)

where α is a real random value chosen in [-1 1]. The same operator is applied to the vector
dilation D.

5.4.2 Mutation Operator

After crossing operation, the string is subject to mutation. We consider the optimal wavelet,
we reset the network with these wavelets that will replace the old in the library and the
optimization algorithm will be continued using new wavelets.
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Fig. 3 Multi-mother wavelet neural network training based genetic algorithm

Finally, after N iterations, we construct a wavelets network for the approximation signal
Y .

A genetic algorithm that allows you to both reduce or increase the size of the mother
wavelet library and then escape local minima.

This approach thereforemakes it possible to properly initialize thewavelet network, which
then facilitates the task for the gradient.

Our proposed algorithm is resumed in Fig. 3.

6 Results and Simulation

To ensure the design of our multi-mother wavelet neural network architecture, we used
an optimization algorithm and performed a comparative study between genetic algorithm
and Levenberg–Marquardt algorithm. We employed a multi-mother library wavelet network
based on the Levenberg–Marquardt algorithm and on genetic algorithm for 3Dmesh approx-
imation and deformation.
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Fig. 4 Approximations of X, Y and Z vertex of bunny object

6.1 3DMeshModeling Results

We further demonstrated and evaluate our approach in the 3D mesh modeling context. The
complexity of 3D modeling object is directly related to the number of wavelets selected and
the iterations to build the network.

To assess the performance of the two approaches, we utilized themean square error (MSE)
and the normalized square root of the mean square error (NSRMSE) for 3D mesh modelling
which is defined as follows:

MSE = 1

Ni

Ni∑

k=1

(ON (xNK , yNK , zNK ) − O(xK , yK , zK ))2 (14)

NSRMSE =
√√√√

∑Ni
k=1(ON (xNK , yNK , zNK ) − O(xK , yK , zK ))2

∑Ni
k=1(Ō − O(xK , yK , zK ))2

(15)

O is the approximate object, K is the number of observation and Ō = ∑Ni
k=1 O(xK , yK , zK )

is the results of the 3D representation, from the multi mother wavelet library. The 3Dwavelet
can be constructed as the separable 1D wavelet product by applying a 1D wavelet analysis
in three directions of space:

Ψ
j
i (x, y, z) = Ψ

j
i (x) ∗ Ψ

j
i (y) ∗ Ψ

j
i (z) (16)

The following figures represent the approximations of vertex X, Y and Z of bunny object
by our MMWNN (Fig. 4):

We compare, in this section, some experimental results of obtained by applying the
genetic algorithmMMWNN-GAwith those provided by theLevenberg–Marquardt algorithm
MMWNN-LM to ensure the design of wavelet neural network for 3D mesh approximation
and modeling.

Tables 1 and 2 give the mean square error and the final normalized square root of the mean
square error respectively after 20 training iterations using MMWNN, MMWNN-LM and
MMWNN-GA constructed with 15 wavelets in hidden layer and based on several wavelets
(Beta, Polywog1, Mexican Hat, Slog1 and Polywog1). The optimal wavelet number was
fixed by our MMWNN algorithm. In fact, MMWNN structure is as an interesting alterna-
tive to classic wavelet network. It is effectively used to construct the network by several
mother wavelets and solve the problem of choosing the best wavelet mother that can better
approximate the signal.
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Table 1 MSE for different
activation wavelet functions
using MMWNN, MMWNN and
MMWNN-GA

Objects MMWNN MMWNN-LM MMWNN-GA

Horse 4.74990e–2 1.95420e–4 1.47022e–4

Elephant 2.91680e–1 6.25610e–3 4.32540e–3

Flamingo 8.95610e–3 4.08580e–5 5.36550e–6

Face 9.65520e–2 4.68210e–4 4.54022e–4

Table 2 NSRMSE for different
activation wavelet functions
using MMWNN, MMWNN and
MMWNN-GA

Objects MMWNN MMWNN-LM MMWNN-GA

Horse 5.64909e–1 6.449e–2 1.72912e–2

Elephant 8.95486e–2 4.518e–3 2.44860e–3

Flamingo 4.25420e–2 1.554e–2 3.58423e–1

Face 6.44980e–3 4.84522e–4 2.71410e–4

For the MMWNN-GA solution, we applied the genetic algorithm to overcome the inabil-
ity of the signal to escape local optima when implemented on high dimensional data set and
to ensure the design of wavelet neural network meshes. For MMWNN-LM, the Levenberg–
Marquardt algorithm is used to train the wavelet network models because it is more efficient
than the other algorithms based on gradient descent and it is one of the most efficient train-
ing algorithms for neural network modeling. Having the updating rule, the Jacobian matrix
needs to be computed and a training process should be designed. A good method used for
weights adaptation is the Levenberg–Marquardt algorithm. It is a combination of the gradient
descendent rule and the Gauss-Newton method.

We can see, in tables 1 and 2, that MMWNN-GA are more suitable for 3D approximation,
compared to the Levenberg method and MMWNN structure. For example, to approximate
Horse object usingMMWNN-GAafter 20 iterations over 1.95420e –4, theLevenbergmethod
gave an MSE equal to 1.47022e – 4; whereas MMWNN structure provided 4.74990e – 2.
The genetic algorithm has a sound theoretical basis and guarantee convergence for most of
the smooth functions, which may reduces divergence.

we applied genetic algorithm to improve the robustness of gradient-descent algorithms.
We also presented a genetic algorithm for the design of wavelet network in [34,35]. The
problem was to find the optimal network structure and parameters. In order to determine the
optimal network, the developed algorithm modified the number of wavelets in the library.
In MMWNN-LM structure, Gradient-based optimization methods were applied with the
improved version of Levenberg–Marquardt technique, this gradient is too small for weights
to move rapidly on these plans, which minimizes the rate of convergence. The rate of conver-
gence can also be very slow when the steepest descent method encounters “narrow valley”
in the error surface where the direction of gradient is close to the perpendicular direction
of the valley. The good performance of the algorithm is achieved by evolving the initial
population and by using operators that alter the structure of the wavelets library. Comparing
our algorithm with the classical ones, our results show significant improvement either with
MMWNN-GA or with MMWNN-LM in the resulting performance and topology.

Figure 5 represents the evolution of the MSE when the number of wavelets in the hidden
layer is increased from 15 to 100 wavelets using MMWNN, MMWNN-LM and MMWNN-
GA.
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Fig. 5 Evolution of theMSEaccording to the number ofwavelets byMMWNN,MMWNN-LMandMMWNN-
GA

Fig. 6 Evolution of the MSE according to the number of iterations

From the simulation results we see that increasing the wavelet number in the hidden layer
increases not only the approximation capacity, but also time cost and algorithm complex-
ity increase considerably. The procedure allows to specify the selected wavelets for every
mother wavelet. Therefore, when we increase the number of wavelets the MSE given by the
MMWNN-GA network are weaker than those obtained by the MMWNN and very close to
the MSE by MMWNN-LM .

In addition to that, to ameliorate these criteria :MSE and NSRMSE, we can increase the
iterations number in the training stage.

Figure 6 gives the evolution of the MSE according to the number of iterations:
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6.2 3DMesh Deformation Results

For 3D mesh deformation the interpolation between objects can be realised by determining
the trajectory of the corresponding vertices on the representation obtained in the previous
step. The simplest way to interpolate between these points is a linear interpolation.

The interpolation in the wavelet domain makes it possible to control interpolation starting
time and speed at various resolutions. In fact, multi-mother wavelet neural network have
achieved great success in different areas of computer science. Compared with 2D images,
3D shapes are more difficult to process, due to their irregular connectivity and limited data
availability.

The 3D deformation sequence consists of a large number of frames; each of which repre-
sents a large static 3D object.

A deformed mesh with fixed connectivity can be represented by a 3F × N matrix A,
where F is the number of frames and N the number of vertices:

A =

⎛

⎜⎜⎝

v
(1)
1 · · · v

(1)
N

...
. . .

...

v
(F)
1 · · · v

(F)
N

⎞

⎟⎟⎠ (17)

The approximation error is typically reported in terms of the following error metric:

100%.
||A − Aapprox ||F

||A − AtimeAverage||F (18)

where AtimeAverage ∈ �3F×N is a matrix indicating a static mesh (average of all keyframes).
Unfortunately, this metric is sensitive to global motion applied to the entire mesh.

For example, adding linear motion increases the denominator ||A − AtimeAverage||F but
leaves the numerator

100%.||A − Aapprox ||F unchanged because skinning can trivially reproduce translation
(by simply adding the translation to all bone transformations). For example, an on-spot
walking sequence will have higher error than exactly the same animation where the character
moves forward.

Therefore, we propose to simply use
√
3NF as the normalizing factor, obtaining:

ERMS = 100%.
||A − Aapprox ||F√

3NF
(19)

A deformed mesh with fixed connectivity can be represented by a 3F×Nmatrix A, where
F is the number of frames and N the number of vertices. Since 3NF is the total number of
elements of matrix A, ERMS is simply the average error per element (scaled by 1000 for
convenience). To be able to compare ERMS between objects with different proportions, we
uniformly scale every animation so that its first frame is tightly enclosed by a unit ball.

To evaluate the effectiveness of our proposed method, we use the ERMS generalization
ability error (rootmean square) to ensure the comparison on the set of tests of ourmethodwith
several state-of-the-art methods in term of 3D mesh deformation process, including sparse
localized deformation component (SPLOCS) with edge lengths and dihedral angles [36],
SPLOCS with the feature from [37], andMesh-Based Autoencoders for Localized Deforma-
tion Component Analysis [38]. The Variation of ERMS in terms of 3D mesh deformation is
presented in Table 3.

Obviously, the existing methods cannot cope with such dataset with large deformations
and they suffer from artifacts. As a solution, our deformation algorithm presents a good
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Table 3 ERMS using MMWNN-LM and MMWNN-GA

Objects [36] [37] [38] MMWNN-LM MMWNN-GA

Horse 29.609 20.199 12.960 10.032 6.441

Elephant 50.894 31.024 24.741 23.920 22.027

Flamingo 38.217 14.974 12.885 12.775 12.457

Face 8.562 2.985 2.908 2.845 2.704

Table 4 Comparative study of
the execution time between our
approach with MMWNN-GA
and MMWNN-LM architectures

Objects MMWNN-GA MMWNN-LM

Horse 5412.001(s) 1025.104(s)

Elephant 2875.004(s) 410.552(s)

Flamingo 1055.825(s) 574.255(s)

Face 7856.524(s) 1035.112(s)

reconstructed object and has better quantitative reconstruction results than the deformation
techniques presented in the literature, with lower reconstruction errors when sufficient com-
ponents are used. It is clear that the obtained error rate was remarkably reduced and the
performance of Levenberg–Marquardt and genetic algorithm on the synthesized deformed
mesh allowed minimizing the distortion without losing the initial data, reaching the control
mesh.We can see also that the error was minimized when we used the wavelet network by the
genetic algorithm MMWNN-GA and MMWNN-LM, compared to state-of-the-art methods.

Besides, it is obvious that the error rate decreased by applying the wavelet network and the
genetic algorithm MMWNN-GA, in comparison with MMWNN-LM. However, it is almost
the same when the two methods were applied, except for the horse object for which we
obtained an ERMS of 10.0321, using MMWNN-LM, against an ERMS equal to 6.4412 using
MMWNN-GA. We may conclude that the horse object contains considerable deformations
and suffers from artifacts with large scale rotations. To solve these limitations, the genetic
algorithm is a good alternative solution that may treat better this type of objects, compared
to Levenberg–Marquardt method.

Generally, our deformation algorithm based on MMWNN-GA and MMWNN-LM pro-
vides a good reconstructed object and allows obtaining better quantitative reconstruction
results than the existing deformation techniques, with lower reconstruction errors when suf-
ficient components are used.

Table 4, reveals that MMWNN-LM clearly minimizes the time necessary to ensure the
deformation process, in comparison with the MMWNN-GA architecture. For example, for
Elephant object, the simulation time is reduced from 2875.004(s), using MMWNN-GA
architecture, to 410.552(s), employing MMWNN-LM. In our approach, the 3D deformation
sequence consists of a large number of frames; each of which represents a large static 3D
mesh, characterized by a search space with an increasing number of dimensions. The wavelet
network permitted the characteristic points of the original mesh to be aligned towards the
target mesh.

The genetic algorithm is an optimization algorithm applied to treat important research
spaces. However, it requires more calculations than the other meta-heuristic algorithms
(notably the evaluation function).
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Fig. 7 Comparison of deformation components located in similar areas for Horse object by MMWNN-GA
(first row) and MMWNN-LM (second row)

On the other hand, the Levenberg–Marquardt algorithm is one of themost efficient training
algorithms for neural network modeling, and therefore for training a feed-forward neural
network with the Levenberg–Marquardt algorithm. Having the updating rule, the Jacobian
matrix needs to be computed and a training process should be designed. This algorithm
combines the ability of both methods (i.e., convergence from any initial state as in the case
of gradient descent, and rapid convergence near the vicinity of the minimum error as in the
case of Gauss-Newton method) while avoiding their drawbacks.

We used the genetic algorithm to ensure the deformation of the 3D meshes and we got
good results. However, for 3D huge meshes genetic algorithm requires less information
about the problem and designing an objective function and getting the representation and
operators right can be difficult and computationally expensive. In this case,we talk about time-
consuming modeling. The Levenberg–Marquardt method, that can handle noisy objective
function values as well as random models, provided sufficient accuracy. As the probability
of accurate function estimates and models is sufficiently large, we assume that the proposed
algorithm converges globally to a first-order stationary point of the objective function with
probability one. For this reason, local optimization techniques, such as the Levenbergmethod,
are usedmainly for their computational and processing time. However, due to the slowness of
the execution time, in many cases, the genetic algorithm diverged and did not give accepted
reconstructions when the search space of the best wavelet was enlarged. Thus, gradient-
basedoptimizationmethodswere appliedwith the improvedversionofLevenberg–Marquardt
technique.

Figures 7, 8, 9 and 10 represent our training results obtained using 15wavelets in the hidden
layer for the 3Ddeformation of the four objects (Scape,Horse, Elephant andFlamingo). These
findings were provided by the MMWNN-GA and MMWNN-LM.

7 Conclusion

In our approach, the 3D deformation sequence consists of a large number of frames; each
of which represents a large static 3D mesh. We used a wavelet network to align the char-
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Fig. 8 Comparison of deformation components located in similar areas for Flamingo object byMMWNN-GA
(first row) and MMWNN-LM (second row)

Fig. 9 Comparison of deformation components located in similar areas for Scape object by MMWNN-GA
(first row) and MMWNN-LM (second row)

Fig. 10 Comparison of deformation components located in similar areas for Elephant object byMMWNN-GA
(first row) and MMWNN-LM (second row)
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acteristic points of the original mesh and to aligned towards the target mesh. To ensure
the design of wavelet neural network architecture, an optimization algorithm was used to
estimate and optimize the network parameters. The applied genetic algorithm, which is an
optimization algorithm, allowed treating important research spaces, and the Levenberg Mar-
quardt algorithm showed its efficiency in neural network modeling. A comparative study
between genetic algorithm and Levenberg–Marquardt algorithm was also presented in this
article. Experimental results reveal that MMWNN-GA and MMWNN-LM provided a good
reconstructed object and better quantitative reconstruction results, compared to the existing
deformation techniques, with lower reconstruction errors when sufficient components were
used. For object containing considerable deformations and suffering from artifacts with large
scale rotations, the genetic algorithm treated better this type of objects, in comparison with
Levenberg–Marquardt method. On the other hand, genetic algorithm requires more calcu-
lations than Levenberg–Marquardt algorithm and it is computationally expensive, i.e. it is
time-consuming modelling algorithm. So, MMWNN-LM minimized more remarkably the
time necessary to ensure the deformation, in comparisonwith theMMWNN-GAarchitecture.

In our future work, using MMWNN-GA structure, we will apply a simplification method
to reduce the simulation time of deformation for all high-resolution objects.
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