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Abstract
Aiming at the problem of electromagnetic interference signal separation, we propose a sin-
gle-channel blind source separation method based on complete ensemble empirical mode 
decomposition with adaptive noise (CEEMDAN) and independent component analysis 
(ICA). Firstly, decompose the mixed interference signal by CEEMDAN to obtain a series 
of intrinsic mode functions (IMF). Secondly, combine them into a new multi-dimensional 
signal and solve its correlation matrix, and use singular value decomposition to obtain the 
eigenvalues of the matrix, and then use it to estimate the source number. Thirdly, select 
those IMFs whose correlation coefficients with the observed signal are bigger and regard 
them together with the original signal after denoising as new observed signals. Finally, 
recover the source signals by fast independent component analysis (Fast-ICA). We also 
extend our method to multi-channel BBS, and experiment results show that our method can 
eliminate unnecessary noise in the signal and perform well.

Keywords Electromagnetic Interference (EMI) signal · Empirical mode decomposition 
(EMD) · Independent component analysis (ICA)

1 Introduction

The rapid development of technology has made electronic equipment more and more mod-
ern, but the electromagnetic environment caused by it has become more and more com-
plicated. While external electromagnetic interference harms the electronic equipment, the 
electromagnetic interference (EMI) signal emitted by itself is also harmful to other external 
devices. Therefore, considerable attention has been paid to overcoming EMI [1, 2]. EMI 
often results from multiple sources, but only one observed signal is known. In order to 
obtain useful information from it, it is necessary to find a way to separate the EMI noise 
from the observed signal. As Li said [3], the EMI noise and the useful signals are usually 
very different in the frequency range. Therefore, after decomposing the mixed signal into 
basis functions of different frequencies, the EMI noise can be determined and reduced.
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Fourier transform (FT) is a classic signal separation method. It can know the frequency 
component of the signal and the amplitude and phase of the signal at the corresponding 
frequency. However, it is impossible to know the moment when a specific frequency com-
ponent appears and its corresponding change. Therefore, it cannot handle the nonlinear 
non-stationary signal, which is very common in EMI signals. In order to overcome the 
limitations of FT and obtain the time–frequency local characteristics of the signal, meth-
ods such as short-time Fourier transform (STFT) and wavelet analysis have been proposed. 
However, these methods also have some weakness. For example, the fundamental uncer-
tainty principle limits the wavelet theory [4].

In order to better analyse the characteristics of nonlinear non-stationary signals, Huang 
et  al. have proposed the empirical mode decomposition (EMD) method [5]. EMD can 
adaptively decompose the signal into some intrinsic mode functions (IMF) according to the 
characteristics of the input signal without any prior knowledge. Therefore, it is considered 
to be a breakthrough in linear and steady-state spectrum analysis based on FT for nearly 
two hundred years which is widely used in many aspects such as machine fault diagnosis 
[6], disease detection [7], economic analysis [8] and so on. However, when there is inter-
mittence in the time domain of the high-frequency components, the consequence of the 
method will occur “mode mixing” [9]. It means that a single IMF contains signals with 
very different frequency differences, or signals of the same frequency are decomposed 
into completely different IMFs. In [10], Wu et al. have put forward the ensemble empiri-
cal mode decomposition (EEMD) to solve the above problem. They add Gaussian white 
noise to the signal, taking advantage of the uniform distribution of the white noise spec-
trum. When the signal is applied to the white noise background distributed over the entire 
time–frequency space, the signals of different time scales are automatically distributed to 
the appropriate reference scale. And then it weakens the effect of white noise by averaging, 
thereby reducing the mode mixing.

However, the IMFs obtained by EEMD contain residual noise, and different realisations 
of signal plus noise may get a different number of IMFs. Yeh et al. [11] have added posi-
tive and negative paired noise to the original signal and proposed a complementary EEMD 
(CEEMD) method, which significantly alleviated the reconstruction problem. However, the 
completeness property cannot be proven, and the final averaging is difficult for the num-
ber of IMFs obtained each time may change. Torres et al. [12] add adaptive noise at each 
stage of EMD decomposition, proposing CEEMDAN method, and obtains each IMF by 
calculating its specific margin. CEEMDAN effectively solves the above two problems, the 
reconstruction error is almost zero, the decomposition is complete, and the calculation cost 
is reduced.

In this paper, we discuss a new method for separating EMI signals based on CEEM-
DAN and ICA. We first decompose the mixed signal by CEEMDAN and then select some 
of them to recover source signals by ICA, which does well in simulation experiments. The 
rest of the paper is organised as follows. In Sect. 2, we provide a brief introduction of the 
EMD, CEEMDAN and ICA method. Section 3 describes the details of our algorithm. Sec-
tion 4 is devoted to the single-channel blind source separation experiment, and Sect. 5 is 
about the multi-channel blind source separation and comparative analysis. Section 6 con-
cludes the paper.

The innovations of this paper have the following two aspects. First, we explore a method 
for estimating the source number using SVD and correlation coefficient. Second, we put 
forward a single-channel blind source separation (BSS) method combining CEEMDAN 
and ICA. When there are multiple observations, it can be combined with ICA to achieve 
BSS of any channel, including underdetermined, positive definite and overdetermined BSS.
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2  EMD, CEEMDAN and ICA

2.1  The EMD Method

The EMD method assumes that any signal is composed of several IMFs. Each IMF should 
satisfy two conditions: the number of extreme points and that of zero-crossing points must 
be equal or differ at most by one; the local mean of the upper and lower envelopes must be 
zero.

For a given signal x , the main steps of EMD are as follows [4]:

1. Find all the maxima of the original signal x , and get the upper envelope e+ by cubic 
spline interpolation. And then find all the minima of the original signal x , and get the 
lower envelope e− by cubic spline interpolation.

2. Calculate the mean of the upper and lower envelopes as the mean envelope of the origi-
nal signal m1

1
:

Extract the difference between x and m1
1
 as h1

1
:

If h1
1
 does not satisfy the two conditions, take it as a new signal and repeat the above steps:

After repeating k times, h1
k
(t) satisfies the two conditions, and then the first IMF is 

obtained as:

In practice, the mean of the upper and lower envelopes cannot be zero, and the conditions 
are usually considered to be satisfied when the following formula is satisfied:

3. Extract the difference between x and c1 as residual r1:

Let r1 be a new signal and repeat the above step 1) and step 2) to obtain the other IMFs 
and the residuals:

(1)m1
1
=

e++e−

2

(2)h1
1
= x − m1

1

(3)h1
2
= h1

1
− m1

2

(4)
h1
3
= h1

2
− m1

3

⋮

(5)c1 = imf1 = h1
k

(6)
∑
[h1k−1(t)−h

1
k
(t)]

2

∑
[h1k−1(t)]

2 ≤ �, � ∈ [0.2, 0.3]

(7)r1 = x − c1

(8)r2 = r1 − c2
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Until cn or rn is less than the default value, or rn is a monotonic function or constant, the 
EMD method stops, and the original signal can be expressed as:

The frequencies of the IMFs are arranged from high to low.

2.2  The CEEMDAN Method

The CEEMDAN method is based on EMD. Without loss of generality, let Ek(⋅) be the 
operator producing the kth IMF obtained by EMD and let �(i) be a realisation of zero 
mean unit variance white noise.

For a given signal x , the main steps of CEEMDAN are as follows [12]:

1. For signal x(i) = x + �0�
(i), i = 1, 2,… , I , decompose it by EMD until getting its first 

IMF d(i)
1

 . Define the first IMF of CEEMDAN as:

2. Calculate the first residual as:

3. For signal r1 + �1E1

(
�(i)

)
, i = 1, 2,… , I , obtain its first IMF by EMD. Define the second 

IMF of CEEMDAN as:

4. For k = 2,… ,K , calculate the kth residual as:

5. For signal rk + �kEk

(
�(i)

)
, i = 1, 2,… , I , obtain its first IMF by EMD. Define the 

(k + 1)th IMF of CEEMDAN as:

6. For the next k go to step (4).

Repeat step (4) to step (6) until the residual obtained cannot be decomposed by EMD, 
either because it satisfies the conditions of IMF or the number of its local extrema is 
less than three. The final residual is:

(9)
r3 = r2 − c3

⋮

(10)x =
n∑
i=1

ci + rn

(11)d̃1 =
1

I

I∑
i=1

d
(i)

1
= d̄1

(12)r1 = x − d̃1

(13)d̃2 =
1

I

I∑
i=1

E1

�
r1 + 𝛽1E1

�
𝜔(i)

��

(14)rk = r(k−1) − d̃k

(15)d̃(k+1) =
1

I

I∑
i=1

E1

�
r1 + 𝛽1E1

�
𝜔(i)

��
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with K being the total number of IMF so that signal x can be expressed as:

The coefficients �k = �kstd
(
rk
)
 allow the selection of SNR in each iteration with std(⋅) 

being standard deviation operator.

2.3  ICA

Based on a higher-order moment of input signals, ICA is considered as an effective BSS 
technique [13].

For n statistically independent unknown source signal s1, s2,… , sn , their linear combi-
nation generates n random variables x1, x2,… , xn:

In the formula (18), aij(i, j = 1, 2,… , n) is real coefficient. Let X =
[
x1, x2,… , xn

]T , 
S =

[
s1, s2,… , sn

]T , A is the matrix of element aij , thus:

where A is a regular mixing matrix, and X and S are matrices whose rows contain samples 
of mixed and original signals, respectively. The goal of ICA is to separate the source sig-
nal S as much as possible using the observed signal X in the case where both A and A are 
unknown. It can construct a separation matrix W to solve it, thus Y = WX , where Y  is an 
estimate of S . The algorithm of ICA can be expressed as:

The idea of ICA is to constantly update W so that the estimator is closer to the source sig-
nal, and Fast-ICA [14] is widely adopted.

3  A Novel Method for Separating EMI Signal Using CEEMDAN and ICA

Based on CEEMDAN and ICA, we propose a new method for separating the EMI signal, 
which can reduce the calculation cost and restore source signals with less noise.

3.1  Single‑Channel BSS

If there is only one observed signal, we can directly perform single-channel BSS. The main 
steps are as follows:

(1) Discompose the original signal s(t) using CEEMDAN and obtain several IMFs.
 Like EEMD, the CEEMD method also needs to select appropriate white noise standard 

deviation � and the number of times N that white noise added. When using the EEMD 
method, if the noise amplitude is constant, the more noise is added, the result of the 

(16)rk = x −
K∑
k=1

d̃k

(17)x =
K∑
k=1

d̃k + rk

(18)xi = ai1s1 + ai2s2 +…+ ainsn, i = 1, 2,… , n

(19)X = AS

(20)Y = WX = WAS = S
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final decomposition is closer to the true value, but the larger the calculation time over-
head [15]. As for the amplitude of the added noise, if the amplitude is too small and 
the signal-to-noise ratio is too high, the noise will not affect the selection of the pole, 
and thus loses the role of the supplementary scale. Wu and Huang suggest that � does 
better if it is equal to the standard deviation of the input signal multiplied by a fraction. 
Moreover, they believe that when � is appropriate, the increase of N is not evident for 
the improvement of the results. During experiments, we find it does well when � is 0.01 
to 0.5 times the standard deviation of the original signal and N is equal to 100.

(2) Estimate the source number of the original signal.
 Combine the IMFs into a new multi-dimensional signal simf (t).

  
Solve the correlation matrix of simf (t):

Use SVD to obtain the eigenvalues �1, �2,… , �m of the matrix Rs , and exclude the 
elements whose values are 0 and calculate the ratios of adjacent eigenvalues:

 Calculate the correlation coefficients between the IMFs and s(t) , and set the number 
of IMFs corresponding to a strong correlation (beyond 0.5) as X , then let M = X + 1 . 
Take Fig. 1 as an example, firstly find local maxima points whose abscissa are i = 3 and 
i = 5 . If M is the abscissa of a local maximum point, which means M = 3, 5 , we can 
estimate the source number x is equal to M . Otherwise we can find which local maxima 

(21)simf (t) =
(
c1(t), c2(t),… , cK(t)

)T

(22)Rs = E
[
simf (t)s

H
imf

(t)

]

(23)Δ = Max
(

�1

�2
,
�2

�3
,… ,

�m−1

�m

)

Fig. 1  Ratio curve of adjacent eigenvalues
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point abscissa is closest to M . Then we can assume that x is equal to the abscissa of 
that point. For example, when M = 2 , it can be assumed that x = 3.

(3) Denoise the original signal.
  As the IMFs of high-frequency are mostly high-frequency noise, we can observe the 

time-domain diagram of IMFs. And then select the first few IMFs whose correlation 
coefficient with the original signal is less than 0.2, subtracting these components from 
the original signal and getting the denoised signal s�(t).

(4) Reconstruct new observed signals.
  Select (x − 1) IMFs with more significant correlation coefficients and s�(t) to form 

a new multi-dimensional matrix, whose dimension is equal to the estimated source 
number x.

  The denoised signal and some IMFs are selected to reconstruct the multi-dimensional 
matrix, instead of only selecting the IMFs. It can not only eliminate the interference 
of the pseudo component and residual component due to the decomposition but also 
remain the information carried by the original signal as much as possible [16].

(5) Use the reconstructed matrix as the input signal to apply the Fast-ICA algorithm, and 
each independent component is obtained.

  Solve the correlation coefficient between each independent component ICAi(t) and 
s(t) , and an independent component corresponding to a correlation coefficient greater 
than 0.4 can be selected as a source signal. The more effective way is as follows. Firstly, 
sort the independent components according to the absolute value of the correlation 
coefficient from large to small. Secondly, superimpose the components one by one 
and figure out the correlation coefficient between the mixed signal and s(t) every time, 
observing the change of coefficient and filtering out the appropriate number of inde-
pendent components as source signals. The algorithm flow chart is shown in Fig. 2.

It should be noted that when using CEEMDAN method, it needs to determine � and N 
through experiments. Moreover, even the same � and N are used, the obtained eigenvalues 
have absolute randomness. What’s more, it is necessary to add or subtract the component 
according to its positive or negative correlation coefficient when superimposing it.

3.2  Multi‑Channel BSS

If there are multiple observed signals s1(t), s2(t),… , sN(t) , it can achieve multi-channel 
BSS using the method above. The main steps are as follows:

(1) Decompose each of the original signals by the method above, and obtain a series of 
source signals s1(t), s2(t),… , sM(t) , with M being the total number of source signals.

(2) Cluster the source signals based on their correlation coefficients.

 i. Assume that all source signals are self-contained and get sets C1
1
,C1

2
, ..,C1

M1
.

 ii. Solve the correlation coefficient of any one signal of C1
1
 (only s1(t) now) and 

any one signal of C1
2
,C1

3
, ..,C1

M1
 , and classify C1

i
 and C1

1
 into one set if the cor-

relation coefficient between them is greater than 0.9, thus getting new sets 
C2
1
,C2

2
, ..,C2

M2
.



2250 D. Zhao et al.

1 3

 iii. Solve the correlation coefficient of any one signal of C2
2
 and any one signal of 

C2
3
,C2

4
, ..,C2

M2
 , and classify C2

i
 and C2

i
 into one set if the correlation coefficient 

between them is greater than 0.9.
 iv. Repeat steps similar to the above and finally get sets CT

1
,CT

2
, ..,CT

MT
.

(3) For each set CT
i
 , reconstruct the signals in it into a multi-dimensional matrix and use 

it as an input signal to apply the Fast-ICA algorithm. Then choose any one signal 
of CT

i
 and solve the correlation coefficient between the signal and each independent 

component. Finally, sort all the correlation coefficients and select the component cor-
responding to the biggest correlation coefficient as a source signal. The algorithm flow 
chart is shown in Fig. 3.

4  Single‑Channel BSS Experiment

4.1  Simulation Experiment Data

Simulation signal is as follows:

(24)s(t) = s1(t) + s2(t) + s3(t)

Fig. 2  Our single-channel blind source separation



2251A New Method for Separating EMI Signal Based on CEEMDAN and ICA  

1 3

where s1(t) is a sine signal, s2(t) is a sawtooth signal and s3(t) is intermittent noise. The 
time-domain waveform diagrams of each signal and mixed simulation signal are shown in 
Fig. 4.

Fig. 3  Our multi-channel blind source separation

Fig. 4  Source signals and mixed simulation signal
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4.2  Method Performance Criteria

Since the waveform of the separated signal has changed, we use correlation coefficient � 
and vestigial quadratic mismatch (VQM) to measure the performance of the method.

Correlation coefficient is calculated as follows [17]:

s and s′ are source signal and separated signal. The closer the absolute value of the correla-
tion coefficient is to 1, the closer the separation signal is to the source signal, and the better 
the separation is.VQM is calculated as follows [18]:

The smaller the value of VQM, the better the separation is. Usually, when the value is less 
than -23 dB, the separation is considered to be excellent [19].

4.3  Results and Analyses

Decompose signal s(t) by EMD, EEMD and CEEMDAN. The results are exhibited in 
Fig. 5.

It shows that the results of EMD occur mode mixing, producing some pseudo compo-
nents, while the EEMD and CEEMDAN overcome mode mixing effectively.

Use the method mentioned in Sect. 3 to estimate the source number. Figure 6 shows the 
ratios of adjacent eigenvalues.

(25)� =
cov(s,s�)

cov(s,s)∗cov(s� ,s�)

(26)
VQM = 10 lg

E
[
|s�(t) − rs(t)|2

]

E
[
|rs(t)|2

]

r =
E
[
|s�(t)s(t)|

]

E
[
|s(t)|2

]

Fig. 5  Decomposition results of mixed simulation signal by different methods. a EMD, b EEMD, c CEEM-
DAN
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From Fig.  6, we can find local maxima points whose abscissa are i = 3 , i = 5 and 
i = 7 . Then calculate the correlation coefficients between the IMFs and s(t) , which are 
0.04389,0.16006,0.18198,0.21212,0.22849,0.40522,0.49507,0.74823,0.69006,0.04532,
0.05580 and 0.03713. The number of IMFs corresponding to a correlation greater than 
0.5 is 2. Thus we can estimate the source number is 3.

Select the eighth IMF, the ninth IMF and s(t) to form a new multi-dimensional signal. 
Use the signal as input to apply Fast-ICA algorithm and remove the less relevant com-
ponent. Figure 7 shows two separated signals.

Fig. 6  Ratios curve of adjacent eigenvalues

Fig. 7  Separated signals obtained by our method
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4.4  Real Signal Experiment

We choose the EEG dataset from Bonn University, Germany [20]. The dataset has five 
subsets, each of whom contains 100 segments of EEG signals, and the number of sam-
pling points is 4097. We select the first 1000 sampling points of a random EEG signal. 
The time-domain waveform diagram of it is shown in Fig. 8.

Decompose the signal by the method we proposed, and the result is showed in Fig. 9. 
It can be seen that the two separated signals are more regular than the origin EEG sig-
nal, and the correlation coefficients between the two separated signals and the origi-
nal signal are -0.83266 and -0.53014, both of whom are greater than 0.5, which means 
strong correlation. Combine the signals into a new signal, and the correlation coefficient 
between it and the original signal is 0.96365, which is very close to 1, indicating that 
the separation is excellent. Figure 10 shows the reconstructed signal (red) and the origi-
nal signal (blue), whose waveforms are very similar.

Fig. 8  EEG signal

Fig. 9  Separated signals obtained by our method
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5  Multi‑Channel BSS Experiment

5.1  Simulation Experiment Data

We use two sine signals of different frequencies and one sawtooth signal and mix any 
two of them with different intermittent noise, thus getting three observed signals. The 
source signals and observed signals are shown in Fig. 11a, b.

5.2  Method Performance Criteria

We use the same performance criteria as we mention in the single-channel BSS 
experiment.

5.3  Results and Analyses

Decompose the mixed signals by Fast-ICA directly and our method. Figure 12a, b show the 
results. Comparing the results, we can see that our method removes the extra intermittent 
noise and obtains better separation signals. In order to quantitatively measure the effect of 
the method, we use different methods to decompose the same signals, such as EFICA [21], 
WASOBI [22] and FCOMBI [23]. Comparison tables are shown in Table 1, Tables 2 and 3.

For sine signal s1(t) , the correlation coefficient of our method is larger than that of other 
methods, and the VQM of our method is smaller than that of other methods, which means 
the separation is excellent.

We can also see that for sine signal s2(t) , the correlation coefficient of our method is 
larger than that of other methods, and the VQM of our method is smaller than that of other 
methods, which means the signal is accurately separated.

Table 3 shows that for sawtooth signal s3(t) . The correlation coefficient of our method is 
larger than 0.9, close to 1, and the VQM of our method is less than − 20 dB. Compared to 
other methods, our method seems to not handle the sawtooth signal well.

Fig. 10  Comparison of the reconstructed signal and the original signal
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To sum up, we can know that for sine signals s1(t) and s2(t) , our method does better 
than other methods but do worse for sawtooth signal s3(t) . Observing the result images, we 
can find that our method entirely eliminates intermittent noise and the separated sawtooth 
signal deviates from the local maximum and minimum points. Although our method is 
generally effective from the evaluation criteria for the sawtooth signal, the results of other 

Fig. 11  Different signals. a Source signals, b Observed signals
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Fig. 12  Separated signals obtained by different methods. a Fast-ICA, b our method

Table 1  Comparison of 
separation results about s

1
(t)

Method � VQM

Our method 0.9908 − 39.8415
Fast-ICA [14] − 0.979 − 31.3987
EFICA [21] − 0.9601 − 24.6734
WASOBI [22] − 0.8694 − 11.3006
FCOMBI [23] 0.9607 − 24.8434

Table 2  Comparison of 
separation results about s

2
(t)

Method � VQM

Our method − 0.9984 − 57.1777
Fast-ICA [14] 0.9945 − 45.0103
EFICA [21] 0.9881 − 37.2092
WASOBI [22] − 0.9001 − 14.5105
FCOMBI [23] 0.9881 − 37.2125

Table 3  Comparison of 
separation results about s

3
(t)

Method � VQM

Our method 0.9406 − 20.3783
Fast-ICA [14] − 0.9915 − 40.6455
EFICA [21] 0.9874 − 36.6164
WASOBI [22] − 0.9877 − 36.9057
FCOMBI [23] 0.9874 − 36.5904
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methods remain most of the noise, destroying the characteristics of the source signals. It 
can be inferred that the algorithm causes the error of the signal at the extreme points when 
eliminating the noise leads to the unsatisfactory calculation of the correlation coefficient 
and the VQM.

6  Conclusions

The consequences of traditional EMD method may occur mode mixing, and the decompo-
sition of EEMD method includes residual noise. In this paper, we propose a new method 
for separating the EMI signal based on CEEMDAN and ICA. The single-channel and 
multi-channel simulation experiments show that our method overcomes the “mode mix-
ing” phenomenon and reduces residual auxiliary noise. And not only do the separated 
signals eliminate the noise, but also they perform well in evaluation criteria. Besides, the 
components separated from the EEG signal by our method are more regular. It is believed 
that the method can achieve excellent results in the separation of the EMI signal.
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