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Abstract
Nonlinear manifold learning is a popular dimension reduction method that determines large
and high dimensional datasets’ structures. However, these nonlinear manifold learning meth-
ods, including isomap and locally linear embedding, are sensitive to noise. In this paper, we
focus on the noisy nonlinear manifold learning method, such as Isomap. The main problem
of the Isomap is sensitivity to noise. Our proposed new method noise removal isomap with a
classification (NRIC), is based on the local tangent space alignment (LTSA) algorithm with
classification techniques to remove noises and optimize neighborhood structure Isomap. The
primary purpose of the NRIC is to increase efficiency, reduce noise, and improve the per-
formance of the graph. Experiments on the real-world datasets have shown that the NRIC
method outperforms efficiently and maintains an accurate low dimensional representation of
the noisy nonlinear manifold learning data. The results show that LTSA with classification
techniques provides high accuracy, mean-precision, mean-recall, and areas under the (ROC)
curve (AUC) of the high dimensional datasets and optimizes the graphs.
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1 Introduction

Nonlinear Manifold learning is an efficient approach for dimension reduction. Various meth-
ods and algorithms have been offered for analyzing the basic structure of the high and
large-scale dimensional data, which attracted much more attention in the machine learning
area [55]. The basic idea of manifold learning is to transform the high dimensional data
into low dimensional space and retain the most important information [17]. In recent years
has attracted much more attention to the great importance of studying manifold learning for
nonlinear dimension reduction [51,58].

In 2000, the Isometric Mapping algorithm became a hot research topic in nonlinear mani-
fold learning and information science [54]. Isomap is a nonlinearmanifold learning algorithm
that is widely used for nonlinear dimension reduction [14]. The basic idea of Isomap is a
variant of the Multidimensional Scaling (MDS) metric, which preserves the global intrinsic
structure of the data points. It maps the high dimensional data into low dimensional space
[45]. Heeyoul and Seungjin [2,6] proposed the kernel Isomap algorithm to solve the noises
and the outlier problem in topological stability. The limitation of the proposed schemes [2,6]
is it destroyed the original Isomap algorithm. This approach preserves topological stability
when dealing with outliers and noises. They also suggested the robust kernel Isomap method
for topological stability, noises, and outliers problems [8]. They reduced the effect of outliers
based on the topological structure with network flow help [7,8]. H. Chang and DY proposed
[5] the robust LLE method for noises and outliers. This method can improve the robustness
of LLE, eliminating the outliers and noises in data points. The main drawback of this method
outliers and noises are still controlled in data points, and robustness is still reduced to some
data points. Kouropteva et al. [23,24] and Shao et al. [42] proposed the selection of the
optimal parameter values method for LLE, and Isomap and Saxena et al. [41] proposed the
integrated approach for Isomap and LLE.

In addition, Bo Li et al. [28] proposed the expanded Isomap approach for improving the
robust LLE process, and the robustness of the original Isomapwas reduced. This method uses
the weighted Principal Component Analysis (PCA) [5] to measure the noises and outliers in
data points. So every weight point in the data set will be allocated through local robust PCA.
To detect weighted noises and outliers, R. McGill et al. use the box statistic method [30].
After de-noising, this method will easily retain the topological structure [28].

In our motivation, we have focused on studying the nonlinear Isomap noise problem. The
Isomap algorithm is also noise sensitive. Isomap algorithm is not suitable for real-world
datasets, as the datasets are noiseless. We propose a novel approach called Noise Removal
Isomap with Classification (NRIC) method for overcoming the Isomap noise problem.We
have used the Local Tangent Space Alignment (LTSA) algorithm with classification tech-
niques for the Isomap noise problem. To effectively eliminate the noises in data points, we
used the concept of LTSA as a nonlinear manifold learning technique. We have used dif-
ferent classification techniques such as Support Vector Machine (SVM) [49,50], K Nearest
Neighbor (KNN) [16,29], Naïve Bayes (NB) [20], and Random Forest (RF) [25]. Isomap
algorithm can’t easily map high-dimensional data to low-dimensional space by using classi-
fication techniques and real-world datasets because it’s very noisy.
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Our proposed method results show that the LTSA algorithmwith classification techniques
can significantly improve the original Isomap in a noisy environment. Also, our proposed
method produces accurate results for large and high-dimensional datasets while reducing
data point noise. In Sect. 3, we explain in detail the techniques and the algorithms.

Contributions In summary, the contribution of our proposed method is given below:

1. We propose the NRIC method for the Isomap noise problem. Our proposed method
used an LTSA algorithm with well-known classification techniques. Our proposed NRIC
method can easily embed the high dimensional data space into low dimensional space
and optimize the neighborhood graph.

2. We conduct extensive experiments to analyze our NRIC method on five datasets empiri-
cally. We calculate the accuracy, mean-precision, mean-recall, and Area under the ROC
(ReceivingOperatingCharacteristics)Curve (AUC) for our proposedmethod and provide
the effective noise removal results.

3. We improve the Isomapnoise problem’s performance by using the different neighborhood
value ofK. The experiment section shows the effectiveness of our proposedNRICmethod
according to K values.

The paper is organized as follows. In Sect. 2, we will give brief details of the Isomap and
Machine learning classifier. We will provide details of the proposed method and LTSA, and
classification techniques in Sect. 3. Section 4 describes the experimental results on five large
scale datasets. Finally, the paper is concluded in Sect. 5.

2 RelatedWork

Classical Isomap is viewed as a variant of Multidimensional Scaling (MDS) metric to model
nonlinear data using its geodesic distance. The primary purpose of Isomap preserves the
geometry of data and gets the geodesic distance between all pairs of data points. The geodesic
distance is divided into two parts, such as neighborhood data points and faraway data points.
In neighborhood points, the Euclidean distances between neighboring points are provided
approximated geodesic distance by input-space. In faraway points, the geodesic distances
are calculated the approximated by the shortest paths in neighborhood points [28,37,38]. The
main three steps of Isomap are given below:

Step-1: Build neighborhood graph G Firstly, build the K nearest neighbor (KNN) graph
G of manifold learning based on the Euclidean distance d between two data points in the
input space Xi and X j , i.e., d=Xi , X j = ||Xi -X j || [28].

Step-2: Calculate the shortest distance When builds the neighborhood graph G, then
calculate the geodesic distance matrix between sub-neighborhood faraway data points and
computes the shortest path distance between any two data points Xi and X j is the graph G
by Dijkstra and Floyd’s algorithm [18].

Steps-3: Build a d-dimensional embedding graph Isomap uses the MDS algorithm to
compute the low d-dimensional embedding of the data points and make the geodesic distance
dense matrix [43].

2.1 Machine Learning Classifier

Machine Learning (ML), which is used in different research fields, including Artificial
intelligence, data classification, and Statistic concerned with the automatic acquisition of
knowledge datasets. These techniques are capable of improving the performance of datasets
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from experience [34]. The famous research field of ML is data classification. Data classi-
fication is provided various algorithms such as Support Vector Machine (SVM), K Nearest
Neighbor (KNN),RandomForest (RF),NaïveBayes (NB),ArtificialNeuralNetwork (ANN),
Classification and Regression Tree (CART), Decision Tree, etc. [33]. The primary process of
classification is to predict the label’s data points from given datasets. The label data points are
sometimes called classes, targets, and categories. Classification Predictive Modeling (CPM)
is mapped the input data points through a mapping function and predicts the possible output
data points. A detailed description of classification algorithms is given in Sect. 3.

3 Noise Removal Isomapwith Classification (NRIC)

In this section, we propose a novel approach, which is called the Noise Removal Isomap
with Classification (NRIC) method for the Isomap noise problem. The main idea of our
NRIC method is to eliminate the noise quickly, map the high dimensional data into low
dimensional space, and then easily optimize the neighborhood graph. We have using the
LTSA algorithm with classification techniques in our proposed method. Our NRIC method
provided high accuracy rather than Isomap and reduced the noise from data points. We have
used classification techniques, such as SVM, KNN, NB, and RF, with different K values. The
algorithm 1 of our NRIC method is given below:

Algorithm 1: Noise Removal Isomap with Classification (NRIC)

Input: Dataset X, Noise Removal Output Dataset (NROD) Y
Output: Graph of Accuracy A, Mean-Precision P, Mean-Recall R, and Area under
the (ROC) Curve (AUC)

1: Perform the LTSA method on the input dataset X for noise removal
and see Algorithm (2)

2: Noise Removal Output Dataset (NROD) Y
3: Then
4: We have performed Classification techniques on NROD Y,

including SVM, KNN, NB, and RF. See the Algorithm
(3) (4) (5) (6)

5: These classification techniques split the NROD Y
6: Then
7: Calculate the Accuracy A, Mean-Precision P, Mean-Recall R, and

AUC
8: At the end build the Graphs of Accuracy, Mean-Precision,

Mean-Recall, and ROC Curve

3.1 Local Tangent Space Alignment (LTSA) Algorithm

In 2004, Zhang and Zha introduced the nonlinear local tangent space alignment method
for embedding [59]. This method can easily embed the high dimensional data into low
dimensional space. LTSAcanbe used for noise problems andvery efficiently eliminates noise.
LTSA’s central concept is LLE variants and employed the same geometric manifolds as LLE.
LTSA uses a distinct method to the embedded manifold space compared with LLE. In LLE,
every point of the datasets is locally linearly embedded into the manifold’s linear plot then
constructed the low dimensional datasets. So that preserved the locally linear relationships
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of the original datasets. Moreover, LTSA has built a locally linear patch by using the PCA
method on the neighbors, and then the patch can be evaluated as an approximation of local
tangent space at the point [52]. The algorithm 2 of LTSA is given below:

Algorithm 2: Local Tangent Space Alignment (LTSA) Algorithm
Input: High dimensional dataset X={Xi ,...,Xk }, K and ε neighborhood, d is the smallest
eigenvectors, and Ii is the representation of K neighborhood.
Output: Low dimensional embedding dataset Y={Yi ,...., Yk }
1: Search K and ε neighborhood
if (K and ε neighborhood > d) then

ε neighborhood depends on the dimensions of the data and K neighborhood has used the
neighborhood of LTSA;

2: Computation of Local Coordinates5
Centralized the data and Calculated the mean X={Xi -X...Xk -X}.
Search the local coordinates of Xi by the PCA method, and local
coordinates correspond to the 1st smallest eigenvectors d

3: Alignment of Local Coordinates
Create the alignment matrix A and the initial value of matrix A is zero
A(Ii , Ii ) ← A (Ii , Ii ) + I-Gi G

T
i , i=1....N, and I is the N × N

identity matrix
4: Calculating the Smallest Eigen decomposition vector

The Eigen matrix A is the corresponding of 2nd - (d+1) the smallest
eigenvector and the global coordinates of Y = [u1,...,ud+1] T

3.2 Support Vector Machine (SVM) Classifier

SVMhas attractedmuchmore attention andused very actively in several research applications
such as regression, learning classification, and ranking function. The basic idea of SVM
is dependent on the Structural Risk Minimization (SRM) principle and statistical learning
theory and identifying the position of decision space, also called hyperplane, that generates
the optimal partition of classes [4,9,13,35]. SVM uses an isolating hyperplane to create an
SVM event model classifier. The main issues of SVM cannot be isolated directly in the
information space. This method provides a probability function to identify an answer by
performing principle information space improvement in high dimensional space, where a
perfect portioning hyperplane can be found [39]. In the experiment, we have used the linear
kernel model for the SVM classifier. The algorithm 3 of SVM [47] is given below:
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Algorithm 3: Support Vector Machine (SVM) Classifier

Input: Dataset Y, A: number of samples, B is labeled where Bi ε (1,..., N), vector
V=1, and svm is the kernel classifier model
Output: Validation (Accuracy A, Mean-Precision P, Mean-Recall R), and Area
under the (ROC) Curve (AUC)
1: Train data ← Split data (Dataset Y, size=0.7)
2: Test data ← Split data (Dataset Y, size=1.0)
3: for (n in (1,..., N)) do

Built the vector V;
if (Bi=K) then

V=0;
else

Apply model svm to A, and vector V obtain a list of SVM classifiers;

4: Test the model using "Test data"
5: Calculate the Accuracy A, Mean-Precision P, Mean-Recall R, and AUC

3.3 K- Nearest Neighbors (KNN) Classifier

The KNN classifier is the simplest classification method and used in machine learning and
data mining. It is beneficial and easy to implement. It does not require a fitting model for
classifying various types of datasets and provide the best performance of the multiple types
of datasets [21]. In contrast, the best performance of KNN depends on the distance metric
for calculating the distance between data points of Euclidean. The KNN data points often
use Euclidean distance for similarity [1]. The KNN makes the training samples by itself
according to the laws of classification. The KNN algorithm is classifying the objects based
on the nearest training samples in the attributes. KNN method is a kind of lazy learning and
instance-based learning because the KNN function is locally approximated, and all execution
of KNN is delayed until classification [36]. The KNN classifier can easily find the closest
samples from training datasets. In the results section, K parameters are used as an optimal
value [56,57]. The algorithm 4 of KNN [44] is given below:

Algorithm 4: K- Nearest Neighbors (KNN) Classifier
Input: Dataset Y is the train data, A is class labels of Y, x is an unknown sample, d is
the Euclidean distance, and K is the knearest classifier model
Output: Validation (Accuracy A, Mean-Precision P, Mean-Recall R), and Area
under the (ROC) Curve (AUC)
1: for (I = 1 to n) do

Calculate distance d(Yi , x);
2: Apply model K on a distance of knearest classifiers
3: K= Compute Knearestneighbors d(Yi , x)
4: return agrmax[Aiwhere i =K]
5: Calculate the Score
6: Accuracy A, Mean-Precision P, Mean-Recall R, and AUC
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3.4 Naïve Bayes (NB) Classifiers

NB Classifiers are easy probability classifiers based on the Bayes Theorem [27], and the NB
classifier is mostly used when input data dimensionality is high. This classifier is efficient for
computing the available output data based on the input data. It adds new available raw input
data at runtime andhas an efficient probabilistic classifier [35].Different types ofNBclassifier
is accessible by the assumptions on the distribution of features; these are called event models
of NB classifier [22], includingBernoulli ormultinomial distributions, Gaussian distributions
[32], and discrete features. We have used the Gaussian event model in our proposed method
for calculating the accuracy. In our proposed method, we used the Gaussian event model to
calculate accuracy. It’s also slightly quicker and more efficient than SVM [53]. The NB [40]
algorithm 5 is given below:

Algorithm 5: Naive Bayes (NB) Classifier
Input: Dataset Y is the training data, A is test data, where A={a1,a2,....,an}, and GNB is the
GussianNB classifier model
Output: Validation (Accuracy A, Mean-Precision P, Mean-Recall R), and Area under the (ROC)
Curve (AUC)
1: Read the Y training data
2: Compute the standard deviation and mean of the prediction class
3: for N Times do

Compute the probability of Ai using the GNB classifier model for each class. Until the
probability of all prediction class {a1,a2,.....,an} has been computed.;

4: Calculate the Score
5: Accuracy A, Mean-Precision P, Mean-Recall R, and AUC

3.5 Random Forest (RF) Classifier

T. Kam Ho [15] was introduced RF in 1995, which uses the tree as parallel. RF is a collab-
orative learning classification algorithm (ensemble) combining the same and different types
of more than one algorithm to classify the object. RF classifier is a randomly selected subset
of the training dataset in the set of decision trees. It is a fast method to train the dataset
rather than other techniques such as deep learning, although less slow to predict once trained
datasets [3,25]. The algorithm 6 of RF [46] is given below:

Algorithm 6: Random Forest (RF) Classifier
Input: Dataset Y is the training data, A is input instance to be used for each tree, and RF is the
Randomforest classifier model
Output: Validation (Accuracy A, Mean-Precision P, Mean-Recall R), and Area under the (ROC)
Curve (AUC)
1: for (i=1 to B) do

Yi=BootstrapSample (Y);
Zi= Create RF Randomforest classifier model (Yi , A);
E=E ∪ {Zi } ;
Next i;

2: return E
3: Calculate the Score
4: Accuracy A, Mean-Precision P, Mean-Recall R, and AUC
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Table 1 Experimental datasets

Datasets-name Total datasets Actual-dimensions Classes Use-dimensions

Iris 150 4 3 4

Wine 178 13 3 13

LFW people 13233 5828 5479 100

Breast cancer 569 30 2 30

Digits 1797 64 10 50

4 Results and Discussion

This section analyzes the effectiveness and efficiency of the NRIC, general experiments
on high dimensional and large scale datasets. We have analyzed the proposed algorithms’
performance with an LTSA algorithm and classification techniques such as SVM, KNN,
NB, and RF. Moreover, we have also compared our proposed NRIC method with different
neighborhood K values.

4.1 Datasets

The experiments were organized on a large scale and high dimensional datasets such as Iris
[11], Wine [12], Labeled Faces in the Wild (LFW) people [19], Breast Cancer [31], and
Digits [26]. The detailed information on the datasets is listed in Table 1.

4.2 EvaluationMethods

Various metrics are used to assess the proposed approach and its effectiveness. The clas-
sification algorithm provides multiple criteria for evaluating the resulting datasets, such as
precision, accuracy, recall, and area under the ROC curve (AUC). Here, TP is the number
of correct positive predictions. TN is the number of correct negative predictions, FP is the
number of false-positive predictions, and FN is the number of false-negative predictions. The
significance of these four parameters is based on the classification application. The division
of correct predictions overall predictions is called accuracy. The ratio of correctly positive
prediction overall positives predictions is called precision. The ratio of correctly negative
predictions overall negative predictions is called recall [25]. The ROC curve area is well
known for the classification evaluation method used in machine learning and data mining
areas. The ROC curve takes True Positive Rate (TPR) and False Positive Rate (FPR) for a
given classification algorithm [48]. ROC graphs are beneficial to organize a better visualize
and classifier performance. Also, ROC graphs are present a better relationship between TPR
and FPR. AUC can reasonably measure the model’s prediction quality and display the clas-
sifier performance in a single value. If the AUC value is greater, the classifier performance
is better, and otherwise, the performance is not well [10]. The formulas of accuracy Eq. (1),
mean-precision Eq. (2), mean-recall Eq. (3), and area under the ROC (Receiving Operating
Characteristics) curve (AUC) Eqs. (4) and (5) are defined below:

Accuracy =
[

(T P + T N )

(T P + FP + FN + T N )

]
(1)
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Table 2 Accuracy of iris dataset with SVM, KNN, NB, and RF

K LTSA-SVM ISO-SVM LTSA-KNN ISO-KNN LTSA-NB ISO-NB LTSA-RF ISO-RF

10 1.00 0.92 1.00 0.93 1.00 0.91 1.00 0.94

15 1.00 0.90 0.97 0.93 0.97 0.90 0.97 0.91

20 1.00 0.89 0.97 0.93 0.90 0.86 0.93 0.87

25 1.00 0.87 0.90 0.83 0.83 0.86 0.93 0.87

30 0.97 0.85 0.83 0.80 0.83 0.79 0.90 0.88

40 1.00 0.85 0.93 0.79 0.97 0.90 0.93 0.89

Mean − Precision =
[

(T P)

(T P + FP)

]
(2)

Mean − Recall =
[

(T P)

(T P + FN )

]
(3)

T PR =
[

(T P)

(T P + FN )

]
(4)

FPR =
[

(FP)

(FP + T N )

]
(5)

4.3 Accuracy

Tables 2, 3, 4, 5, 6 shows the calculated accuracy of Iris,Wine, LFW,Breast Cancer, andDigits
Datasets from the Eq. (1). We have represented the calculated accuracy of five different high
dimensional datasets in Figs. 1, 2, 3, 4, 5. Our proposed method graph consistently achieves
high accuracy with different neighborhood K values. We used the different K values such as
10, 15, 20, 25, 30, and 40 for calculating the accuracy of the five datasets. We have compared
LTSA with four classification techniques such as SVM, KNN, NB, and RF for five datasets.
These classification techniques are work very well with LTSA and provide efficient and
effective results for the Isomap noise problem. Therefore, the Isomap method cannot work
well with classification techniques rather than our proposed method.

For the Iris dataset, we have achieved 100% accuracy for different values of K, such
as 10, 15, 20, 25, 30, and 40. These classification techniques also have achieved 100%
accuracy for different values of K. According to a comparison of classification techniques;
the LTSA algorithm is provided 100% accuracy with SVM, KNN, NB, and RF in Fig. 1. In
Table 2, LTSA-SVM is provided the 100% accuracy for values of K (10, 20, 25, and 40).
LTSA-KNN is provided 100% accuracy for values of K=10. LTSA-NB and LTSA-RF are
delivered with 100% accuracy only on K=10. Therefore, we have compared the Isomap with
classification techniques. Still, ISO-SVM has only achieved 92% accuracy for the iris dataset
onK=10, ISO-KNNhas achieved 93%, ISO-NB has achieved 91%, and ISO-RF has achieved
94%. In Fig. 1, LTSA is performed well with SVM, KNN, NB, RF rather than Isomap with
classification techniques.

For the Wine dataset, we have achieved 100% accuracy only on K=15, 30, and 40 for the
LTSA-SVM. In Table 3, LTSA-KNN has gained 100% accuracy on K=15 and 20, LTSA-NB
has increased 100% accuracy on K=25, and LTSA-RF has achieved 98% accuracy on K=15.
Therefore, we have compared the Isomap with classification techniques. Still, ISO-SVM
has only achieved 90% accuracy on K=10 and 20, ISO-KNN has achieved 92% on K=15,
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Fig. 1 Accuracy of Iris dataset
with NRIC and isomap methods

Table 3 Accuracy of wine dataset with SVM, KNN, NB, and RF

K LTSA-SVM ISO-SVM LTSA-KNN ISO-KNN LTSA-NB ISO-NB LTSA-RF ISO-RF

10 0.94 0.90 0.86 0.82 0.97 0.93 0.94 0.90

15 1.00 0.90 1.00 0.92 0.98 0.91 0.98 0.86

20 0.94 0.89 1.00 0.91 0.94 0.90 0.92 0.89

25 0.97 0.87 0.97 0.89 1.00 0.89 0.94 0.82

30 1.00 0.85 0.92 0.82 0.97 0.87 0.83 0.79

40 1.00 0.82 0.97 0.83 0.94 0.84 0.89 0.77

Table 4 Accuracy of LFW people dataset with SVM, KNN, NB, and RF

K LTSA-SVM ISO-SVM LTSA-KNN ISO-KNN LTSA-NB ISO-NB LTSA-RF ISO-RF

10 0.90 0.87 0.81 0.80 0.62 0.77 0.68 0.63

15 0.90 0.82 0.85 0.79 0.75 0.72 0.68 0.65

20 0.93 0.88 0.81 0.78 0.75 0.70 0.68 0.65

25 0.92 0.87 0.84 0.76 0.70 0.65 0.68 0.65

30 0.92 0.85 0.88 0.75 0.79 0.62 0.68 0.64

40 0.92 0.88 0.85 0.74 0.81 0.75 0.68 0.62

ISO-NB has achieved 93%, and ISO-RF has achieved 90% both on k=10. In Fig. 2, we have
shown the comparison of NRIC and Isomapmethod with classification techniques. However,
LTSA works well with SVM rather than KNN, NB, and RF, and rather than Isomap with
classification techniques in Fig. 2.

For LFW people dataset having 13233 data points and 5828 dimensions. We have used
100 dimensions for calculating the accuracy of the proposed algorithm. In Table 4, the LFW
dataset is vast. Therefore, the accuracy of the LFW dataset is reduced very severely. We
achieved 93% accuracy only on K=20 for the LTSA-SVM, 88% accuracy on K=30 for
LTSA-KNN, and LTSA-NB has achieved 81% accuracy K=40. LTSA-RF has reached 68%
accuracy for all K values. Therefore, ISO-SVM has only achieved 88% accuracy on K (20,
40). ISO-KNN has achieved 80% ISO-NB has reached 77% both on the value of K=10, and
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Fig. 2 Accuracy of wine dataset with NRIC and isomap methods

Fig. 3 Accuracy of LFW people dataset with NRIC and isomap methods

ISO-RF has reached 65% accuracy. In Fig. 3, we have shown the comparison between NRIC
and Isomap method with classification techniques. However, LTSA is performed well with
SVM, KNN, and NB rather than RF and Isomap.

For the Breast Cancer dataset, we have achieved 98% accuracy on K=40 for the LTSA-
SVM, 94% accuracy for LTSA-KNN on K=40, 94% accuracy for LTSA-NB, and LTSA-RF
on K=30, as shown in Table 5. Therefore, 94% accuracy for ISO-SVM on K (20, 40), ISO-
KNN has achieved 90%, ISO-NB has gained 88% both on the value of K=10 ISO-RF has
reached 90% accuracy on K=30. In Fig. 4, we have shown the comparison between NRIC
and Isomap with classification techniques. However, LTSA works well with SVM, KNN,
NB, and RF rather than Isomap.

For the Digits datasets having 1797 data points and 64 dimensions. We have used 50
dimensions for calculating the accuracy of the proposed method. Table 6 achieved 97%
accuracy for LTSA-SVM on K=30, 95% LTSA-KNN, 94% LTSA-NB, and 84% LTSA-RF
on the same value of K=10. Therefore, 95% accuracy for ISO-SVM onK (30), ISO-KNN has
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Table 5 Accuracy of breast cancer dataset with SVM, KNN, NB, and RF

K LTSA-SVM ISO-SVM LTSA-KNN ISO-KNN LTSA-NB ISO-NB LTSA-RF ISO-RF

10 0.96 0.90 0.92 0.90 0.90 0.88 0.90 0.87

15 0.95 0.93 0.91 0.88 0.86 0.85 0.82 0.80

20 0.97 0.94 0.90 0.84 0.89 0.86 0.88 0.86

25 0.95 0.91 0.90 0.75 0.93 0.87 0.80 0.80

30 0.95 0.91 0.91 0.77 0.94 0.89 0.94 0.90

40 0.98 0.94 0.94 0.73 0.92 0.86 0.82 0.80

Fig. 4 Accuracy of breast cancer dataset with NRIC and isomap methods

Table 6 Accuracy of digits dataset with SVM, KNN, NB, and RF

K LTSA-SVM ISO-SVM LTSA-KNN ISO-KNN LTSA-NB ISO-NB LTSA-RF ISO-RF

10 0.95 0.93 0.95 0.93 0.94 0.92 0.84 0.80

15 0.96 0.94 0.94 0.91 0.92 0.90 0.79 0.75

20 0.96 0.94 0.95 0.90 0.91 0.90 0.76 0.75

25 0.96 0.94 0.93 0.87 0.89 0.87 0.68 0.63

30 0.97 0.95 0.93 0.88 0.88 0.86 0.67 0.62

40 0.95 0.94 0.92 0.81 0.91 0.88 0.75 0.69

achieved 93%, ISO-NB has reached 92%, and ISO-RF has reached 80% accuracy on K=10.
In Fig. 5, we have shown the comparison between NRIC and Isomap with classification
techniques. LTSA does work well with SVM, KNN, NB, and RF instead of Isomap.

In addition, the NRIC method’s overall performance consistently achieves high accuracy
for the five high dimensional datasets. Our NRIC method is much faster than Isomap and
very effectively reduced the noise in the dataset. Then the NRICmethod easily maps the high
dimensional data into a low dimensional manifold. Sometimes, accuracy is high and down
according to different K’s values because sometimes the KNN are close to each other and
discover quickly. Otherwise, the KNN is far away from each other and recognize hardly them.
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Fig. 5 Accuracy of digits dataset with NRIC and isomap methods

Table 7 Mean-precision of iris dataset with SVM, KNN, NB, and RF

K LTSA-SVM ISO-SVM LTSA-KNN ISO-KNN LTSA-NB ISO-NB LTSA-RF ISO-RF

10 1.00 0.96 1.00 0.95 1.00 0.94 1.00 0.93

15 1.00 0.95 0.97 0.93 0.97 0.92 0.97 0.91

20 1.00 0.93 0.97 0.91 0.90 0.87 0.93 0.90

25 1.00 0.91 0.90 0.83 0.83 0.80 0.85 0.80

30 0.97 0.90 0.85 0.80 0.83 0.78 0.91 0.88

40 1.00 0.88 0.96 0.90 0.97 0.88 0.93 0.86

Moreover, according to different neighborhoodK values, some dataset accuracy performance
is better, and several other dataset’s accuracy performances are in “V” shape. The “V” shape
shows that the K is optimal data-dependent.

4.4 Mean-Precision

Tables 7, 8, 9, 10, 11 shows the calculated mean-precision of Iris, Wine, LFW, Breast Cancer,
and Digits Datasets from the Eq. (2). In Figs. 6, 7, 8, 9, 10, we have represented the calculated
mean-precision of five different high dimensional datasets with NRIC and Isomap methods.
The graph of our proposed NRICmethod consistently achieves the high mean-precision with
different neighborhood K values. We have compared NRIC and Isomap with four classifi-
cation techniques such as SVM, KNN, NB, and RF for five datasets. The mean-precision
performance of NRIC with classification techniques very well and provided effective results
for the Isomap noise problem.

We have attained 100% mean-precision for the Iris dataset for different values of K (10,
15, 20, 25, and 40). Table 7 shows that LTSA-SVM is provided a 100% mean-precision for
the values of K (10, 15, 20, 25, and 40); LTSA-KNN, LTSA-NB, and LTSA-RF are provided
the 100%mean-precision on the value of K=10. Themean-precision of ISO-SVM is provided
96% on K=10, 95% mean-precision for ISO-KNN on K=10, 94% mean-precision for ISO-
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Fig. 6 Mean-precision of iris dataset with NRIC and isomap methods

Table 8 Mean-precision of wine dataset with SVM, KNN, NB, and RF

K LTSA-SVM ISO-SVM LTSA-KNN ISO-KNN LTSA-NB ISO-NB LTSA-RF ISO-RF

10 0.95 0.90 0.90 0.87 0.97 0.92 0.94 0.91

15 1.00 0.89 1.00 0.85 0.97 0.90 0.97 0.88

20 0.95 0.87 1.00 0.82 0.95 0.88 0.92 0.85

25 0.97 0.85 0.97 0.80 1.00 0.85 0.95 0.83

30 1.00 0.83 0.92 0.78 0.97 0.83 0.83 0.79

40 1.00 0.80 0.97 0.86 0.95 0.80 0.92 0.75

NB on K=10, and 93% for ISO-RF on K=10. In Fig. 6, the performance of the LTSA with
SVM, KNN, NB, RF is better than Isomap.

For the Wine dataset, we have attained 100% mean-precision only on K (15, 30, and 40)
for the LTSA-SVM. In Table 8, mean-precision of 100% LTSA-KNN (K=15 and 20), 100%
of LTSA-NB on K=25, and 97% LTSA-RF (K=15). Therefore, we have compared Isomap
with classification techniques such as ISO-SVM is presented with 90%mean-precision, 87%
of ISO-KNN, 92% of ISO-NB, and 91% of ISO-RF are provided mean-precision on the same
value ofK=10. In Fig. 7, we have shown themean-precision of theNRIC and Isomapmethods
with classification techniques. However, the mean-precision of LTSA with SVM, KNN, NB,
and RF is better than the Isomap method.

For Labeled Faces in theWild (LFW), we have attained 100%mean-precision on the value
of (K=10,15,20,25,30,40) for LTSA-SVM and LTSA-RF, as shown in Table 9. The mean-
precision performance of the 90% LTSA-KNN (K=20, 25, 40), 83% LTSA-NB (K=40).
Therefore, mean-precision performance of the 89% ISO-SVM (K=20,40), 87% ISO-KNN
(K=25), 80% ISO-NB (K=30,40), and 96% ISO-RF (K=10). In Fig. 8, we have shown the
comparative performance of the mean-precision of the LTSA and Isomap method with clas-
sification techniques. However, LTSA is performed better with all classification techniques
rather than Isomap.

For the Breast Cancer dataset, we have reached a 98% mean-precision for LTSA-SVM,
95%LTSA-KNNboth onK=40, 95%LTSA-NB, andLTSA-RF (K=30), as shown inTable 10.

123



NRIC: A Noise Removal Approach for Nonlinear Isomap Method 2291

Fig. 7 Mean-precision of wine dataset with NRIC and isomap methods

Table 9 Mean-precision of LFW people dataset with SVM, KNN, NB, and RF

K LTSA-SVM ISO-SVM LTSA-KNN ISO-KNN LTSA-NB ISO-NB LTSA-RF ISO-RF

10 0.90 0.87 0.85 0.82 0.73 0.70 1.00 0.96

15 0.90 0.84 0.88 0.85 0.78 0.75 1.00 0.94

20 0.93 0.89 0.90 0.84 0.78 0.75 1.00 0.92

25 0.93 0.88 0.90 0.87 0.73 0.70 1.00 0.92

30 0.92 0.86 0.88 0.84 0.80 0.80 1.00 0.90

40 0.93 0.89 0.90 0.82 0.83 0.80 1.00 0.90

Fig. 8 Mean-precision of LWF people dataset with NRIC and isomap methods
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Table 10 Mean-precision of breast cancer dataset with SVM, KNN, NB, and RF

K LTSA-SVM ISO-SVM LTSA-KNN ISO-KNN LTSA-NB ISO-NB LTSA-RF ISO-RF

10 0.96 0.93 0.93 0.90 0.91 0.90 0.91 0.88

15 0.95 0.92 0.92 0.90 0.89 0.87 0.89 0.87

20 0.96 0.92 0.92 0.90 0.90 0.87 0.91 0.85

25 0.95 0.90 0.93 0.90 0.94 0.87 0.90 0.88

30 0.95 0.90 0.93 0.90 0.95 0.90 0.95 0.93

40 0.98 0.95 0.95 0.91 0.94 0.87 0.89 0.86

Fig. 9 Mean-precision of breast cancer dataset with NRIC and isomap methods

Table 11 Mean-precision of digits dataset with SVM, KNN, NB, and RF

K LTSA-SVM ISO-SVM LTSA-KNN ISO-KNN LTSA-NB ISO-NB LTSA-RF ISO-RF

10 0.95 0.92 0.95 0.93 0.94 0.90 0.87 0.84

15 0.96 0.93 0.94 0.91 0.93 0.90 0.84 0.80

20 0.96 0.93 0.95 0.90 0.91 0.89 0.79 0.76

25 0.97 0.93 0.94 0.89 0.89 0.86 0.78 0.76

30 0.97 0.94 0.93 0.89 0.89 0.85 0.79 0.75

40 0.96 0.94 0.93 0.84 0.92 0.85 0.78 0.72

Therefore, the mean-precision performance of the ISO-SVM is 95%, 91% ISO-KNN both on
(K=40), ISO-NB is achieved 90%, and 93% ISO-RF on the same value of K = 30 in Table 10.
The mean-precision performance of the NRIC is higher than the Isomap method. In Fig. 9,
we have shown the comparative performance of the mean-precision of the LTSA and Isomap
methods with classification techniques. However, LTSA is performed very well with SVM,
KNN, NB, RF rather than the Isomap method.

For the Digits dataset, we have reached high mean-precision 97% on K=25, 30 for LTSA-
SVM, as shown in Table 11. The mean-precision of the LTSA-KNN is attained 95% on
(K=10, 20), 94% for LTSA-NB, and 87% LTSA-RF on the same value of K=10. Therefore,
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Fig. 10 Mean-precision of digits dataset with NRIC and isomap methods

ISO-SVM is achieved 94%onK=30 and 40, 93% ISO-KNN, 90% ISO-NB, and 84% ISO-RF
on the same value of K=10. In Fig. 10, we have shown the comparative performance of the
mean-precision of theLTSAand Isomapmethodswith classification techniques.However, the
performance of the LTSA iswellwith SVM,KNN,NB, andRF rather than Isomap.Moreover,
the overall mean-precision performance of the NRIC method consistently attains the high
mean-precision for five high dimensional datasets. Sometimes, mean-precision performance
is high and lowaccording to the different values ofKand classification techniques. Sometimes
KNN values are close to each other and find easily. Otherwise, the KNN is far away from
each other and find hardly.

4.5 Mean-Recall

Tables 12, 13, 14, 15, 16 shows the calculated mean-recall of Iris, Wine, LFW, Breast Cancer,
and Digits Datasets from the Eq. (3). In Figs. 11, 12, 13, 14, 15, we have represented the
calculated mean-recall of five different high dimensional datasets. The graph of our proposed
NRIC method consistently reaches the high mean-recall of five datasets. We have used the
different neighborhood values of K as same as accuracy andmean-precision. Themean-recall
performance of LTSA with classification techniques very well and provided effective results
for the proposed NRIC method.

We have attained 100%mean-recall for the Iris dataset for different K (10, 15, 20, 25, and
40) of LTSA-SVM. LTSA-KNN, LTSA-NB, and LTSA-RF are provided 100% mean-recall
on the value of K=10 in Table 12. Therefore, 93% ISO-KNN mean-recall on K (10, 15, and
20) values, ISO-SVM is provided the 93% mean-recall, 92% ISO-NB, and 94% LTSA-RF,
are on the same value of K=10. The performance of Isomap is lesser than the LTSA with
classification techniques. In Fig. 11, the mean-recall performance of LTSAwith SVM, KNN,
NB, and RF is better than the Isomap method.

We have attained 100% mean-precision on (K=15,30, and 40) for the LTSA-SVM wine
dataset. In Table 13, the mean-recall of the LTSA-KNN is 100% (K=15 and 20), LTSA-NB
is 100% (K=25), and LTSA-RF is 97% (K=15). Therefore, the mean-recall of the ISO-SVM
is 90% (K=10), ISO-KNN is 92% on (K=15), ISO-NB is 92% on (K=10), and ISO-RF is
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Table 12 Mean-recall of iris dataset with SVM, KNN, NB, and RF

K LTSA-SVM ISO-SVM LTSA-KNN ISO-KNN LTSA-NB ISO-NB LTSA-RF ISO-RF

10 1.00 0.93 1.00 0.93 1.00 0.92 1.00 0.94

15 1.00 0.92 0.97 0.93 0.97 0.90 0.97 0.93

20 1.00 0.90 0.97 0.93 0.90 0.88 0.93 0.90

25 1.00 0.89 0.90 0.83 0.83 0.90 0.83 0.80

30 0.97 0.87 0.83 0.80 0.83 0.78 0.90 0.85

40 1.00 0.86 0.93 0.80 0.97 0.80 0.93 0.82

Fig. 11 Mean-recall of Iris
dataset with NRIC and isomap
methods

Table 13 Mean-recall of wine dataset with SVM, KNN, NB, and RF

K LTSA-SVM ISO-SVM LTSA-KNN ISO-KNN LTSA-NB ISO-NB LTSA-RF ISO-RF

10 0.94 0.90 0.86 0.80 0.97 0.92 0.94 0.90

15 1.00 0.88 1.00 0.92 0.97 0.90 0.97 0.86

20 0.94 0.86 1.00 0.90 0.94 0.88 0.92 0.88

25 0.97 0.83 0.97 0.90 1.00 0.86 0.94 0.90

30 1.00 0.82 0.92 0.88 0.97 0.86 0.83 0.80

40 1.00 0.80 0.97 0.83 0.94 0.82 0.89 0.83

90% on (k=10). In Fig. 12, we have shown the mean-recall of the LTSA algorithm with
classification techniques and Isomap. However, the mean-recall performance of LTSA with
NB, RF, KNN, and SVM is higher than the Isomap method.

For Labeled Faces in theWild (LFW), we have attained a 93%mean-recall on the value of
K=20 for the LTSA-SVM. The mean-recall of the LTSA-KNN is 88% on K=30, 81% LTSA-
NB on (K=40), and 68% LTSA-RF have the same values for all K in Table 14. Therefore, the
mean-recall of the ISO-SVM is 89% on K=40, 80% ISO-KNN on (K=10), 80% ISO-NB on
(K=40) 65% ISO-RF have the same values for all K in Table 14. We have shown the mean-
recall of the LTSA algorithm’s comparative performance with classification techniques and
Isomap in Fig. 13. However, LTSA performs better with SVM, KNN, and NB rather than the
RF and Isomap.
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Fig. 12 Mean-recall of wine dataset with NRIC and isomap methods

Table 14 Mean-recall of LFW people dataset with SVM, KNN, NB, and RF

K LTSA-SVM ISO-SVM LTSA-KNN ISO-KNN LTSA-NB ISO-NB LTSA-RF ISO-RF

10 0.90 0.87 0.81 0.80 0.63 0.68 0.68 0.65

15 0.90 0.82 0.85 0.79 0.75 0.72 0.68 0.65

20 0.93 0.88 0.81 0.80 0.75 0.72 0.68 0.65

25 0.92 0.88 0.84 0.76 0.70 0.70 0.68 0.65

30 0.92 0.85 0.88 0.75 0.79 0.77 0.68 0.65

40 0.92 0.89 0.85 0.75 0.81 0.80 0.68 0.65

Fig. 13 Mean-recall of LWF people dataset with NRIC and isomap methods

123



2296 M. Yousaf et al.

Table 15 Mean-recall of breast cancer dataset with SVM, KNN, NB, and RF

K LTSA-SVM ISO-SVM LTSA-KNN ISO-KNN LTSA-NB ISO-NB LTSA-RF ISO-RF

10 0.96 0.93 0.92 0.91 0.90 0.88 0.90 0.91

15 0.95 0.92 0.91 0.88 0.86 0.87 0.82 0.82

20 0.96 0.98 0.90 0.84 0.89 0.89 0.88 0.86

25 0.95 0.92 0.90 0.75 0.93 0.87 0.80 0.80

30 0.95 0.92 0.91 0.77 0.94 0.89 0.94 0.91

40 0.98 0.94 0.94 0.73 0.92 0.86 0.82 0.80

Fig. 14 Mean-recall of breast cancer dataset with NRIC and isomap methods

For the Breast Cancer dataset, we have reached a 98% mean-recall value of K=40 for the
LTSA-SVM, 94% LTSA-KNN on the same value of K=10, 94% LTSA-NB, and LTSA-RF
on the same value of K=30, as shown in Table 15. In Table 15, therefore, the mean-recall of
the ISO-SVM is 98% on (K=20), 88% ISO-KNN on (K=15), 89% ISO-NB on (K=20, 30),
and ISO-RF is 91% on the value of K = 10, 30. The ISO-SVM performance is higher than
LTSA-SVM on K= 20, and ISO-RF is higher than LTSA-RF on K=10. In Fig. 14, we have
shown the mean-recall of the LTSA algorithm’s comparative performance with classification
techniques and Isomap.

For the Digits dataset, we have reached a high mean-recall 97% on K=30 for the LTSA-
SVM, as shown in Table 16. The mean-recall of the LTSA-KNN is attained 95% on K=
(10, 20), 94% LTSA-NB, and 84% for LTSA-RF on the same value of K=10. Therefore,
mean-recall of the ISO-SVM is attained 92% on K= (10, 15, 20, and 25), 93% ISO-KNN on
K=10, and 90% for ISO-NB on (K=10, 15, 20, 25, and 40), and 80% ISO-RF on the value of
(K=10, 20). In Fig. 15, we have shown the mean-recall of the LTSA algorithm’s comparative
performance with classification techniques and Isomap. However, the performance of the
LTSA is better with KNN, NB, and RF rather than SVM and Isomap. Moreover, the overall
mean-recall performance of the NRIC method consistently attains the high results of the five
high dimensional datasets. The mean-recall performance is better and down according to the
different neighborhood values of K and classification techniques.
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Table 16 Mean-recall of digits dataset with SVM, KNN, NB, and RF

K LTSA-SVM ISO-SVM LTSA-KNN ISO-KNN LTSA-NB ISO-NB LTSA-RF ISO-RF

10 0.95 0.92 0.95 0.93 0.94 0.90 0.84 0.80

15 0.96 0.92 0.94 0.91 0.92 0.90 0.79 0.80

20 0.96 0.92 0.95 0.90 0.91 0.90 0.68 0.62

25 0.96 0.92 0.93 0.88 0.89 0.90 0.75 0.73

30 0.97 0.91 0.94 0.88 0.88 0.87 0.69 0.62

40 0.95 0.91 0.92 0.81 0.91 0.90 0.75 0.69

Fig. 15 Mean-recall of digits dataset with NRIC and isomap methods

4.6 Area Under the ROC Curve (AUC)

Tables 17, 18, 19, 20, 21 shows the calculated area under the ROC (Receiving Operating
Characteristics) curve (AUC) of Iris, Wine, LFW, Breast Cancer, and Digits Datasets from
Eqs. (4) and (5). In Figs. 16, 17, 18, 19, 20, we have represented the calculated AUC values of
fivedifferent highdimensional datasets. Thegraphof our proposedNRICmethod consistently
reaches the high AUC values of five datasets.We have used the different neighborhood values
of K as same as accuracy, mean-precision, and mean-recall. The area’s performance under
the ROC (Receiving Operating Characteristics) curve (AUC) of LTSA with classification
techniques very well and provided effective results for the proposed NRIC method.

We have computed AUC values for the Iris dataset for different K (10, 15, 20, 25, and
40) values in Table 17. The AUC values of LT-SVM-A, LT-KNN-A, LT-NB-A, and LT-RF-A
are 0.734, 0.736, 0.776, and 0.779, respectively, on the different values of K in Table 17.
Therefore, the AUC values of IS-SVM-A (0.697), IS-KNN-A (0.693), IS-NB-A (0.761), and
IS-RF-A (0.682) on the different values of K. According to Fig. 16, the performance of the
ROC curve of LTSAwith RF andNB is significant rather than SVMandKNN. In contrast, the
high value of AUC is RF and NB. It significantly shows that RF and NBmodels are improved
the performance of our proposed NRIC method. However, the ROC curve performance of
the Isomap method with classification techniques is not better than our proposed method.
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Table 17 AUC of Iris dataset with SVM, KNN, NB, and RF

K LT-SVM-A IS-SVM-A LT-KNN-A IS-KNN-A LT-NB-A IS-NB-A LT-RF-A IS-RF-A

10 0.734 0.697 0.620 0.595 0.745 0.725 0.690 0.655

15 0.722 0.689 0.622 0.600 0.776 0.761 0.718 0.667

20 0.661 0.615 0.618 0.581 0.667 0.651 0.754 0.682

25 0.670 0.633 0.736 0.697 0.582 0.555 0.736 0.664

30 0.708 0.659 0.728 0.693 0.602 0.579 0.761 0.663

40 0.733 0.693 0.719 0.689 0.726 0.694 0.779 0.657

Fig. 16 ROC curve of Iris dataset with NRIC and isomap methods

Table 18 AUC of wine dataset with SVM, KNN, NB, and RF

K LT-SVM-A IS-SVM-A LT-KNN-A IS-KNN-A LT-NB-A IS-NB-AUC LT-RF-A IS-RF-A

10 0.542 0.540 0.521 0.428 0.538 0.507 0.507 0.490

15 0.501 0.497 0.584 0.409 0.485 0.429 0.518 0.500

20 0.544 0.534 0.455 0.430 0.512 0.500 0.452 0.420

25 0.578 0.511 0.463 0.406 0.596 0.488 0.491 0.430

30 0.561 0.462 0.461 0.396 0.567 0.505 0.448 0.425

40 0.655 0.402 0.471 0.451 0.465 0.434 0.453 0.422

For theWine dataset, the AUC values of LT-SVM-A, LT-KNN-A, LT-NB-A, and LT-RF-A
are 0.655, 0.584, 0.596, and 0.518, respectively, on the different values of K in Table 18.
According to Fig. 17, the ROC curve of LTSA with SVM is better than KNN, NB, and
RF because the high value of AUC is SVM. It significantly shows that the SVM model is
significantly improved the performance of our proposed NRIC method. Therefore, the AUC
values of IS-SVM-A (0.540), IS-KNN-A (0.451), IS-NB-A (0.507), and IS-RF-A (0.500) on
the different values of K. However, the ROC curve performances of the Isomap method with
classification techniques are not better than our proposed NRIC method.

123



NRIC: A Noise Removal Approach for Nonlinear Isomap Method 2299

Fig. 17 ROC curve of wine dataset with NRIC and isomap methods

Table 19 AUC of LWF people dataset with SVM, KNN, NB, and RF

K LT-SVM-A IS-SVM-A LT-KNN-A IS-KNN-A LT-NB-A IS-NB-A LT-RF-A IS-RF-A

10 0.311 0.300 0.500 0.428 0.576 0.507 0.737 0.573

15 0.574 0.554 0.499 0.480 0.451 0.500 0.462 0.455

20 0.498 0.347 0.486 0.475 0.423 0.412 0.762 0.424

25 0.548 0.449 0.519 0.443 0.310 0.404 0.509 0.401

30 0.514 0.501 0.541 0.478 0.507 0.470 0.542 0.336

40 0.527 0.489 0.496 0.471 0.451 0.433 0.483 0.580

For the LWF People dataset, the AUC values of LT-SVM-A (0.574), LT-KNN-A (0.541),
LT-NB-A (0.576), and LT-RF-A (0.737) on the different values of K in Table 19. In Fig. 18,
the performance of the ROC curve of LTSA with RF is well rather than SVM, KNN, and
NB. It significantly shows that the RF model is significantly improved the performance of
our proposed NRIC method. Therefore, the AUC values of IS-SVM-A (0.554), IS-KNN-A
(0.480), IS-NB-A (0.507), and IS-RF-A (0.580) on the different values of K. Moreover, the
Isomap method works well with the RF model. However, the ROC curve performance of the
Isomap method with classification techniques is not better than our proposed NRIC method.

For the Breast Cancer dataset, the AUC values of LT-SVM-A (0.744), LT-KNN-A (0.491),
LT-NB-A (0.621), and LT-RF-A (0.521) on the different values of K in Table 20. In Fig. 19,
the ROC curve of LTSA with SVM is better than KNN, NB, and RF. It significantly shows
that the SVMmodel has improved our proposed NRICmethod performance rather than other
classification models. Therefore, the AUC values of IS-SVM-A (0.425, 0.547), IS-KNN-A
(0.471), IS-NB-A (0.560), and IS-RF-A (0.626) on the different values of K. Moreover, the
Isomap method works well with the RF model, but the IS-SVM-A value is higher than the
LT-SVM-A on the value of K=15 in Table 20. However, the ROC curve performance of the
Isomap method with classification techniques is not better than our proposed NRIC method.

For the Digits dataset, AUC values of LT-SVM-A (0.714 on K=40), LT-KNN-A (0.528
on K=20), LT-NB-A (0.528 on K=20), and LT-RF-A (0.530 on K=25 and 30) in Table 21. In
Fig. 20, the ROC curve of LTSA with SVM is better than KNN, NB, and RF. It significantly
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Fig. 18 ROC curve of LWF people dataset with NRIC and isomap methods

Table 20 AUC of breast cancer dataset with SVM, KNN, NB, and RF

K LT-SVM-A IS-SVM-A LT-KNN-A IS-KNN-A LT-NB-A IS-NB-A LT-RF-A IS-RF-A

10 0.524 0.520 0.491 0.463 0.594 0.424 0.432 0.626

15 0.424 0.425 0.486 0.471 0.472 0.406 0.377 0.342

20 0.506 0.451 0.474 0.465 0.544 0.471 0.409 0.399

25 0.379 0.342 0.490 0.443 0.518 0.414 0.521 0.513

30 0.744 0.465 0.477 0.471 0.621 0.560 0.520 0.466

40 0.548 0.547 0.471 0.411 0.437 0.464 0.460 0.452

Table 21 AUC of digits dataset with SVM, KNN, NB, and RF

K LT-SVM-A IS-SVM-A LT-KNN-A IS-KNN-A LT-NB-A IS-NB-A LT-RF-A IS-RF-A

10 0.511 0.500 0.485 0.451 0.524 0.524 0.445 0.447

15 0.544 0.532 0.488 0.427 0.421 0.418 0.441 0.437

20 0.464 0.416 0.528 0.514 0.528 0.528 0.446 0.424

25 0.444 0.439 0.516 0.493 0.379 0.361 0.530 0.387

30 0.638 0.582 0.393 0.380 0.433 0.426 0.530 0.517

40 0.714 0.506 0.483 0.484 0.373 0.325 0.433 0.276

shows that the SVM model has improved our proposed NRIC method’s performance rather
than other classification models. Therefore, the AUC values of IS-SVM-A (0.582 on K=30),
IS-KNN-A (0.484 on K=40), IS-NB-A (0.524, 0.528 on K=10 and 20), and IS-RF-A (0.447
on K=10). Moreover, the Isomap method works well with the SVM model, but the IS-RF-A
value is higher than LT-RF-A on the value of K=10 in Table 21. However, the overall ROC
curve performance of the Isomap method with classification techniques is not better than our
proposed NRIC method.
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Fig. 19 ROC curve of breast cancer dataset with NRIC and isomap methods

Fig. 20 ROC curve of digits dataset with NRIC and isomap methods

5 Conclusion

This paper proposed a Noise Removal Isomap with a Classification (NRIC) method for the
Isomap noise problem. This research paper aims to focus on the noisy nonlinear manifold
learning method, such as Isomap. The main problem of the Isomap is sensitivity to noise and
cannot easily generate the data after de-noising. Our proposedmethod can easilymap the high
dimensional data into low dimensional space. Our NRIC method can identify the noise from
data points and eliminate the noise in datasets. In this paper, we compared four classification
techniques, including SVM, KNN, NB, and RF, with the LTSA algorithm to improve the
accuracy of the noise of Isomap and improve the accuracy of the datasets. We compared
four classification techniques on five different datasets to gain insight into what technique
is suitable for Isomap noise. We calculated accuracy, mean-precision, mean-recall, and area
under the (ROC) curve (AUC) for the NRIC method. Our experiment result shows that our
proposed method is much efficient than Isomap and provides highly accurate results of high
dimensional datasets, and can easily optimize the graph. In future work, we will analyze
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the proposed method’s performance on other datasets and calculated the other classification
metrics and time complexity analysis. We will be used the same idea of other manifold
learning techniques.
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