
Neural Processing Letters (2022) 54:2717–2725
https://doi.org/10.1007/s11063-021-10477-y

Privacy Enhanced Cloud-Based Facial Recognition

Tao Yang1 · Yuhang Zhang1 · Jie Sun2 · Xun Wang2

Accepted: 26 February 2021 / Published online: 13 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Homomorphic encryption is a significant method to protect user privacy in cloud computing
environment. Due to the computation efficiency issue, there is still not many homomor-
phic encryption applications for common users. In this paper,we try to use homomorphic
encryption to enhance the privacy in cloud-based face recognition system. By balancing the
workload between client and server,and reimplementing the similarity measurement func-
tion, our homomorphic encryption version’s performance is almost the same as the original
version in terms of accuracy and time consumption. Our work is especially beneficial tomany
face recognition methods that are using Euclidian distance as their similarity metric.

Keywords Homomorphic encryption · Face recognition

1 Introduction

Cloud based face recognition has been more and more used in many areas. Leveraging
the remote computation resources, personal computers and mobile devices can complete
heavy workload which usually needs a large scale of computation, such as face recognition,
object detection, and object recognition. However, human face images contain sensitive
personal information,such as identification informance, health situation, relationship between
others etc. When face images are sent into a third party cloud service provider,they are
also vulnerable to information hijacking in information transmission or privacy leakage in
the untrusted third party cloud service provider. As a result, researchers are looking for
the approaches to leverage untrusted third party computation resources and not leak users’
privacy in the meanwhile.

Generally,there are two ways to protect user privacy in cloud computing scenarios. One is
the secure multi-party computation(SMC) [1,28]. SMC creates methods for parties to jointly
compute a function over their inputs while keeping those inputs private. SMC needs the client
and server work interactively, which is not the common paradigm in our daily applications.
The other one is using Homomorphic Encryption(HE). HE is also known to be an effective

B Jie Sun
sunjie@zjgsu.edu.cn

1 Department of Information Security, Zhejiang Gongshang University, Hangzhou, China

2 Department of Computer Science, Zhejiang Gongshang University, Hangzhou, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-021-10477-y&domain=pdf
http://orcid.org/0000-0002-5196-7268


2718 T. Yang et al.

approach to protect the user privacy in third party cloud service providers. Users’ data is
encrypted with a public key of the homomorphic encryption(HE) scheme and uploaded to
the third-party cloud storage. In homomorphic encryption, users’ data is processed within
encryption domain. The results after processing are also sent back to users in homomorphic
ciphertext. Users only decrypt the results with their private keys without revealing their
data to the cloud service providers. In HE, not only the data, but also the computation
operations are also encrypted. Ideally, the operation and the data can be added and multipled
in arbitrary numbers of time, which is so called Fully Homomorphic Encryption(FHE) [12].
However, FHE is hard to widely used in reality because of its large computation overhead.
To reduce the computation complexity, people are thinking to give up the arbitrary time
of multiplication and constrain the homomorphic computation within certain scale. Within
that scheme, only limited number of multiplication are allowd. That scheme is so called
Somewhat Homomorphic Encryption(SHE) [2,18,23].

Homomorphic encryption has also been used in biometric research applied homomorphic
encryption in finger print recognition [9]. Use FV scheme as their encryption scheme [19].
The work we presented in this paper is focusing on the face recognition application for
cloud computing scenarios. To protect user privacy in the cloud, our solution combines
SHE with current wide-use face recognition model. We believe even with a limit number of
multiplication, it is possible to convert a pretrained facial recognition model into a privacy
secured homomorphic-friendly model, in the meanwhile keep the same recognition rate and
acceptable processing speed. There are two contributions of this paper. First, it provides
a privacy secured solution for cloud based face recognition application via homomorphic
encryption. Second, this paper proposes a converting method that can be used in other face
recognition methods that use eulidian distance as the similarity metrics.

The layout of the paper is like following: Sect. 2 introduces the background of homomor-
phic encryption schemes, the homomorphic encryption framework we used in our system,
and the introduction of CKKS scheme. Section 3 explains some problems in system archi-
tecture designing. Section 4 shows the performance evaluation in terms of accuracy and
computation efficiency.The discussion about the results and future work is in Sect. 5.

2 Related Background

2.1 Somewhat Homomorphic Encryption Schemes

After Gentry et al firstly proposed Full Homomorphic Encryption (FHE) [12] in 2009, other
full homomorphic encryption methods are proposed to improve the computation efficiency
[27]. But large size of keys and low computation efficiency still make FHE difficult to
be widely used. They were soon replaced by the Ring Learning With Errors(RLWE).This
kind of cryptographic schemes are dependent on the hardness of the Ring Learning With
Errors (RLWE) problem. There are three most efficient homomorphic encryption schemes
Brakerski-Gentry-Vaikuntanathan (BGV) [4], Brakerski/Fan-Vercauteren (BFV) [3,10] and
the Cheon-Kim-Kim-Song (CKKS) [6]. In BGV and BFV, computations can only be per-
formed on integers. while in CKKS, computations can be performed on complex numbers
with limited precision. As CKKS can process float numbers, we choose the CKKS scheme
as our homomorphic encryption scheme.

123



Privacy Enhanced Cloud-Based Facial Recognition 2719

2.2 Homomorphic Encryption Library Framework

To implement a practical homomorphic encryption system, many homomorphic encryption
library frameworks have been developed to help implementing the homomorphic encryp-
tion scheme. Those frameworks implement addition, multiplication and other computation
operations and provide the wrapped functions as APIs to common users, which can greatly
accelerate the implementation. SEAL [22] is developed by the Microsoft Research Cryptog-
raphy Research Group. It is originally developed in C++, and only provides BFV and CKKS
schemes. HElib [13] is developed by Shai Halevi and Victor Shoup. It has longer history than
SEAL, but has less community support. PySEAL [26] is a wrapper implementation to the
original SEAL Library.It provides user APIs in python language. In this paper, we choose
the pyseal to be our homomorphic encryption library.

2.3 CKKS Encryption Scheme

CKKS scheme is a homomorphic scheme for approximate arithmetic. It supports an approx-
imate addition and multiplication of encrypted messages,together with a new rescaling
procedure for managing the magnitude of plaintext.The main idea is to add a noise fol-
lowing significant figures which contain a main message. This noise is originally added to
the plaintext for security, but considered to be a part of error occurring during approximate
computations that is reduced along with plaintext by rescaling [6].

The main idea of CKKS is to treat an encryption noise as part of error occurring during
approximate computations. If C is the ciphertext for the message m by the private key sk,
the decryption form is

〈c, sk〉 = m + e (mod q) (1)

where e is a small error inserted to guarantee the security of hardness assumptions such as
the learning with errors(LWE), the ring-LWE(RLWE).If e is relatively small enough to the
message m, the noise will not affect the message and the value m′ = m + e can replace the
original message in approximate arithmetic.

To treat the encryption noise as precision loss, the CKKS has to maintain the result
of multiplication at a certain level. The rescaling technology is used to maintain the level
of product and makes CKKS possible to process the small-degree polynomial, which is a
common case for float and complex numbers. For example, the result of the Eq. 1 after
rescaling is �p−1 · c�(mod q/p).

3 System Architecture

To create a privacy secured face recognition in cloud, there are two issues need to be consid-
ered. One is what kind of facial recognition method is suitable to convert to homomorphic
friendly method and also maintain the recognition accuracy. The other one is, in the load
balancing perspective, how to divide the workload between client and server.

3.1 Facial RecognitionModel

People have developedmany face recognitionmethods, somemethods are usingElasticGraph
Dynamic Link Model [16,17], some methods are using Gabor-filter features combined with

123



2720 T. Yang et al.

svm [7,11]. In the past ten years, the development of convolutional neural networks have been
used in face recognition and brought the accuracy of recognition rate to a new level [21,24,25].

As the intrinsic characteristic of homomorphic encryption, two requirements for the
facial recognition method need to be satisfied before it can be converted to privacy-secured
homomorphic-friendly method: (1) since CKKS scheme is based on polynomial encryp-
tion, only linear functions can be encrypted by homomorphic encryption scheme, non-linear
functions in the model have to make an approximation or change to another linear function.
(2) the computation complexity and precision should be controlled at a certain level, large
computation complexity will affect the usability of the system.

The method we presented in this paper is especially useful to the methods that deter-
mine the results by comparing the euclidian distance between two feature embeddings, such
FaceNet [21], Deep Face Recognition [5,20]. Equation 2 is the equation that computes the
euclidian distance between two embeddings. Sincemost operations in this equation are linear
operation(except square root computation), it is suitable to convert it homomorphic encryp-
tion function.

d(x, y) :=
√
(x1 − y1)2 + (x2 − y2)2 + · · · + (xn − yn)2 =

√√√√
n∑

i=1

(xi − yi )2 (2)

We used the face_recognition package in python pip repository. Python face_recognition
package is implemented based on dlib library [8]. The model used by dlib face recognition is
dlib_face_recognition_resnet_model_v1model, which is a resnet neural network [14] trained
by 3 million human face images.

3.2 Workload Balancing

Another important issue need to address is how to divide the workload between the client
and the server in the cloud. The motivation to use the computation resources in the cloud
is moving a part of workload to the cloud. Leveraging the computation resources in cloud,
even common computers and mobile devices is capable to complete some computation-
intensive tasks.However, moving workloads to the cloud in homomorphic scenario does not
mean reduction in computation complexity. The overhead of homomorphic encryption and
decryption may affect the usability of the application.

A typical face recognition application has four parts, shown in Fig. 1, face detection, face
alignment, face feature extraction, andmatching. For both verification and identification tasks
in face recognition, the major efficiency bottleneck is the matching step. In our application,
matching is moved to the cloud.

4 Implementation Details and Evaluation

4.1 Image Encoding

The process of image encoding in our application is computing the embedding of the input
image. Using the pretrained model dlib_face_recognition_resnet_model_v1, the landmark
of input face image will be extracted and will get a feature vector which contains 128 floating
numbers.

123



Privacy Enhanced Cloud-Based Facial Recognition 2721

Fig. 1 The layout of the components in a typical face recognition system. The matching resides in the cloud

4.2 Initialization

According to the CKKS scheme, every multiplication in ciphertext will make the level of
the ciphertext increase one. Because the ciphertext in different levels can not be computed.
The relin_key is introduced to reduce the level of the ciphertext. This process is so called
”relinearization”. gal_key is the galios key that will be used in rotating the cipher vector.

In our preliminary test, the size of the aformentioned keys is more than 70M bytes, which
makes it is impractical to upload the keys every time with the embedding information. As a
result, an initial step is necessary and once the client establishes the connectionwith the server,
those two keys are sent to the Cloud. These two keys are not related to information encryption,
the privacy of facial images will not be affected. Figure 2 shows the data communication
between the client and the cloud.

4.3 Square Root

As we mentioned in the previous sections, only linear functions can be transferred into
homomorphic style functions, square root function is difficult to implement. In our implement,
we firstly choose to compute

∑n
i=1(xi − yi )2, send the result back to the client, and compute

the square root in plaintext domain.
One thing need to be point out, in Eq. 2, those variables x1,x2, xi are all encoded by CKKS

into polynomials. The steps of implementation is like following:

1. function sub_inplace(cipher_embedding1-ciphter_embedding2) is used to process xi−yi .
2. user function square_inplace(diff_cipher_embedding) to compute the square the xi − yi .

Every time the ciphertext multiples, the level of the ciphertext increases one. Reli_keys
is used in “Relinearization” to reduce the level the ciphertext.

3. Since there is no function in SEAL to sum up all the elements in one vector, we used a
rotate function rotate_vector_inplace() to rotate the vector 128 times,and sum up the first
element.Then return the first element which is the

∑n
i=1(xi − yi )2. The code is shown in

Fig. 3.

123



2722 T. Yang et al.

Fig. 2 The data communication between the client and the cloud. Most components reside in client side,
except the matching

Fig. 3 Vector rotation for elements accumulation

4.4 Performance Test

Face recognition has two types of use cases, verification and identification. In our experiment,
we only tested the cases of the verification cases. We tried to verify whether two face images
belong to the same person. While the identification cases need to compare multiple face
images in the dataset in order to identify the input image is one of the them or not. Our
verification case can be easily extended to identification cases. It will only need to upload
the embeddings and store them in the database on the cloud storage.

In the accuracy test, we use the Eq. 3 to compute the error rate. homomorphic_score
indicates the similarity score gained from comparison two image embeddings in the homo-
morphic encryption scenario.

We used pairs.txt comparison list which contains 6000 comparisons in LFW dataset [15].
In Fig. 4, we can see majority error is below 0.02% which is a very low percentage. It means
our implementation has equivalent accuracy as the original method. The further performance
results are shown in Figs. 5 and 6. Figures 5 and 6 show both original version and homo-

123



Privacy Enhanced Cloud-Based Facial Recognition 2723

Fig. 4 The error rate comparing the original similarity score and the score in homomorphic encryption scenario

Fig. 5 ROC curve comparison between the original face_recognition method and our homomorphic modifi-
cation

Fig. 6 ROC curve comparison between the original facenet and our homomorphic modification

morphic version have the same accuracy value, which means the homomorphic modification
almost does not bring performance degradation in accuracy.

error_rate = abs(original_score − homomorphic_score)

original_score
× 100% (3)

123



2724 T. Yang et al.

Table 1 Time consumption for
the implementation

Encoding Decoding Encryption Decryption Matching

10ms 13ms 436ms 3ms 2112ms

Table 2 Space consumption for
the implementation

Type Encrypted embedding Matching result

Memory footprint 56 bytes 56 bytes

The time comlexity of our implementation is also plausible for practical use. Table 1
shows the time consumption of each step in our implementation. The matching step in cloud
costs only approximate 2 s.

The space consumption of our implementation is like following. The actual memory
consumption could be varied by the version of python and the CPU achitecture(32-bit or 64-
bit). In our experiment, we used python 3.7 and 64 bit CPU. In Table 2, encrypted embedding
is the ciphertext that client send to the server,matching result is the ciphertext that server send
to the client. Both ciphtertexts are 56 bytes which is plausible for a commodity application.

5 Discussion and Future work

In this paper, we present an implementation of a privacy-secured web based face recognition
system using CKKS homomorphic encryption scheme. By reimplementing the euclidian dis-
tance methods, the matching step could be computed using CKKS homomorphic scheme.
Compare to the original method, the homomorphic encryption version has the same accu-
racy. And the time and space complexity are also acceptable. It is a good example to apply
homomorphic encryption in face recognition area, and especially useful for the methods that
use euclidian distance as their loss functions.

Acknowledgements The research is supported by National Key Research and Development Plan
(2018YFB1404102),National Nature Science Foundation of China(U1609215),and Nature Science Founda-
tion of Zhejiang Province(LQ20F020008).

References

1. Barni M, Orlandi C, Piva A (2006) A privacy-preserving protocol for neural-network-based computation.
In: Proceedings of the 8th workshop on Multimedia and security, pp 146–151

2. Bos JW, Lauter K, Loftus J, Naehrig M (2013) Improved security for a ring-based fully homomorphic
encryption scheme. IMA international conference on cryptography and coding. Springer, Berlin, pp 45–64

3. Brakerski Z (2012) Fully homomorphic encryption without modulus switching from classical gapsvp.
Annual cryptology conference. Springer, Berlin, pp 868–886

4. Brakerski Z, Gentry C, Vaikuntanathan V (2014) (Leveled) fully homomorphic encryption without boot-
strapping. ACM Trans Comput Theory (TOCT) 6(3):1–36

5. Cao Q, Shen L, Xie W, Parkhi OM, Zisserman A (2018) Vggface2: A dataset for recognising faces across
pose and age. In: 2018 13th IEEE international conference on automatic face and gesture recognition (FG
2018), pp 67–74. IEEE

6. Cheon JH, Kim A, Kim M, Song Y (2017) Homomorphic encryption for arithmetic of approximate
numbers. International conference on the theory and application of cryptology and information security.
Springer, Berlin, pp 409–437

123



Privacy Enhanced Cloud-Based Facial Recognition 2725

7. Dadi HS, Pillutla GM (2016) Improved face recognition rate using hog features and svm classifier. IOSR
J Electr Commun Eng 11(4):34–44

8. dlib c++ library. http://dlib.net (2020)
9. Failla P, Barni M, Catalano D, Raimondo MD, Bianchi T (2010) A privacy-compliant fingerprint

recognition system based on homomorphic encryption and fingercode templates. In: IEEE international
conference on biometrics: theory applications systems

10. Fan J, Vercauteren F (2012) Somewhat practical fully homomorphic encryption. IACR Cryptol ePrint
Arch 2012:144

11. Faruqe MO, Hasan MAM (2009) Face recognition using pca and svm. In: 2009 3rd International Con-
ference on Anti-counterfeiting, Security, and Identification in Communication, pp 97–101. IEEE

12. Gentry C (2009) Fully homomorphic encryption using ideal lattices. In: Proceedings of the forty-first
annual ACM symposium on Theory of computing, pp 169–178

13. Halevi S, Shoup V (2014) Helib-an implementation of homomorphic encryption. Cryptology ePrint
Archive, Report 2014/039

14. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp 770–778

15. Huang GB, Ramesh M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: A database for
studying face recognition in unconstrained environments. Tech. Rep. 07-49, University of Massachusetts,
Amherst

16. Kotropoulos C, Tefas A, Pitas I (2000) Frontal face authentication using morphological elastic graph
matching. IEEE Trans Image Process 9(4):555–560

17. LadesM,Vorbruggen JC,Buhmann J,Lange J,VonDerMalsburgC,WurtzRP,KonenW(1993)Distortion
invariant object recognition in the dynamic link architecture. IEEE Trans Comput 42(3):300–311

18. López-Alt A, Tromer E, Vaikuntanathan V (2012) On-the-fly multiparty computation on the cloud via
multikey fully homomorphic encryption. In: Proceedings of the forty-fourth annual ACM symposium on
Theory of computing, pp 1219–1234

19. Morampudi MK, Prasad MVNK, Raju USN (2020) Privacy-preserving iris authentication using fully
homomorphic encryption. Multim Tools Appl 79(2)

20. Parkhi OM, Vedaldi A, Zisserman A (2020) Deep face recognition
21. Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for face recognition and

clustering. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 815–823
22. Microsoft SEAL, (release 3.5). https://github.com/Microsoft/SEAL (2020) Microsoft Research. Red-

mond, WA
23. Stehlé D, Steinfeld R (2011) Making ntru as secure as worst-case problems over ideal lattices. Annual

international conference on the theory and applications of cryptographic techniques. Springer, Berlin, pp
27–47

24. Sun Y, Liang D, Wang X, Tang X (2015) Deepid3: Face recognition with very deep neural networks.
arXiv preprint arXiv:1502.00873

25. Taigman Y, Yang M, Ranzato M, Wolf L (2014) Deepface: Closing the gap to human-level performance
in face verification. Proceedings of the IEEE conference on computer vision and pattern recognition
1701–1708

26. Titus AJ, Kishore S, Stavish T, Rogers SM, Ni K (2018) Pyseal: A python wrapper implementation of
the seal homomorphic encryption library. arXiv preprint arXiv:1803.01891

27. Van Dijk M, Gentry C, Halevi S, Vaikuntanathan V (2010) Fully homomorphic encryption over the
integers. Annual international conference on the theory and applications of cryptographic techniques.
Springer, Berlin, pp 24–43

28. YaoAC (1982) Protocols for secure computations. In: 23rd annual symposiumon foundations of computer
science (sfcs 1982), pp 160–164. IEEE

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://dlib.net
https://github.com/Microsoft/SEAL
http://arxiv.org/abs/1502.00873
http://arxiv.org/abs/1803.01891

	Privacy Enhanced Cloud-Based Facial Recognition
	Abstract
	1 Introduction
	2 Related Background
	2.1 Somewhat Homomorphic Encryption Schemes
	2.2 Homomorphic Encryption Library Framework
	2.3 CKKS Encryption Scheme

	3 System Architecture
	3.1 Facial Recognition Model
	3.2 Workload Balancing

	4 Implementation Details and Evaluation
	4.1 Image Encoding
	4.2 Initialization
	4.3 Square Root
	4.4 Performance Test

	5 Discussion and Future work
	Acknowledgements
	References




