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Abstract
This paper proposes the Mesh Neural Network (MNN), a novel architecture which allows
neurons to be connected in any topology, to efficiently route information. In MNNs, infor-
mation is propagated between neurons throughout a state transition function. State and error
gradients are then directly computed from state updates without backward computation. The
MNN architecture and the error propagation schema is formalized and derived in tensor
algebra. The proposed computational model can fully supply a gradient descent process, and
is potentially suitable for very large scale sparse NNs, due to its expressivity and training
efficiency, with respect to NNs based on back-propagation and computational graphs.

Keywords Artificial neural networks · Gradients computation · Supervised learning · Deep
learning

1 Introduction and Background

A huge amount of research has been made during the last years on a variety of applications
of Artificial Neural Networks (ANNs). As a consequence, many ANNs architectures have
been developed, generating surrogate models from different types of big data, such as image,
audio, video, text, time series, and so on. With ANNs, the underlying relationships among
data can be approximated with little knowledge of the system to be modelled. In spite of this
success, ANNs are computational models vaguely inspired to biological brains, and require
relevant computation and management with respect to the biological counterpart.

Specifically, Deep Learning is achieving good levels of performance, via architectures
composed of several layers. The Deep Learning research is mostly based on gradient-based
optimization methods and on the well-known backpropagation (BP) algorithm. In essence,
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BP includes a forward and backward layer-wise computation of the loss function with respect
to the neurons weights. Actually, BP is not biologically plausible. Moreover, convergence
problems, such as vanishing and exploding gradients, occur when using many layers. Finally,
BP can be very unstable when dealing with recurrent networks and can be ineffective to
exploit long-lasting relationships [1]. In the last decade, an increasing number of alternative
strategies have proposed to simplify the ANN training. A first strategy consists in removing
the backward computation by deriving a forward only computation. A reference work for
this approach is [2]. Specifically, the proposed method improves the efficiency of Jacobian
matrix computation, for fully or partially connected ANNs. An interesting advantage of this
approach is that it can train arbitrarily connected ANNs, and not just Multi-Layer Perceptron
(MLP)-based architectures. Indeed, ANNs with connections across layers are much more
powerful than MLPs. A more recent research in which the Jacobian matrix is calculated only
in the forward computation was made by Guo et al. [3]. In general, to remove the backward
computation is not costless: an additional calculation in the forward computation must be
considered. However, the forward-only computation is more parallelizable than traditional
forward and backward computations, as the dataset is large and the number of hidden neurons
increases. A different strategy is presented in [4], in which the training method is based on
a different principle called information bottleneck, which does not require backpropagation.
In general, a performance comparison with BP is difficult, since performance can heavily
depend on the minibatch size. The minibatch size is usually a constant that is based on
available GPU memory. On the other side, a quantity of interest is the learning convergence,
which is unknown for eitherBPor othermethods. Since the backward computation is removed
for such approaches, they aremore suitable for parallel computation. Another type of strategy
is proposed by Jaderberg [5]: a model for predicting gradient, called synthetic gradient, is
calculated in place of true backpropagation error gradients. With such synthetic gradients,
layers can be independently updated, removing forward and update locking.

According to this research trend, this paper formally introduces recent advances leading
to a novel, arbitrarily connected, ANNs architecture, in which error gradients are computed
throughout a state transition function without backward computation. The paper is organized
as follows. In Sect. 2, the fundamentals of the problem are defined. A formal derivation of
the proposed architecture is presented in Sect. 3. Section 4 covers the implementation and
experimental aspects. Section 5 is devoted to conclusions and future work.

2 Problem Statement

An Artificial Neurons Layer (ANL) with ni inputs and no outputs can be described by its
layer weights matrix W ∈ R

ni×no and activation function ϕ̂(x) : R
no → R

no . Let us
consider activation functions for which it holds that ϕ̂(x)i = ϕ(xi ) (where ϕ(x) : R → R).
Each columnW∗,i ofW represents the weights vector from the inputs to the i-th perceptron,
inwhich biases are represented asweights of fictitious inputs that always produce the constant
value 1. Given the input vector x ∈ R

ni , the output vector y ∈ R
no of the ANL is y = ϕ(xW).

In multilayer neural networks, orMLPs, ANLs are stacked, i.e., the ANLi is fed by the output
of the ANLi−1: each set of weights connecting the i-th layer is represented by a different
matrix Wi , and the input/output layers are considered as special topological elements with
respect to the hidden layers.

In the popular BP training algorithm, the gradients of the weights are iteratively computed
exploiting a propagation rule between layers [6,7]. Let us consider a generic error function
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E(y, y) : Rn×2 → R that computes the error between a network output y and a desired one
y, and a generic error function with respect to the o-th output yo Eo(yo, yo) : R2 → R. Let
us assume that E(y, y) is a composition of Eo(yo, yo) for every output unit. Considering
an MLP with nl layers, the objective of the BP algorithm is to compute the gradients of
every output error ∂E(yo,yo)

∂ pi
with respect to every parameter pi . Such gradients can be used

by a Stochastic Gradient Descent (SGD) algorithm to train the MLP [8]. Let neti,o be the
o-th output of the i-th hidden layer. Applying the chain rule for differentiating composite
functions to ∂E(yo,yo)

∂ pi
, the corresponding error gradient is:

∂E(yo, yo)

∂ pi
= ∂E(yo, yo)

∂ yo

∂ yo
∂ pi

= ∂E(netL−1,o, yo)

∂netL−1,o

∂netL−1,o

∂ pi
. (1)

The derivative
∂E(netnl−1,o,yo)

∂netnl−1,o
depends on the error function and is known. In the derivative

∂netnl−1,o

∂ pi
, each parameter of a layer influences the output values of all the subsequent layers.

Hence, in order to compute
∂netnl−1,o

∂ pi
, the chain rule is applied up to the term ∂neti,o

∂ pi
. For

this purpose, the BP algorithm iteratively applies the chain rule on each layer in reverse
order for efficiently computing the partial derivatives with respect to all parameters. More
formally, given the output of the l-th layer, netl = ϕ(netl−1Wl), let us say its o-th element
tl,o = (netl−1Wl)o. The chain rule is applied to ϕ(tl,o), and in order to compute the term
∂ϕ(tl,o)

∂tl,o
, tl needs to be saved for each layer.

To train ANNs without a layered topology, the approach commonly used is the automatic
differentiation on computational graphs (CGs) [9], in which computations are represented in
a graph. In essence, for each operation (e.g., matrix multiplication, element-wise sum, etc.)
the inputs x0, x1, . . . , xn−1 and the output y are represented as incoming and outgoing edges
of a graph, respectively. For each edge ∂ y

∂xi
is computed. For a given ANN, the operations to

compute its output yo and the error E(yo, yo) are then represented as a CG. Let us consider,
a “factoring path”, i.e., a path between two nodes in which the derivatives ∂ y

∂xi
encountered

on the traversed edges are all multiplied together. Then, the partial derivative of the error
function with respect to a parameter, i.e., ∂E(yo,yo)

∂ pi
, is the sum of all the reverse factoring

paths from E(yo, yo) to pi , i.e., the paths belonging to the set Pi :

∂E(yo, yo)

∂ pi
=

∑

p∈Pi

∏

(x,y)∈p

∂ y

∂x
. (2)

A CG representation is a general formalism to represent all network topologies, such
as feedforward, recurrent, convolutional, residual, and so on. To train arbitrarily connected
ANNs topologies is very important, because ANNs with connections across layers are much
more powerful than classicalMLP architectures.However, aCG increases the space complex-
ity with respect to a correspondingMLP-based representation (where anMLP representation
is possible). Indeed, the underlying data structure needs to store both the graph topology
and the partial derivatives ∂ y

∂xi
of each edge. Moreover, it results in a higher time complexity,

because all the reverse factoring paths have to be found.
In the next section, a novel ANNs representation is introduced, which is capable of training

arbitrarily connected neural networks and, as a consequence, ANNs with reduced number
of neurons and good generalization capabilities. The interesting properties of the training
algorithm is the lack of a backpropagated computation, and an iteration without need of
memory relationships than the one with the previous step. Hence, the proposed method is
much simpler than traditional forward and backward procedure. Indeed, the training iteration

123



1966 F. A. Galatolo et al.

...
...

...
...

W0 W1 W2

(a) ANN Topology

⎡
⎣
0 W0 0 0
0 0 W1 0
0 0 0 W2

⎤
⎦

(b) Adjacency Matrix

Fig. 1 An MLP and its adjacency matrix

(a) ANN Topology (b) Adjacency Matrix

Fig. 2 An unstructured ANN and its adjacency matrix

can be described by three matrix operations. Due to the possibility of training unstructured
ANNs, the proposed architectural model is called Mesh Neural Network (MNN).

3 Formal Derivation of a Mesh Neural Network

3.1 Structure, Activation and State of anMNN

The proposed MNN is based on a matrix representation that is not a transfer matrix, but it
is an adjacency matrix (AM), i.e., a square matrix representing the ANN as a finite graph.
The elements of the AM indicate whether pairs of vertices are adjacent or not in the graph,
by means of a non-zero or zero weight, respectively.

More formally, an AM A is a matrix in which each element Ai, j represents the weight
from the node i to the node j . For example MLPs are a subset of the representable topologies
with AMs: since in MLPs only connections between layers are possible, their AMs are block
matrices. Figure 1 shows an MLP topology with the corresponding AM. Here, each Wi is
the weights matrix of the i-th layer and occupies a corresponding block in the AM.

An example of unstructured topology and its corresponding AM is shown in Fig. 2.
A generic MNN topology with n neurons is represented by a matrixA ∈ R

n×n . It is worth
noting that this representation does not include the topological distinction between input,
hidden and output neurons. Let ni ,no, and no be the number of input, hidden and output
neurons. Since all neurons are identified by a position in the matrix, a good convention
(hereinafter called “iho positioning convention”) to distinguish the three sets without loss of
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generality is to assign them a positioning: to consider the first ni elements as input neurons,
the subsequent nh elements as hidden neurons, and the last no elements as output neurons.

Let the state be si ∈ R
n the output value of each neuron in the MNN at the i-th instant of

time. The output of an MNN is provided along a temporal sequence, whose length depends
on the distances between input and output neurons. This allows an MNN to exhibit temporal
dynamic behavior. Let us recall that: (i) Ai, j represents the weight from neuron i to neuron
j ; (ii) the h-th neuron output is computed as ϕ(

∑N
k=0 wk,hxk); (iii) biases are represented as

weights of fictitious inputs that always produce the constant value 1. Hence, given an initial
state s0, which is set to the input value for input neurons and to zero for the other neurons,
the next state is calculated as:

sn = ϕ̂(sn−1A) (3)

At each time tick, the state transition of each neuron can influence the outputs values of
all adjacent neurons. For subsequent ticks, the initial piece of information contained in s0
can traverse subsequent neurons and can influence their states, up to the output neurons.

3.2 Derivation of State and Error Gradients

In this section, the error derivative ∂E(y,y)
∂ pi

for every parameter pi of an MNN are formally
determined. It can be observed from Eq. (3) that the unique parameter is A. Let us assume
an MNN with n neurons, of which ni input neurons and no output neurons positioned in the
matrix according to the iho ordering convention. Let be the MNN processed for t states. The
o-th output value is then yo = st−1,o = ϕ̂(st−2A)o where o ∈ {n−no, . . . , n−1}. Recalling
the chain rule:

∂E(yo, yo)

∂ pi
= ∂E(yo, yo)

∂ yo

∂st−1,o

∂ pi
. (4)

Let us consider a generic state sn = ϕ̂(tn) where tn = sn−1A. According to the chain
rule, the derivative for a generic output o is:

∂sn,o

∂Ai, j
= ∂ϕ(tn,o)

∂tn,o

∂tn,o

∂Ai, j
= ∂ϕ(tn,o)

∂tn,o

∂(sn−1A)o

∂Ai, j
(5)

where (sn−1A)o is:

(sn−1A)o =
N∑

k=0

sn−1,k Ak,o (6)

Let us distinguish two cases in Eq. (6): (i) if o = j , one of the Ak,o is Ai, j ; (ii) if o �= j ,
all the Ak,o are constant with respect to Ai, j . Let us consider the case o = j . For linearity of
differentiation:

∂(sn−1A) j

∂Ai, j
=

∂

(
N∑

k=0
sn−1,k Ak, j

)

∂Ai, j
=

N∑

k=0

∂(sn−1,k Ak, j )

∂Ai, j
(7)

In the partial derivatives
∂(sn−1,k Ak, j )

∂Ai, j
, all the sn−1,k elements depend on Ai, j . Moreover, in

the case k �= i , the matrix elements Ak, j are constants with respect to Ai, j . Let us distinguish
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in Eq. (7) the term with k = i :

N∑

k=0

∂(sn−1,k Ak, j )

∂Ai, j
=

N∑

k=0, k �=i

∂(sn−1,k Ak, j )

∂Ai, j
+ ∂(sn−1,i Ai, j )

∂Ai, j
(8)

Since Ak, j is a constant, the first term of Eq. (8) is:

N∑

k=0, k �= j

∂(sn−1,k Ak, j )

∂Ai, j
=

N∑

k=0, k �= j

∂sn−1,k

∂Ai, j
Ak, j (9)

By applying the product rule to the second term of Eq. (8):

∂(sn−1,i Ai, j )

∂Ai, j
= ∂sn−1,i

∂Ai, j
Ai, j + ∂Ai, j

∂Ai, j
sn−1,i = ∂sn−1,i

∂Ai, j
Ai, j + sn−1,i (10)

The term ∂sn−1,i
∂Ai, j

Ai, j can be integrated in the summation of Formula (9):

N∑

k=0

∂(sn−1,k Ak, j )

∂Ai, j
=

N∑

k=0

∂sn−1,k

∂Ai, j
Ak, j + sn−1,i (11)

Similarly, considering the case o �= j in Eq. (6), the Ak,o elements are constant with
respect to Ai, j , leading to:

∂(sn−1A)o

∂Ai, j
=

∂

(
N∑

k=0
sn−1,k Ak,o

)

∂Ai, j
=

N∑

k=0

∂sn−1,k

∂Ai, j
Ak,o (12)

Hence, Eq. (5) can be formulated as follows:

∂sn,o

∂Ai, j
=

⎧
⎪⎪⎨

⎪⎪⎩

∂ϕ(tn,o)

∂tn,o

(
N∑

k=0

∂sn−1,k
∂Ai, j

Ak, j + sn−1,i

)
if o = j

∂ϕ(tn,o)

∂tn,o

(
N∑

k=0

∂sn−1,k
∂Ai, j

Ak,o

)
if o �= j

(13)

As a result, Eq. (13) determines a very efficient algorithm for computing the partial
derivative of the MNN state, which is, in turn, essential for applying an SGD-based training.
In three terms: (i) the partial derivatives of the activation function ∂ϕ(tn,o)

∂tn,o
, (ii) the previous

states sn−1,k , and (iii) the partial derivatives previous state
∂sn−1,k
∂Ai, j

. Consequently, it is possible

to compute both the next states sn,o and the next state partial derivatives ∂sn,o
∂Ai, j

, concurrently
and in the same iteration step. Moreover, an iteration does not need to store any intermediate
values except for those of the current state, which can then be overwritten in the next iteration.
Since the error gradient can be directly calculated from state gradient, Eq. (4) results in a
simplified iterative method without any memory dependency than the one with the previous
step.

Operations in Eq. (13) can be performed with scalars, vectors, and matrices, and then can
be reformulated so as to be efficiently performed with tensors. In the next section, Eq. (13)
and the error gradient propagation schema are formalized and derived by tensor algebra.
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3.2.1 Tensor Algebra Formulation of the Error Gradient

Let us denote by ∇Asn ∈ RN×N×N the tensor of the partial derivatives ∂sn,o
∂Ai, j

(∇Asn)i, j,o = ∂sn,o

∂Ai, j
(14)

and by ∇xϕ(x) the tensor of partial derivatives ∂ϕ(xi )
∂xi

(∇xϕ(x))i = ∂ϕ(xi )

∂xi
(15)

and by S̃n ∈ RN×N×N a tensor such that:

S̃i, j,o =
{
sn,i if o = j

0 otherwise
(16)

Hence, it is possible to formulate Eq. 13 as:

∇Asn = ∇tnϕ(tn) � (∇Asn−1A + S̃n) (17)

where the symbol � denotes the Hadamard product.
As a result, the error gradient Forward-Only Propagation (FOP) algorithm of an MNN

can be formulated in terms of the following steps, i.e., initialization, state derivatives forward
propagation, and error derivative computation:

∇As ← 0
for i in {1, 2, · · · , nt − 1} do

s0:ni ← x
t ← s A
∇As ← ∇tϕ(t) � (∇As A + S̃)
s ← ϕ(t)

end
y ← s[n − nh : n]
∇AE(y, y) ← ∇yE(y, y) � ∇As
Algorithm 1: FOP algorithm for the error gradient of an MNN

where nt is the number of timesteps needed to the input to traverse the network and provide a
sufficiently accurate output. In Recurrent Neural Networks (RNNs) a careful consideration is
required to determine the value of nt , because any recurrent connection results in a potentially
undefined number of loops. However, a relevant advantage of MNN with respect to RNN
based on back-propagation is that anMNNdoes not need to save the prior steps determined by
a loop. InRNNs abounded-history approximation strategy is used to simplify the computation
and provide an adequate approximation to the true gradient: relevant information is saved in
the fixed number of timesteps nt and any information older than that is forgotten. According
to this strategy, in Backpropagation Through Time [10], a backward pass through the most
recent nt time steps is performed at each time the network is run through an additional time
step. In contrast, in MNN the lack of an error backpropagation sensibly reduces the impact of
nt : it should be large enough to capture the temporal structure of the problem to model. Thus,
after nt timesteps the computation is simply truncated to take the output value. It is worth
noting that already in the training phase weights are adjusted according to the specified nt .
Consequently, recurrent connections are adequately weakened when producing noise on the
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error, reducing the impact of the recurrent computation.In conclusion, a sufficiently large nt
results in an adequate approximation to the true gradient, and it is not a sensitive parameter
of the network.

The next section is devoted to the Python implementation and the evaluation of the pro-
posed MNN.

4 Implementation and Experimental Studies

The MNN model has been developed, tested and publicly released on the Github platform,
to make possible the initial roll-out of the approach, and to foster its application on various
research environments. The implementation is based onnumpy [11], awidespread package for
tensor algebra in Python. The interested reader is referred to [12] for further implementation
details.

The correctness of the symbolic derivatives is a critical aspect of the proposed network.
To ensure it, in addition to the symbolic differentiation (SD), another implementation has
been generated, in which gradients are calculated via automatic differentiation (AD) [13].
AD transforms a target function into a large graph of symbolic differentiation at elementary
operation level, which are highly parallelizable [14]. This computational graph can efficiently
manage orders of magnitude of gradients, providing highly accurate numerical values. Nev-
ertheless, the AD-based system can be used for testing purposes only, since it is based on a
back-propagated gradient error that has been criticized in the premise of this research work.
To develop an efficient and coherent implementation of the proposed approach, the symbolic
derivatives are then fundamental. To empirically evaluate the functional equivalence of the
SD-based and the AD-based networks, the absolute differences between their corresponding
output values have been computed over 100 tests. The two networks have been equipped with
5 input, 10 hidden and 3 output nodes. In each test, the two comparative networks have been
set with (the same) random weights, and fed with a batch of (the same) 10 random inputs. As
a result, the 95% confidence intervals of both the state and the gradient absolute differences
are very low: 0.00024±0.000047 and 0.000011±0.0000053, respectively. The source code
of the numerical test code has been publicly released [12].

4.1 Synthetic Problems

In order to investigate the capabilities of the MNN model the dataset generator of scikit-
learn [15] has been used to produce five types of two-dimensional dataset well-known in the
literature (Figs. 4, 5, 6): (a) Moons: a two-classes dataset made by two interleaving circles;
(b)Circles: a two-class dataset made by concentric circles; (c) Spirals, which is considered as
a good evaluation of training algorithms [2]; (d) Single Blobs: a three-class dataset made by
isotropic Gaussian blobs with standard deviation 1.0, 2.5, 0.5; (e)Double Blobs: a three-class
dataset made by two groups of isotropic Gaussian blobs with standard deviation 1.0.

Each dataset is made by 1,000 objects, balanced classes, and contains 10% of noise.
Finally, a dataset from UCI Machine Learning Repository has been used, known as Iris [16].
Iris contains three classes of Iris plants. Each class consists of 50 objects characterised by
4 numeric features which describe, respectively, sepal length, sepal width, petal length and
petal width. Class Iris Setosa is linearly separable from the other two. However, class Iris
Versicolor and Iris Viginica are not separable from each other.

123



Formal Derivation of Mesh Neural Networks with Their Forward... 1971

Fig. 3 MNN topology used in experiments

The MNN topology represented in Fig. 3 has been used. Specifically, two output units
have been assigned for the two classes datasets, and three output units for the three classes
datasets. On the other side, three inputs units have been used: two inputs for the (x, y) features
of the dataset, and one input for the bias input (constantly set to 1). 5 hidden units have been
used. The Network has been evaluated for 3 time ticks. The ReLU activation function has
been used for all units. Finally, the cross-entropy loss has been used as error function. For
the experiments using the Iris dataset, it has been used anMNNwith 5 input units (4 features
and 1 bias), 10 hidden units and 3 output units (one for each class).

TheAdaptiveMomentEstimation (Adam) [17] has been used to compute adaptive learning
rates for each parameter of the gradient descent optimization algorithms, carried out with
batch method. A learning rate of 0.001 has been set. The training has been carried on for
1000 epochs.

The dataset has been partitioned into 70% and 30% for training and testing sets, respec-
tively. Figures 4, 5, and 6 showwith different gray levels the resulting partitioning of the input
domain made by the MNN. Here, the generalization capabilities of the network are apparent.
As a result, the MNN achieved the 100% accuracy for all datasets. In terms of complexity,
the number of nodes of the MNN are 3 + 5 + 2 = 10 and 3 + 5 + 3 = 11 for 2 and 3 class
datasets, respectively. The corresponding number of parameters (weights) is 10 · 10 = 100
and 11 ·11 = 121, respectively. The interested reader is referred to [12] for a color animation
of the MNN partitioning for each iteration. Table 1 shows the accuracy of the Spiral model
generated by an MNN for increasing hidden neurons. It is interesting that, with 15 hidden
neurons the problem is successfully modeled. Moreover, for a lower number of neurons, up
to 7, the accuracy decreases gradually, in contrast to MLP and other approaches proposed in
[2].

Figure 6a, b show the training loss and the training accuracy over time for the Iris dataset.
It is worth to note the convergence capabilities of the network. As a result, theMNN achieved
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Fig. 4 Two-classes datasets and
related decision regions
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Fig. 5 Three-classes datasets and related decision regions

97.00%±1.62% accuracy over 10 runs with a 3σ confidence interval. In terms of complexity,
the number of nodes of theMNN is 5+10+3 = 18. The corresponding number of parameters
(weights) is 18 · 18 = 324.

4.2 Real-World Problems

To investigate the effectiveness of theMNNarchitecture, some experiments have been carried
out on two real-world problems used for benchmarkingmachine learning algorithms:MNIST
[18] and Fashion-MNIST [19]. MNIST is a database of handwritten digits images, whereas
Fashion-MNIST is a dataset of fashion article images. Both datasets aremade by a training set
of 60,000 examples, and a test set of 10,000 examples. Each example is a 28×28 image, with
pixels in 0–255 grayscale values, associated with a class label of 10 possible classes. The task

123



1974 F. A. Galatolo et al.

Fig. 6 Training convergence of MNNs with Iris dataset

Table 1 Accuracy of the Spiral
model generated by an MNN for
increasing hidden neurons

Hidden Neurons Accuracy

5 0.75 ± 0.079

7 0.95 ± 0.029

10 0.94 ± 0.039

13 0.95 ± 0.026

15 0.99 ± 0.011
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Fig. 7 Representative samples of MNIST and Fashion MNIST datasets

is to classify a given image into one of such 10 classes. Figure 7 shows some representative
samples of the datasets. Both datasets contain samples ambiguous even for humans: MNIST
and Fashion-MNIST have an average human performance of 98.29% [20] and 83.5% [19],
respectively. Such datasets are widely used and deeply investigated: top-performing models,
based on convolutional neural networks, achieve a classification accuracy higher than 99%,
and have a layered structure made by feature extraction and classification. Feature extraction
can be performed by alternating convolution and subsampling layers, whereas classification
can be performed via dense layers, such as a fully connected feed forward (i.e, MLP-based)
neural network. The purpose of this section is to use an MNN as a classification layer, to
carry out a comparative analysis between MNN and MLP. Rather than providing the top
performance, this solution simplifies the design of the classification layer for the sake of
simplicity. Indeed, for a fair comparison it is essential to avoid complex architectures with
many hyper-parameters, whose particular choices should be subject to in-depth discussion.
Similarly, there aremany choices for convolutional architectures, but using a general-purpose
architecture with a high degree of automation reduces such choices.

With this premise, a Convolutional Auto-Encoder (CAE) is used for feature extraction,
followed by an MNN or MLP based network for classification. The CAE is commonly used
for unsupervised data encoding and noise reduction [21]. The following architecture is used
in experiments. Encoding: a convolutional layer with a 3 × 3 kernel size and 16 channels,
stride 3 and padding 1; a rectified linear unit (ReLU); a max pooling layer with 2 × 2
kernel size, stride 2; a convolutional layer with a 3 × 3 kernel size and 8 channels, stride
2 and padding 1; a ReLU; a max pooling layer with 2 × 2 kernel size, stride 2. Decoding:
a transpose convolutional layer with 2 × 2 kernel size and 16 channels, stride 2; a ReLU;
a transpose convolutional layer with 5 × 5 kernel size and 8 channels, stride 3, padding
1; a ReLU; a transpose convolutional layer with 2 × 2 kernel size and 1 channel, stride 2,
padding 1; a hyperbolic tangent activation function. Overall, the CAE provides 32 features to
the classification layer. Both MLP and MNN classification layers have been equipped with
ni = 32 input and no = 10 output neurons. The number nh of hidden neurons has been
set accordingly, to have the same number of overall connections for the two comparative
networks. Since both datasets are spatial, in the MNN network two recursion steps, i.e.,
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Fig. 8 Pruned adjacency matrix

nt = 3 , are sufficient. The MNN network is statically pruned for better efficiency. Since
theMNNmodel generalizes the other perceptron-based topologies, there are custom pruning
that makes the MNN fully equivalent, for instance, to an RNN or to an MLP. However, for a
significant comparison, such custom pruning is avoided, in favor of a randomly determined
pruning.

Figure 8 represents the adjacency matrix of the MNN based classification layer. Here, I,
H, andO, represent the sets of indexes corresponding to the input, hidden and output neurons.
Each block can then be characterized by a pair of related sets. In particular, white blocks
have zero connections, whereas dotted blocks have a given percentage of randomly selected
connections.

Specifically, the white blocks represent the following connection types: all-to-input (I →
I,H → I,O → I), output-to-all (O → I,O → H,O → O). The dotted blocks represent the
following connection types: input-to-hidden (I → H), input-to-output (I → O), hidden-to-
hidden (H → H), and hidden-to-output (H → O). As a consequence, assuming nh = 50, the
following connections and biases are available in the dotted area: (1− p) · (ni + nh) · (nh +
no)+ (nh +no), where p is the pruning percentage, and the last term (nh +no) is the number
of biases of hidden and output nodes. In order to have a similar number of connections, the
MLP hidden neurons are made by two layers of h1 and h2 neurons. Hence, the total number
of connections, considering also biases, is (ni ·h1 +h1)+ (h1 ·h2 +h2)+ (h2 ·no +no). The
95% confidence intervals achieved via the MNN and MLP based classifiers, calculated over
10 trials, are summarized in Table 2. It important to note that, for each trial, the percentage of
randomly selected connections inMNN is completely renewed.As previously discussed, such
classification rates are related to the features generated by the CAE layer. Consequently, the
rates are not comparable with the top absolute performance of the literature. The significant
result is that the MNN and the MLP based classifiers achieve very similar performance for
increasing connections. For the sake of comparability, Table 2 shows only the settings with
a very similar number of connections for the two networks. The best performance, of about
0.80 classification rate, is achieved via 1044-1047 connections. To evaluate the complexity
of the classification task, it has been experimentally verified that for increasing number
of connections (up to more than 3 thousand connections), both classifiers are not able to
overcome the 0.8 classification rate.
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Table 2 Testing classification rates of the MLP and MNN based networks, on MNIST and fashion-MNIST

Architecture Hidden Neurons Pruning Connections MNIST Fashion MNIST

MNN 50 85% 798 0.772 ± 0.030 0.762 ± 0.005

MLP 14+13 – 797 0.761 ± 0.065 0.750 ± 0.026

MNN 50 80% 1044 0.796 ± 0.013 0.771 ± 0.004

MLP 17+17 – 1047 0.789 ± 0.035 0.786 ± 0.013

5 Conclusions and FutureWork

The purpose of this paper is to formally introduce recent advances leading to the MNNs,
providing the key points to the reader.

Overall, the main advantages of the MNN model with the related FOP algorithm are: (i)
the state partial derivatives can be computed along the forward propagation; (ii) the error
gradient can be directly computed from state gradient; (iii) the state partial derivative update
makes use only of short-lived variables, which can be overwritten at each state iteration; (iv)
the state partial derivatives concern only one multidimensional parameter; (v) the overall
gradient computation relies only on tensor multiplications, which can be easily distributed
on parallel computing, thus potentially enabling large-scale sparse ANNs training [22].

In contrast, the BP-based family of algorithms is limited to layer-wise architectures, and
needs to store all intermediate layer outputs, by comprising a forward and backward prop-
agation through the network. On the other side, the CG-based gradient computation is not
constrained in terms of network architecture, but it needs to store a large graph topology and
the partial derivatives of each computation node, and it needs to compute all factoring paths
for each parameter.

Due to its unconstrained structure, an interesting research perspective of MNNs is to
adopt structural regularization techniques to dynamically drive the network topology. For
small datasets the network topology is highly dense to exploit the available neurons, and then
the adjacency matrix is highly dense. For large datasets, in general there are two strategies
that can make the adjacency matrix sparse: (a) offline pruning, i.e., to remove some types
of connections according to some heuristics; (b) online pruning, i.e., to remove iteratively
some connections that do not contribute to model, in the training phase. The two strategies
can be combined. In general, the possibility to have a sparse matrix depends on the problem
complexity. Since theMNNneeds largematrix operations, such strategies should also be sup-
ported by a framework implementation that efficiently exploits the hardware resources, e.g.
via memory caching and highly parallel computation. However, the commercially available
machine learning framework provide optimized libraries for back-propagated models. As a
consequence, to test the MNN architecture on very large datasets, an optimized framework
should be implemented on specific hardware. Such development is a long-term task and it is
out of the scope of this paper, which focuses on the formal derivation of the technique and
on pilot experimentation showing its potential application.

As a future work, in order to compare BP, CG and FOP according to a performance per-
spective, the scalability of each algorithm should be evaluated in terms of computational
complexity. Moreover, a statistical performance evaluation should be carried out on bench-
mark problems, considering large-scale applications.
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