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Abstract
The aim of this article is to study neutral type Clifford-valued high-order Hopfield neural
networks with mixed delays and D operator. New criteria are established for the existence,
uniqueness and global exponential stability of (μ, ν)−pseudo almost automorphic solutions
of the considered model via Banach’s fixed point principle and differential inequality tech-
niques. An example is given to show the effectiveness of the main new criteria.

Keywords Clifford algebra · High-order Hopfield neural network · (μ, ν)−pseudo almost
automorphic function · D operator

1 Introduction

Artificial Neural Networks (NNs) are a computational technique that belongs to the field
of Machine Learning (ML). Their goal is to achieve a fairly simplified model of the brain.
High-Order Hopfield Neural Network (HOHNN) is one of the most powerful and efficient
types of NNs. The key factors that affect its success are its strong approximation ability,
its fast convergence rate and its high fault tolerance capability. HOHNNs have widespread
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applications in various fields such as associative memory, pattern recognition, signal pro-
cessing, robotics, medical image edge detection, medical event detection in electronic health
records, diagnosis prediction in health care andmany others. The study of high-orderNNs has
attracted considerable multidisciplinary research. For instance, the exponential convergence
of high-order cellular NNs (CNNs) with time-varying leakage delays has been obtained in
[28]; the authors of [14] discussed the existence and uniqueness of pseudo almost periodic
solutions of high-order type of NNs; the authors of [29] studied the existence and exponential
stability of the weighted pseudo almost periodic solutions of high-order cellular NNs with
mixed delays; the dynamics of the pseudo almost automorphic solutions of HOHNNs with
mixed delays has been investigated in [3]; to name but a few.

One can easily see that all the NN models considered in the above-mentioned works are
under time-delay effect. The investigation of delayed NNs has become an interesting world-
wide focus and several types of delays such as discrete, distributed, proportional and leakage
delay have been used, see for instance [4,5,8,26]. To precisely describe the dynamics of com-
plex neural reactions, systemsmust contain information about the derivative of the past states.
Here, we are talking about another type called “neutral-type delay”. It should be mentioned
that neutral type NN models can be classified into two categories: Non-Operator-Based
Neutral Functional Differential Equations (NOBNFDEs) and D-Operator-Based Neutral
Functional Differential Equations (DOBNFDEs). It is important to notice that neutral type
NNs with D operator have more realistic significance than non-operator-based ones in many
practical applications of NN dynamics. Recently, new success stories of neutral type NNs
with D operator have been provided. In [16], the global exponential stability of the anti-
periodic solutions for neutral type cellular NNs with D operator has been studied. In [30],
the anti-periodic solutions for neutral shunting inhibitory cellular NNs with time-varying
delays and D operator have been investigated. Reference [31] dealt with the global con-
vergence of CNNs with neutral type delays and D operator. In [32], the authors analyzed
the global exponential convergence of neutral type shunting inhibitory cellular NNs with D
operator. Zhang studied the oscillation dynamics of almost periodic solutions for shunting
inhibitory CNNs with neutral type proportional delays and D operator in [33] and extended
the results to the pseudo almost periodic solutions of the same model in [34].

On the one hand, to follow real phenomena in biological systems, researchers have pro-
posed several classes of functions such as the class of Almost Automorphic (AA) functions
in [27], the class of Pseudo Almost Automorphic (PAA) functions in [17] and the class of
Weighted Pseudo Almost Automorphic (WPAA) functions which have extended to the class
of (μ, ν)−PseudoAlmost Automorphic ((μ, ν)−PAA) functions [2]. (μ, ν)−PAA functions
have been rarely used in NN theory where the main task consists of finding an answer to the
following problem: “what will be the nature of output when all the parameters of the NN
model are (μ, ν)−PAA functions?”. In [7], we found an answer to this problem by studying
the dynamic oscillations of (μ, ν)−PAA solutions of bidirectional associative memory NNs.
On the other hand, Clifford introduced Clifford algebra in the 19th century. It is important
associative algebras within the theories of quadratic forms, orthogonal groups and theoret-
ical physics. As an extension of real value models, Clifford-value NNs have become active
research domain due to their powerful applications in many fields such as neural comput-
ing, robotic vision, image processing, control problems and other areas. Success stories of
Clifford-value NNs are reported in the following. The existence and global exponential sta-
bility of the equilibrium point of Clifford-valued recurrent NNs have been studied in [37];
sufficient conditions ensuring the existence and global stability of Clifford-valued NNs with
time-varying delays have been derived in [21,23]; the globally asymptotic almost automor-
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phic synchronization of almost automorphic solutions of Clifford-valued recurrent NNs with
mixed delays is developed in [20].

In this brief, we tried to manipulate neutral type HOHNNs in Clifford algebra with
(μ, ν)−PAA parameters. To our best knowledge, there are no public results considering
the dynamic behavior of (μ, ν)−PAA solutions of neutral type Clifford-valued NNs.

The main aim of this work is to obtain new sufficient conditions for ensuring the existence
and global exponential stability of (μ, ν)−pseudo almost automorphic solutions of neutral-
type Clifford-valued HOHNNs. Most of the published articles on neutral type NNs focused
on the first-order systems and analyzed real-valued, complex-valued and quaternion-valued
NNs. So, this article brings several advancements listed below:

1. The study of the existence and uniqueness of the (μ, ν)−pseudo almost automorphic
solutions for neutral type HOHNN.

2. The analysis of the global exponential stability of the (μ, ν)−pseudo almost automorphic
solutions for the considered model without using the Lyapunov functional method.

3. The class of (μ, ν)−PAA functions covers larger classes of functions that are very sophis-
ticated and difficult to handle. We generalize many earlier publications [3,5,14].

4. The parameters are (μ, ν)−PAA functionswhich have been considered inClifford algebra
for the first time in such context. Some previous works in the literature are significantly
extended and complemented, such as [18,19,22].

5. Via direct method, we study the (μ, ν)−PAA solutions for Clifford-valued HOHNNs
without decomposing them into real-valued systems. Compared with real-valued,
complex-valued and quaternion-valued HOHNNs [24,25], the dynamical behaviors of
Clifford-valued HOHNNs are the most complicated.

The outline of this paper is arranged as follows. In Sect. 2, we establish useful definitions,
assumptions and lemmas. Section 3 is devoted to establish new criteria for the existence,
uniqueness and global exponential stability of (μ, ν)−PAA solutions of HOHNNs. In Sect. 4,
a numerical example is given to illustrate the feasibility of the obtained results. Conclusion
and meaningful remarks are drawn in Sect. 5.

2 Preliminaries

2.1 Real Clifford Algebra

In this subsection, we recall some results about real Clifford algebra. For more details, the
reader may refer to [13] and the references therein. Let us denote Rm the m−dimensional
real vector space. The real Clifford algebra over Rm is defined as

A =
{ ∑

A⊆{1···m}
aAeA; aA ∈ R

}
, where eA = eh1 · · · ehζ with A =

{
h1 · · · hζ

}
,

1 ≤ h1 < h2 < · · · < hζ ≤ m and 1 ≤ ζ ≤ m.

A equipped with m generators is defined as the Clifford algebra over the real number R with
m multiplicative generators e1, · · · , em such that ei ∈ R

m , e∅ = e0 = 1, e20 = 1 and
⎧⎨
⎩
e0ei = ei e0 = ei , i = 1, 2, · · · ,m,

ei e j + e j ei = 0, i �= j, i, j ∈ {1, · · · ,m},
e2i = −1, i = 1, 2, · · · ,m.
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When one element is the product of multiple Clifford generators, we will write its subscripts
together such as eh1eh2 = eh1h2 and eh1eh2eh5 = eh1h2h5 . It is easy to see that dimR A =
m∑

k=0

(m
k

) = 2m . We also define the norm on A by

‖x‖A = max
1≤i≤n

{|x A|}, for x =
∑
A

x AeA ∈ A,

and the norm on An by

‖x‖An = max
1≤i≤n

{‖xi‖A}, for x = (x1, x2, · · · , xn)
T ∈ An .

In the following, An denotes the n−dimensional real Clifford vector space.

2.2 Model Description

In this article, we deal with the following neutral type Clifford-valued HOHNNs with mixed
delays:

[
xi (t) − qi (t)xi (t − ri (t))

]′
= −ci (t)xi (t) +

n∑
j=1

ai j (t) f j (x j (t − τi j (t)))

+
n∑
j=1

n∑
l=1

αi jl(t)g j (x j (t − σi jl(t)))gl(xl(t − νi jl(t)))

+
n∑
j=1

βi j (t)

+∞∫
0

Gi j (s)h j (x j (t − s))ds

+
n∑
j=1

n∑
l=1

pi jl(t)

+∞∫
0

Pi jl(t − s)k j (x j (s))ds

×
+∞∫
0

Qi jl(t − s)kl(xl(s))ds + Ii (t), (1)

in which n corresponds to the number of units in the NN, xi (·) ∈ A corresponds to the state
vector of the i th unit, ci (·) represents the rate with which the i th unit will reset its potential
to the resting state in isolation when disconnected from the network and external inputs,
qi (·) ∈ A is the connection weights, ai j (·), βi j (·) ∈ A are the synaptic connection weight
of the j th unit on the i th unit, αi jl(·), pi jl(·) ∈ A represent the second-order synaptic
weights of the NNs, f j (·), g j (.), h j (·), k j (·) ∈ A represent the activation functions
of signal transmission, Gi j (·), Pi jl(·), Qi jl(·) ∈ A are the transmission delay kernels,
ri (·), τi j (·), σi jl(·), νi jl(·) ∈ R

+ are the transmission delays, Ii (·) ∈ A denotes the
external inputs. The initial conditions associated with (1) are of the form:

xi (s) = φi (s), s ∈ (−∞, 0], i = 1, 2, . . . , n, (2)

where φi ∈ C

(
(−∞, 0],A

)
which is the set of continuous functions from (−∞, 0] to A.
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Remark 1 In (1), the functions ri (·), τi j (·), σi jl(·) and νi jl(·) correspond to the transmission
delays. In fact, time-delays exist in most NN systems because neurons cannot communicate
or respond instantaneously. Sometimes they make the dynamic behaviors more complex and
may destabilize the stable equilibria (see [1,6,11,12]).

2.3 Notations and Definitions

Definition 1 ([17]) A continuous function f : R → R
n is called almost automorphic if for

every real sequence (Sn)n∈N, there exists a subsequence (sn)n∈N such that g(t) = lim
n→∞ f (t+

sn) is well defined for each t ∈ R and lim
n→∞ g(t − sn) = f (t) for each t ∈ R. Denote by

AA(R,Rn) the set of all such functions.

Definition 2 ([20]) Let f = ( f1, f2, · · · , fn)T : R �→ An where fi = ∑
A

f Ai eA. f A : R �→
R is called almost automorphic if for every i = 1, · · · , n we have f Ai ∈ AA(R,Rn). Denote
by AA(R,An) the set of all such functions.

Let B the Lebesgue σ -field of R, M denotes the set of all positive measures μ on B
satisfying μ(R) = +∞ and μ([a, b]) < +∞ for all a, b ∈ R (a ≤ b).

Definition 3 For μ, ν ∈ M, the measures μ and ν are said to be equivalent if there exist
constants a0, a1 > 0 and a bounded interval 	 ⊂ R such that

a0ν(A) ≤ μ(A) ≤ a1ν(A)

for all A ∈ B satisfying A ∩ 	 = ∅.
Now, we introduce a new concept of ergodicity, which generalizes those previously given

in the literature.

Definition 4 Letμ, ν ∈ M. A bounded continuous function f : R �→ An is said to be (μ, ν)

ergodic if

lim
r−→+∞

1

ν([−r , r ])
∫

[−r ,r ]
‖ f (t) ‖A dμ(t) = 0.

We denote the collection of all such functions by ξ(R,An, μ, ν).

Let us denote BC(R,An) the set of bounded continued functions from R to An , then
(BC(R,An), ‖ · ‖∗) is a Banach space where ‖ · ‖∗ is the norm

‖ f ‖∗:= sup
t∈R

max
1≤i≤n

{‖ fi (t)‖A}.

Definition 5 [[7]] Let μ, ν ∈ M, f ∈ BC(R,An) is (μ, ν)-pseudo almost automorphic if it
can be expressed as

f = f1 + f2

where f1 ∈ AA(R,An) and f2 ∈ ξ(R,An, μ, ν). The collection of such functions will be
denoted by PAA(R,An, μ, ν).

The following assumptions are fundamental in this function space:
(A1) For all μ, ν ∈ M, we have lim sup

n→∞
μ([−r ,r ])
ν([−r ,r ]) < ∞.
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(A2) For all τ ∈ R, there exist β > 0 and a bounded interval I such that

μ({a + τ : a ∈ A}) ≤ βμ(A)

when A ∈ B satisfies A ∩ I = ∅.
Let us state two useful theorems proved in [7] as follows.

Theorem 1 ([7]) Let μ, ν ∈ M satisfy (A2). Then the decomposition of a (μ, ν)-pseudo
almost automorphic function of the form f = f1 + f2 where f1 ∈ AA(R,An) and f2 ∈
ξ(R,An, μ, ν) is unique.

Theorem 2 ([7]) Let μ, ν ∈ M satisfy (A1) and (A2). Then P AA(R,An, μ, ν) is a Banach
space.

2.4 Technical Lemmas

For 1 ≤ i, j, l ≤ n, we denote q∗
i = sup

t∈R
‖qi (t)‖A, c∗

i = sup
t∈R

‖ci (t)‖A, ci∗ = inf
t∈R ‖ci (t)‖A,

a∗
i j = sup

t∈R
‖ai j (t)‖A, α∗

i jl = sup
t∈R

‖αi jl(t)‖A, β∗
i j = sup

t∈R
‖βi j (t)‖A, p∗

i jl = sup
t∈R

‖pi jl(t)‖A,

I ∗
i j = sup

t∈R
‖Ii j (t)‖A, r∗

i = sup
t∈R

ri (t), τ ∗
i j = sup

t∈R
τi j (t), σ ∗

i jl = sup
t∈R

σi jl(t), ν∗
i jl = sup

t∈R
νi jl(t).

Moreover, assume that for all 1 ≤ i, j, l ≤ n, we have

ci (·), ri (·), τi j (·), σi jl(·), νi jl(·) ∈ AA(R,Rn)

and

qi (·), ai j (·), αi jl(·), βi j (·), pi jl(·), Ii (·) ∈ PAA(R,An, μ, ν).

Assumption 1 For all 1 ≤ j ≤ n, and all u, v ∈ R there exist nonnegative constants
L f
j , Lg

j , Lh
j , Lk

j , dgj , dkj such that

|| f j (u) − f j (v)||A ≤ L f
j ||u − v||A, ||g j (u) − g j (v)||A ≤ Lg

j ||u − v||A,

||g j (u)||A ≤ dgj , ||h j (u) − h j (u)||A ≤ Lh
j ||u − v||A,

||k j (u) − k j (u)||A ≤ Lk
j ||u − v||A, ||k j (u)||A ≤ dkj .

For simplicity of calculation and without loss of generality, we assume that f j (0) = g j (0) =
h j (0) = 0.

Assumption 2 Gi j : [0,+∞) → R is continuous and |Gi j (t)|eκ1t is integrable on [0,+∞)

for a certain positive constant κ1. Pi jl : [0,+∞) → R is continuous and |Pi jl(t)|eκ2t is
integrable on [0,+∞) for a certain positive constant κ2. Qi jl : [0,+∞) → R is continuous
and |Qi jl(t)|eκ3t is integrable on [0,+∞) for a certain positive constant κ3.

The following Lemma 1 and Lemma 2 are proved in [7].

Lemma 1 ([7]) If φ(·) ∈ PAA(R,A, μ, ν) then we have φ(· − a) ∈ PAA(R,A, μ, ν).

Lemma 2 ([7]) If ϕ,ψ ∈ PAA(R,A, μ, ν) then we have ϕ × ψ ∈ PAA(R,A, μ, ν).

By using Lemma 1 and Lemma 2, it is possible to prove the following lemmas.

Lemma 3 ([7]) If f (·) ∈ C(A,A) satisfies the l f -Lipschitz condition,φ(·) ∈ PAA(R,A, μ, ν)

and τ(·) ∈ AA(R,A, μ, ν) then we have f (φ(· − τ(·))) ∈ PAA(R,A, μ, ν).
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Lemma 4 ([7]) Assume that Assumptions 1–2 hold. For all 1 ≤ i, j ≤ n, if φ j (·) ∈
PAA(A,A, μ, ν) then we have

t �→
+∞∫
0

Gi j (s)h j (φ j (· − s))ds ∈ PAA(R,A, μ, ν).

Definition 6 Let x(t) = (x1(t), . . . , xn(t))T be a (μ, ν)−pseudo almost automorphic solu-

tion of the system (1) with the initial value ϕ(t) = (ϕ1(t), . . . , ϕn(t))T ∈ C

(
(−∞, 0],A

)

and y(t) = (y1(t), . . . , yn(t))T be an arbitrary solution of the system (1) with the initial

value ψ(t) = (ψ1(t), . . . , ψn(t))T ∈ C

(
(−∞, 0],A

)
respectively. If there exist positive

constants λ and N such that

‖x(t) − y(t)‖An ≤ N‖φ‖εe
−λt ,∀t > 0,

where

‖φ‖ε = max
1≤i≤n

sup
t∈(−∞,0]

∥∥∥∥[φi (t) − di (t)φi (t − τi (t))] − [x∗
i (t) − di (t)x

∗
i (t − τi (t))]

∥∥∥∥A
then the (μ, ν)−pseudo almost automorphic solution of the system (1) is said to be globally

exponentially stable.

Assumption 3 For each 1 ≤ i ≤ n, t ∈ R,

M[ci ] = lim
T→+∞

1

T

∫ t+T

t
ci (s)ds > 0

and there exist a bounded and continuous function c̃i : R → (0,+∞) and a positive constant
Ki such that

e− ∫ t
s ci (u)du ≤ Kie

− ∫ t
s c̃i (u)du, for all t, s ∈ R, t − s ≥ 0.

Lemma 5 For φ = (φ1, . . . , φn)
T ∈ PAA(R,An, μ, ν), we define the nonlinear operator

� = �φ as follows

�φ(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

t∫
−∞

e
−

t∫
s
c1(u)du

F1(s)ds

...

t∫
−∞

e
−

t∫
s
cn(u)du

Fn(s)ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where

Fi (s) = ci (s)qi (s)φi (s − ri (s))

+
n∑
j=1

ai j (s) f j (φ j (s − τi j (s)))

+
n∑
j=1

n∑
l=1

αi jl(s)g j (φ j (s − σi jl(s)))gl(φl(s − νi jl(s)))
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+
n∑
j=1

βi j (s)

+∞∫
0

Gi j (m)h j (φ j (s − m))dm

+
n∑
j=1

n∑
l=1

pi jl(s)

+∞∫
0

Pi jl(m)k j (φ j (s − m))dm

+∞∫
0

Qi jl(m)kl(φl(s − m))dm + Ii (s).

Then �φ maps P AA(R,An, μ, ν) into itself.

Proof Let φ ∈ PAA(R,A, μ, ν). Using Lemma 3, we obtain f j (φ j (s− τi j (s))), g j (φ j (s−
σi jl(s))) and gl(φl(s − νi jl(s))) in PAA(R,A, μ, ν). By using Lemma 4, we have

+∞∫
0

Gi j (m)h j (x j (s − m))dm,

+∞∫
0

Pi jl(m)k j (x j (s − m))dm and

+∞∫
0

Qi jl(m)kl(xl(s − m))dm

in PAA(R,A, μ, ν). Then, Fi is a (μ, ν)−PAA function. Via Theorem 1, we have Fi =
F1
i + F2

i with F1
i ∈ AA(R,An) and F2

i ∈ ξ(R,An, μ, ν).
Noting that M[ci ] > 0 from Assumption 3 and using the theory of exponential dichotomy,
we obtain that

t∫
−∞

e
−

t∫
s
ci (u)du

F1
i (s)ds ∈ AA(R,An) (3)

is a solution of the following almost automorphic differential equation

ẏ(t) = −ci (t)y(t) + F1
i (t), 1 ≤ i, j ≤ n.

Now, let us show that

t∫
−∞

e
−

t∫
s
ci (u)du

F2
i (s)ds ∈ ξ(R,An, μ, ν).

From Assumption 3, one has

lim
r−→∞

1

ν([−r , r ])
∫

[−r ,r ]
‖F2

i (t)‖Adμ(t)

= lim
r−→∞

1

ν([−r , r ])
∫

[−r ,r ]

∥∥∥∥∥∥
t∫

−∞
e
−

t∫
s
ci (u)du

F2
i (s)ds

∥∥∥∥∥∥
A

dμ(t)

≤ lim
r−→∞

Ki

ν([−r , r ])
∫

[−r ,r ]

t∫
−∞

e−(t−s)c̃i∗‖F2
i (s)‖Adsdμ(t).

Let

E1 = lim
r−→∞

Ki

ν([−r , r ])
∫

[−r ,r ]

(∫ t

−r
‖e−(t−s)c̃i∗ F2

i (s)‖Ads

)
dμ(t),
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E2 = lim
r−→∞

Ki

ν([−r , r ])
∫

[−r ,r ]

⎛
⎝

−r∫
−∞

e−(t−s)c̃i∗‖F2
i (s)‖Ads

⎞
⎠ dμ(t)

and m = t − s, then by Fubini’s theorem we obtain

E1 = lim
r−→∞

Ki

ν([−r , r ])
∫

[−r ,r ]

(∫ t

−r
e−(t−s)c̃i∗‖F2

i (s)‖Ads

)
dμ(t)

≤ lim
r−→∞

Ki

ν([−r , r ])
∫

[−r ,r ]

⎛
⎝

+∞∫
0

e−mc̃i∗‖F2
i (t − m)‖Adm

⎞
⎠ dμ(t)

≤
+∞∫
0

e−mc̃i∗
(

lim
r−→∞

Ki

ν([−r , r ])
∫

[−r ,r ]
‖F2

i (t − m)‖Adμ(t)

)
dm

=
+∞∫
0

e−mc̃i∗

⎛
⎝ lim

r−→∞
Ki

ν([−r , r ])
r−m∫

−r−m

‖F2
i (t)‖Adμm(t)

⎞
⎠ dm

≤ Ki

∫ +∞

0
e−mc̃i∗

(
lim

r−→∞
ν([−r − m, r + m])

ν([−r , r ]
β

ν([−r − m, r + m])
×

∫
[−r−m,r+m]

‖F2
i (t)‖Adμ(t)

)
dm.

On the one hand we have F2
i ∈ ξ(R,R, μ, ν) then E1 = 0. On the other hand, we have

E2 = lim
r−→∞

Ki

ν([−r , r ])
∫

[−r ,r ]

⎛
⎝

−r∫
−∞

‖e−(t−s)c̃i∗ F2
i (s)‖Ads

⎞
⎠ dμ(t)

= lim
r−→∞

Ki

ν([−r , r ])
∫

[−r ,r ]

⎛
⎝

−r∫
−∞

e−(t−s)c̃i∗‖F2
i (s)‖Ads

⎞
⎠ dμ(t)

≤ lim
r−→∞

Ki

ν([−r , r ])
−r∫

−∞
esc̃i∗‖F2

i (s)‖Ads

r∫
−r

e−t c̃i∗dμ(t)

= lim
r−→∞ Ki

‖F2
i ‖A
c̃i∗

e−2r c̃i∗ = 0.

Combining with (3) it leads to �φ maps PAA(R,An, μ, ν) into itself. ��

3 Main Results

In this section, we establish new results for the existence, uniqueness and stability of
(μ, ν)−PAA solution of the system (1). For (φ1, φ2, · · · , φn)

T ∈ PAA(R,An, μ, ν), we
define the norm of φ as

‖ φ ‖∗:= max
1≤i≤n

sup
t∈R

{
‖φi (t)‖A

}
.
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And we consider the following Assumption:

Assumption 4 For 1 ≤ i, j, l ≤ n, there exist strictly positive constants M, �i and 	i such
that

M = max
1≤i≤n

{
Ki

c̃i∗
I ∗
i

}

� = max
1≤i≤n

{
q∗
i + Ki

c̃i∗

[
c∗
i q

∗
i +

n∑
j=1

a∗
i j L

f
j +

n∑
j=1

n∑
l=1

α∗
i jl L

g
j L

g
l +

n∑
j=1

β∗
i j L

h
j

+∞∫
0

|Gi j (u)|du

+
n∑
j=1

n∑
l=1

p∗
i jl L

k
j L

k
l

+∞∫
0

|Pi jl(u)|du
+∞∫
0

|Qi jl(u)|du
]}

< 1,

	 = max
1≤i≤n

{
q∗
i + Ki

c̃i∗

[
c∗
i q

∗
i +

n∑
j=1

a∗
i j L

f
j +

n∑
j=1

n∑
l=1

α∗
i jl(L

g
j d

g
l + Lg

l d
g
j )

+
n∑
j=1

β∗
i j L

h
j

+∞∫
0

|Gi j (u)|du +
n∑
j=1

n∑
l=1

p∗
i jl

+∞∫
0

|Pi jl(u)|du

+∞∫
0

|Qi jl(u)|du(Lk
j d

k
l + Lk

l d
k
j )

]}

< 1

and a strictly negative constant ϒ0 such that

ϒ0 = sup
t∈R

{
− c̃i (t) + Ki

[
1

1 − q∗
i
c∗
i q

∗
i +

n∑
j=1

a∗
i j L

f
j

1

1 − q∗
j

+
n∑
j=1

n∑
l=1

α∗
i jl

(
Lg
j d

g
l

1

1 − q∗
j

+ Lg
l d

g
j

1

1 − q∗
j

)
+

n∑
j=1

β∗
i j L

h
j

+∞∫
0

|Gi j (u)|du 1

1 − q∗
j

+
n∑
j=1

n∑
l=1

p∗
i jl

[
Lk
j d

k
l

+∞∫
0

|Pi jl(u)|du + Lk
l d

k
j

+∞∫
0

|Qi jl(u)|du
]

1

1 − q∗
j

]}
.

Theorem 3 Suppose that Assumptions 1–4 hold. Then the system (1) has only one
(μ, ν)−PAA solution in the region

S =
{
φ ∈ PAA(R,An, μ, ν) :‖ φ − φ0 ‖∗≤ �

1 − �
M

}
,

where

φ0(t) =

⎛
⎜⎜⎝

∫ t
−∞ e− ∫ t

s c1(u)du I1(s)ds
...∫ t

−∞ e− ∫ t
s cn(u)du In(s)ds

⎞
⎟⎟⎠ .

which is globally exponentially stable.
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Proof First part: existence and uniqueness of (μ, ν)−PAA solutions Let

Yi (t) = xi (t) − qi (t)xi (t − ri (t)), for all 1 ≤ i ≤ n. (4)

Then, we have

Y ′
i (t) =

[
xi (t) − qi (t)xi (t − ri (t))

]′

= −ci (t)Yi (t) − ci (t)qi (t)xi (t − ri (t)) +
n∑
j=1

ai j (t) f j (x j (t − τi j (t)))

+
n∑
j=1

n∑
l=1

αi jl(t)g j (x j (t − σi jl(t)))gl(xl(t − νi jl(t)))

+
n∑
j=1

βi j (t)

+∞∫
0

Gi j (s)h j (x j (t − s))ds

+
n∑
j=1

n∑
l=1

pi jl(t)

+∞∫
0

Pi jl(s)k j (x j (t − s))ds

+∞∫
0

Qi jl(s)kl(xl(t − s))ds

+Ii (t), i = 1, . . . , n. (5)

By using Lemma 5, we define an operator � as follows:

� : S → S

(φ1 · · · , φn)
T �→ (�φ1 · · · ,�φn )

T

such that �φi = {qi (t)φi (t − ri (t))} + �φ(t) for all φ ∈ S. One has

‖φ0‖∗ = max
1≤i≤n

{
sup
t∈R

∥∥∥∥
∫ t

−∞
e− ∫ t

s ci (u)du Ii (s)ds

∥∥∥∥A
}

≤ max
1≤i≤n

{
Ki sup

t∈R

∥∥∥∥
∫ t

−∞
e− ∫ t

s c̃i (u)du Ii (s)ds

∥∥∥∥A
}

≤ max
1≤i≤n

{
Ki

c̃i∗
I ∗
i

}
= M

is the unique (μ, ν)−pseudo almost automorphic solution of the following differential equa-
tions:

Y ′
i (t) = −ci (t)Yi (t) + Ii (t), i = 1, . . . , n.

The set S =
{
φ ∈ PAA(R,An, μ, ν) :‖ φ − φ0 ‖∗≤ �

1−�
M

}
is a closed convex subset of

PAA(R,An, μ, ν). If φ ∈ S, then

‖ φ ‖∗ ≤ ‖ φ − φ0 ‖∗ + ‖ φ0 ‖∗
≤ ‖ φ − φ0 ‖∗ +M . (6)

We claim that for any φ ∈ S the mapping �φ ∈ S. Note that∥∥∥∥�ϕ − φ0

∥∥∥∥∗
= max

1≤i≤n

{
sup
t∈R

∥∥∥∥qi (t)φi (t − ri (t))
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+
∫ t

−∞
e− ∫ t

s ci (u)du
[

− ci (s)qi (s)φi (s − ri (s))

+
n∑
j=1

ai j (s) f j (φ j (s − τi j (s)))

+
n∑
j=1

n∑
l=1

αi jl(s)g j (φ j (s − σi jl(s)))gl(φl(s − νi jl(s)))

+
n∑
j=1

βi j (s)

+∞∫
0

Gi j (u)h j (φ j (s − u))du

+
n∑
j=1

n∑
l=1

pi jl(s)

+∞∫
0

Pi jl(u)k j (φ j (s − u))du

+∞∫
0

Qi jl(u)kl(φl(s − u))du

]
ds

∥∥∥∥A
}

and then we have

∥∥∥∥�ϕ − φ0

∥∥∥∥∗
≤ max

1≤i≤n

{
sup
t∈R

‖qi (t)φi (t − ri (t))‖A

+
∫ t

−∞
e− ∫ t

s c̃i (u)du Ki

[
sup
t∈R

‖ − ci (s)qi (s)‖A sup
t∈R

‖φi (s − ri (s))‖A

+
n∑
j=1

sup
t∈R

‖ai j (s)‖A sup
t∈R

‖ f j (φ j (s − τi j (s))‖A

+
n∑
j=1

n∑
l=1

sup
t∈R

‖αi jl(s)‖A sup
t∈R

‖g j (φ j (s − σi jl(s)))‖A sup
t∈R

‖gl(φl(s − νi jl(s))‖A

+
n∑
j=1

sup
t∈R

‖βi j (s)‖A
+∞∫
0

|Gi j (u)| sup
t∈R

‖h j (φ j (s − u))‖Adu

+
n∑
j=1

n∑
l=1

sup
t∈R

‖pi jl(s)‖A
+∞∫
0

|Pi jl(u)| sup
t∈R

‖k j (φ j (s − u))‖Adu

×
+∞∫
0

|Qi jl(u)| sup
t∈R

‖kl(φl(s − u))‖Adu

]
ds

}
.

It leads to
∥∥∥∥�ϕ − φ0

∥∥∥∥∗
≤ max

1≤i≤n

{
q∗
i +

∫ t

−∞
e− ∫ t

s c̃i (u)duKi

[
c∗
i q

∗
i +

n∑
j=1

a∗
i j L

f
j

+
n∑
j=1

n∑
l=1

α∗
i jl L

g
j L

g
l +

n∑
j=1

β∗
i j L

h
j

+∞∫
0

|Gi j (u)|du
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+
n∑
j=1

n∑
l=1

p∗
i jl L

k
j L

k
l

+∞∫
0

|Pi jl(u)|du
+∞∫
0

|Qi jl(u)|du
]
ds

}
‖φ‖∗

= �‖φ‖∗.

As � < 1, it implies that �ϕ ∈ S. Next, we prove that the mapping � is a contraction
mapping of S. For φ,ψ ∈ S, we have

∥∥∥∥�φ − �ψ

∥∥∥∥∗
≤ max

1≤i≤n

{
sup
t∈R

∥∥∥∥qi (t)
[
φi (t − ri (t)) − ψi (t − ri (t))

]

+
∫ t

−∞
e− ∫ t

s ci (u)du
[

− ci (s)qi (s)

(
φi (s − ri (s)) + ψi (s − ri (s))

)

+
n∑
j=1

ai j (s)

(
f j (φ j (s − τi j (s))) − f j (ψ j (s − τi j (s)))

)

+
n∑
j=1

n∑
l=1

αi jl(s)

(
g j (φ j (s − σi jl(s)))gl(φl(s − νi jl(s)))

−g j (ψ j (s − σi jl(s)))gl(ψl(s − νi jl(s)))

)

+
n∑
j=1

βi j (s)

+∞∫
0

Gi j (u)

(
h j (φ j (s − u)) − h j (ψ j (s − u)

)
du

+
n∑
j=1

n∑
l=1

pi jl(s)

( +∞∫
0

Pi jl(u)h j (φ(s − u))du

+∞∫
0

Qi jl(u)kl(φ(s − u))du

−
+∞∫
0

Pi jl(u)h j (ψ(s − u))du

+∞∫
0

Qi jl(u)kl(φ(s − u))du

+
+∞∫
0

Pi jl(u)h j (ψ(s − u))du

+∞∫
0

Qi jl(u)kl(φ(s − u))du

−
+∞∫
0

Pi jl(u)h j (ψ(s − u))du

+∞∫
0

Qi jl(u)kl(ψ(s − u))du

)]
ds

∥∥∥∥A
}
.

It leads to

∥∥∥∥�φ − �ψ

∥∥∥∥∗
≤ max

1≤i≤n

{
q∗
i +

∫ t

−∞
e− ∫ t

s c̃i (u)duKi

[
c∗
i q

∗
i +

n∑
j=1

a∗
i j L

f
j

+
n∑
j=1

n∑
l=1

α∗
i jl(L

g
j d

g
l + Lg

l d
g
j )
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+
n∑
j=1

β∗
i j L

h
j

+∞∫
0

|Gi j (u)|du +
n∑
j=1

n∑
l=1

p∗
i jl

+∞∫
0

|Pi jl(u)|du

×
+∞∫
0

|Qi jl(u)|du(Lk
j d

k
l + Lk

l d
k
j )

]
ds

}
‖φ − ψ‖∗

and then
∥∥∥∥�φ − �ψ

∥∥∥∥∗
≤ max

1≤i≤n

{
q∗
i + Ki

c̃i∗

[
c∗
i q

∗
i +

n∑
j=1

a∗
i j L

f
j +

n∑
j=1

n∑
l=1

α∗
i jl

(
Lg
j d

g
l + Lg

l d
g
j

)

+
n∑
j=1

β∗
i j L

h
j

+∞∫
0

∣∣Gi j (u)
∣∣ du +

n∑
j=1

n∑
l=1

p∗
i jl

+∞∫
0

∣∣Pi jl(u)
∣∣ du

×
+∞∫
0

∣∣Qi jl(u)
∣∣ du(Lk

j d
k
l + Lk

l d
k
j )

]}
‖φ − ψ‖∗

= 	‖φ − ψ‖∗.

As 	 < 1, then we obtain that � is a contraction. Via Theorem 2, PAA(R,An, μ, ν) is a
Banach space. Then due to Banach’s fixed point principle, � possesses one and only one
fixed point x∗ = {x∗

i (t)} ∈ S, such that

x∗
i (t) = {qi (t)x∗

i (t − ri (t))} + �x∗ (t)

= qi (t)x
∗
i (t − ri (t)) +

∫ t

−∞
e− ∫ t

s ci (u)du
[

− ci (s)qi (s)x
∗
i (s − ri (s))

+
n∑
j=1

ai j (s) f j (x
∗
j (s − τi j (s))) +

n∑
j=1

n∑
l=1

αi jl (s)g j (s − x∗
j (σi jl (s)))gl (x

∗
l (s − νi jl (s)))

+
n∑
j=1

βi j (s)

+∞∫
0

Gi j (u)h j (x
∗
j (s − u))du

+
n∑
j=1

n∑
l=1

pi jl (s)

+∞∫
0

Pi jl (u)k j (x j (s − u))du

+∞∫
0

Qi jl (u)kl(xl (s − u))du + Ii (s)

]
ds.

Then it leads to
[
x∗
i (t) − qi (t)x

∗
i (t − ri (t))

]′
= −ci (t)x

∗
i (t) +

n∑
j=1

ai j (s) f j (x
∗
j (t − τi j (t)))

+
n∑
j=1

n∑
l=1

αi jl(t)g j (x
∗
j (t − σi jl(t)))gl(x

∗
l (t − νi jl(t)))

+
n∑
j=1

βi j (t)

+∞∫
0

Gi j (u)h j (x
∗
j (t − u))du
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+
n∑
j=1

n∑
l=1

pi jl(t)

+∞∫
0

Pi jl(s)k j (x
∗
j (t − s))ds

×
+∞∫
0

Qi jl(s)kl(x
∗
l (t − s))ds + Ii (t).

Thus the system (1) has an unique (μ, ν)−PAA solution x∗(t).
Second part: global exponential stability of the (μ, ν)−PAA solution
In view of the first part, the system (1) has only one (μ, ν)−pseudo almost automor-

phic solution denoted by x∗(t) = (x∗
1 (t), . . . , x

∗
n (t))

T and satisfying (2). Let x(t) =
(x1(t), · · · , xn(t))T be an arbitrary solution of the system (1) with initial value φ(t) =
(φ1(t), · · · , φn(t))T satisfying (2). Let

zi (t) = xi (t) − x∗
i (t),

Zi (t) =
[
xi (t) − qi (t)xi (t − ri (t))

]
−

[
x∗
i (t) − qi (t)x

∗
i (t − ri (t))

]
.

We have

Z ′
i (t) = −ci (t)Zi (t) − ci (t)qi (t)zi (t − ri (t))

+
n∑
j=1

ai j (t)

[
f j (x j (t − τi j (t)) − f j (x

∗
j (t − τi j (t))

]

+
n∑
j=1

n∑
l=1

αi jl(t)

[
g j (x j (t − σi jl(t))gl(xl(t − νi jl(t))))

−g j (x
∗
j (t − σi jl(t)))gl(x

∗
l (t − νi jl(t)))

]

+
n∑
j=1

βi j (t)

+∞∫
0

Gi j (u)

[
h j (x j (t − u)) − h j (x

∗
j (t − u))

]
du

+
n∑
j=1

n∑
l=1

pi jl(t)

[ +∞∫
0

Pi jl(s)k j (x j (t − s))ds

+∞∫
0

Qi jl(s)kl(xl(t − s))ds

−
+∞∫
0

Pi jl(s)k j (x
∗
j (t − s))ds

+∞∫
0

Qi jl(s)kl(x
∗
l (t − s))ds

]
. (7)

Set

ϒ(γ ) = sup
t∈R

{
γ − c̃i (t) + Ki

[
eγ r∗

i

1 − q∗
i e

γ r∗
i
c∗
i q

∗
i +

n∑
j=1

a∗
i j L

f
j

eγ τ∗
i j

1 − q∗
j e

γ r∗
j

+
n∑
j=1

n∑
l=1

α∗
i jl

(
Lg
j d

g
l

eγ σ ∗
i jl

1 − q∗
j e

γ r∗
j

+ Lg
l d

g
j

eγ ν∗
i jl

1 − q∗
j e

γ r∗
j

)

+
n∑
j=1

β∗
i j L

h
j

+∞∫
0

|Gi j (u)|eγ udu
1

1 − q∗
j e

γ r∗
j
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+
n∑
j=1

n∑
l=1

p∗
i jl

[
Lk
j d

k
l

+∞∫
0

|Pi jl(u)|eγ udu

+Lk
l d

k
j

+∞∫
0

|Qi jl(u)|eγ udu

]
1

1 − q∗
j e

γ r∗
j

]}
, γ ∈ [0, min

1≤ι≤3
κι]. (8)

From Assumption 4 and by continuity of ϒ(γ ) we have

ϒ(0) = sup
t∈R

{
− c̃i (t) + Ki

[
1

1 − q∗
i
c∗
i q

∗
i +

n∑
j=1

a∗
i j L

f
j

1

1 − q∗
j

+
n∑
j=1

n∑
l=1

α∗
i jl

(
Lg
j d

g
l

1

1 − q∗
j

+ Lg
l d

g
j

1

1 − q∗
j

)

+
n∑
j=1

β∗
i j L

h
j

+∞∫
0

|Gi j (u)|du 1

1 − q∗
j

+
n∑
j=1

n∑
l=1

p∗
i jl

[
Lk
j d

k
l

+∞∫
0

|Pi jl(u)|du

+Lk
l d

k
j

+∞∫
0

|Qi jl(u)|du
]

1

1 − q∗
j

]}
< 0.

(9)

We can choose a positive constant λ such that 0 < λ < min{κ1, κ2, κ3, , c̃1∗, . . . , c̃n∗}
satisfying 1 − q∗

i e
λr∗

j > 0, and

ϒ(λ) = sup
t∈R

{
λ − c̃i (t) + Ki

[
eλr∗

i

1 − q∗
i e

λr∗
i
c∗
i q

∗
i +

n∑
j=1

a∗
i j L

f
j

eλτ∗
i j

1 − q∗
j e

λr∗
j

+
n∑
j=1

n∑
l=1

α∗
i jl

(
Lg
j d

g
l

eλσ ∗
i jl

1 − q∗
j e

λr∗
j

+ Lg
l d

g
j

eλν∗
i jl

1 − q∗
j e

λr∗
j

)

+
n∑
j=1

β∗
i j L

h
j

+∞∫
0

|Gi j (u)|eλudu
1

1 − q∗
j e

λr∗
j

+
n∑
j=1

n∑
l=1

p∗
i jl

[
Lk
j d

k
l

+∞∫
0

|Pi jl(u)|eλudu

+Lk
l d

k
j

+∞∫
0

|Qi jl(u)|eλudu

]
1

1 − q∗
j e

λr∗
j

]}
< 0. (10)

Let

‖φ‖ε = max
1≤i≤n

sup
t∈(−∞,0]

∥∥∥∥[φi (t) − di (t)φi (t − τi (t))] − [x∗
i (t) − di (t)x

∗
i (t − τi (t))]

∥∥∥∥A.(11)

For any ε > 0, we obtain

‖Z(0)‖A < (‖φ‖ε + ε). (12)

For all t ∈ (−∞, 0], we have
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‖Z(t)‖A ≤ (‖φ‖ε + ε)e−λt

< N (‖φ‖ε + ε)e−λt (13)

where N is a constant satisfying N > max
1≤i≤n

Ki + 1. Let us now prove that

‖ Z(t) ‖A< N (‖φ‖ε + ε)e−λt , ∀t > 0. (14)

If it is not the case, there exist i ∈ {1, . . . , n} and t1 > 0 such that

‖ Z(t1) ‖A= N (‖φ‖ε + ε)e−λt1 (15)

and

‖ Z(t) ‖A< N (‖φ‖ε + ε)e−λt ∀t ∈ (−∞, t1). (16)

Moreover, we have

eλ‖z j (η) ‖A ≤ eλη‖z j (η) − q j (η)z j (η − r j (η)) ‖A +eλη‖q j (η)z j (η − r j (η)) ‖A
≤ eλη‖Z j (η) ‖A +eλr∗

i q∗
j e

λ(η−r j (η))‖z j (η − r j (η)) ‖A
≤ (‖φ‖ε + ε)N + eλr∗

j q∗
j sup
s∈(−∞,t]

eλs‖z j (s) ‖A . (17)

For all η ∈ (−∞, t], t ∈ (−∞, t1), i ∈ {1, · · · , n}, it leads to

eλt‖z j (t)‖A ≤ sup
s∈(−∞,t]

eλs‖z j (s)‖A

≤ N (‖φ‖ε + ε)

1 − eλq∗
j r

∗
j

. (18)

Multiplying Equation (7) by e− ∫ s
0 ci (u)du and integrating on [0, t], we obtain

Zi (t) = Zi (0)e
− ∫ t

0 ci (u)du +
t∫

0

e− ∫ t
s ci (u)du

{
− ci (s)qi (s)zi (s − ri (s))

+
n∑
j=1

ai j (s)
[
f j (x j (s − τi j (s)) − f j (x

∗
j (s − τi j (s))

]

+
n∑
j=1

n∑
l=1

αi jl(s)[g j (x j (s − σi jl(s))gl(xl(s − νi jl(s))))

−g j (x
∗
j (s − σi jl(s)))gl(x

∗
l (s − νi jl(s)))]

+
n∑
j=1

βi j (s)

+∞∫
0

Gi j (u)
[
h j (x j (s − u)) − h j (x

∗
j (s − u))

]
du
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+
n∑
j=1

n∑
l=1

pi jl(s)

[ +∞∫
0

Pi jl(u)k j (x j (s − u))du

×
+∞∫
0

Qi jl(u)kl(xl(s − u))du −
+∞∫
0

Pi jl(u)k j (x
∗
j (s − u))du

×
+∞∫
0

Qi jl(u)kl(x
∗
l (s − u))du

]}
ds, t ∈ [0, t1]. (19)

Using equations (8), (10)-(19), we obtain

‖Zi (t1)‖A =
∥∥∥∥Zi (0)e

− ∫ t1
0 ci (u)du +

t1∫
0

e− ∫ t1
s ci (u)du

{
− ci (s)qi (s)zi (s − ri (s))

+
n∑
j=1

ai j (s)( f j (x j (s − τi j (s))) − f j (x
∗
j (s − τi j (s))))

+
n∑
j=1

n∑
l=1

αi jl(s)(g j (x j (s − σi jl(s)))gl(xl(s − σi jl(s)))

−g j (x
∗
j (s − σi jl(s)))gl(x

∗
l (s − σi jl(s))))

+
n∑
j=1

βi j (s)

+∞∫
0

Gi j (u)[h j (x j (s − u)) − h j (x
∗
j (s − u))]du

+
n∑
j=1

n∑
l=1

pi jl(s)[
+∞∫
0

Pi jl(u)k j (x j (s − u))du

×
+∞∫
0

Qi jl(u)kl(xl(s − u))du −
+∞∫
0

Pi jl(u)k j (x
∗
j (s − u))du

×
+∞∫
0

Qi jl(u)kl(x
∗
l (s − u))du

}
ds

∥∥∥∥A.

Then it leads to

‖Zi (t1)‖A ≤ (‖φ‖ε + ε)Kie
−

t1∫
0
c̃i (u)du

+
t1∫
0

e
−

t1∫
s
c̃i (u)du

Ki

{
c∗
i q

∗
i

∥∥xi (s − ri (s)) − x∗
i (s − ri (s))

∥∥A

+
n∑
j=1

a∗
i j

∥∥∥ f j (x j (s − τi j (s)) − f j (x
∗
j (s − τi j (s))

∥∥∥A
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+
n∑
j=1

n∑
l=1

α∗
i jl‖g j (x j (s − σi jl(s))gl(xl(s − νi jl(s))))

−g j (x
∗
j (s − σi jl(s)))gl(x

∗
l (s − νi jl(s)))‖A

+
n∑
j=1

β∗
i j

+∞∫
0

|Gi j (u)|
∥∥∥h j (x j (s − u)) − h j (x

∗
j (s − u))

∥∥∥A du

+
n∑
j=1

n∑
l=1

p∗
i jl sup

t∈R

∥∥∥∥
+∞∫
0

Pi jl(u)k j (x j (s − u))du

+∞∫
0

Qi jl(u)kl(xl(s − u))du

−
+∞∫
0

Pi jl(u)k j (x
∗
j (s − u))du

+∞∫
0

Qi jl(u)kl(x
∗
l (s − u))du

∥∥∥∥A
}
ds

and finally it yields

‖Zi (t1)‖A ≤ (‖φ‖ε + ε)e−λt1Kie
−

t1∫
0
[c̃i (u)−λ]du

+
t1∫
0

e− ∫ t1
s [c̃i (s)−λ]duKi

{
eλr∗

i

1 − q∗
i e

λr∗
i
c∗
i q

∗
i

+
n∑
j=1

a∗
i j L

f
j

eλτ∗
i j

1 − q∗
j e

λr∗
j

+
n∑
j=1

n∑
l=1

α∗
i jl

(
Lg
j d

g
l

eλσ ∗
i jl

1 − q∗
j e

λr∗
j

+Lg
l d

g
j

eλν∗
i jl

1 − q∗
j e

λr∗
j

)

+
n∑
j=1

β∗
i j L

h
j

+∞∫
0

|Gi j (u)|eλudu
1

1 − q∗
j e

λr∗
j

+
n∑
j=1

n∑
l=1

p∗
i jl

[
Lk
j d

k
l

+∞∫
0

|Pi jl(u)|eλudu

+Lk
l d

k
j

+∞∫
0

|Qi jl(u)|eλudu

]
1

1 − q∗
j e

λr∗
j

}
dsN (‖φ‖ε + ε)e−λt1
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and then

‖Zi (t1)‖A ≤ (‖φ‖ε + ε)e−λt1Kie
− ∫ t1

0 [c̃i (u)−λ]du

+
t1∫
0

e− ∫ t1
s [c̃i (s)−λ]du

{
c̃i (u) − λ

}
dsN (‖φ‖ε + ε)e−λt1

≤ N (‖φ‖ε + ε)e−λt1

{
(
Ki

N
− 1)e− ∫ t1

0 (c̃i (u)−λ)du + 1

}

< N (‖φ‖ε + ε)e−λt1

which contradicts equality (15), so (14) holds. Letting ε → 0+, then for all t > 0, we have
‖Z(t)‖A ≤ N‖φ‖εe−λt . Similarly, we have

eλt‖z j (t)‖A ≤ sup
s∈(−∞,t]

eλs‖z j (s)‖A

≤ N‖φ‖ε

1 − q∗
j e

λr∗
j

and

‖z j (t)‖A ≤ N‖φ‖ε

1 − q∗
j e

λr∗
j
e−λt ∀t > 0, j ∈ {1, · · · , n}.

The (μ, ν)−PAA solution of the system (1) is global exponentially stable. ��

Remark 2 In this article, we not only consider the effects of the first-order terms ai j (·), βi j (·)
on NNs but also the influences of the second-order terms αi jl(·) and pi jl(·). If αi jl(·) =
pi jl(·) = 0 then the following classical (first order) neutral type Hopfiled NNs

[
xi (t) − qi (t)xi (t − ri (t))

]′
= −ci (t)xi (t) +

n∑
j=1

ai j (t) f j (x j (t − τi j (t)))

+
n∑
j=1

βi j (t)

+∞∫
0

Gi j (s)h j (x j (t − s))ds

+Ii (t), (20)

has a unique (μ, ν)-pseudo almost automorphic solution which is global exponential stable.
Hence, our results generalize the results in [10].

Remark 3 If qi (t) = 0 then the following Hopfiled NN

ẋi (t) = −ci (t)xi (t) +
n∑
j=1

ai j (t) f j (x j (t − τi j (t)))

+
n∑
j=1

βi j (t)

+∞∫
0

Gi j (s)h j (x j (t − s))ds + Ii (t), (21)
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has an unique (μ, ν)-pseudo almost automorphic solution which is global exponential stable.
It is worth pointing out that our main results are also valid for the case of the non-neutral
systems. Our results not only improve but also complement earlier results in [3,5,7,8,14,29].

Remark 4 In [21], the authors considered a class of Clifford-valued neutral HOHNN with
leakage delays. They studied the existence and global exponential stability of pseudo-almost
periodic solutions for this class of NNs. In [22], the authors dealt with a class of inertial
quaternion-valued HOHNNs with state-dependent delays. They analyzed the existence of
anti-periodic solutions of the NNs. In our article, we investigate the (μ, ν)− pseudo almost
automorphic solution for neutral-type HOHNNs. This class of functions covers larger classes
of functions such as almost periodic, pseudo almost periodic, almost automorphic and pseudo
almost automorphic functions. Hence, our results are not only new but also most general.

Remark 5 Although the multiplication of Clifford numbers does not satisfy the commutativ-
ity, which brings great difficulties to the study of Clifford-valued systems, we have found a
method that does not decompose Clifford-valued systems into real-valued systems.

Remark 6 Pseudo almost automorphic functions play an important role in describing the
dynamics of differential equations. In [3], the authors investigated the dynamics behavior of
the pseudo almost automorphic solutions of a class of HOHNNs with mixed delays. Those
results cannot be applicable for the systems studied in this article. Consequently, our analysis
of dynamics behavior of neutral type Clifford-valued HOHNNs model with (μ, ν)−PAA
functions as coefficients and mixed delays improve the previous study in [3]. If μ = ν = 1,
then the system (1) has an unique PAA solution in Clifford algebra.

Remark 7 In [7], the authors studied a class of delayed high-order Hopfield bidirectional
associative memory NNs. They used fixed delays because time-varying delays are difficult
to handle when dealing with (μ, ν)-pseudo almost automorphic parameters. Hence, it is not
obvious to prove the composition theorem of (μ, ν)-pseudo almost automorphic functions
i.e. f (φ(·−τ(·))) ∈ PAA(R,R, μ, ν). In 2020, this problem has been solved in article [10].

Remark 8 In [9], the pseudo almost periodic solutions of Clifford-valued inertial neutral NNs
with time-varying delays and infinite distributed delay are investigated. Then, by using the
same approachwe can extend the results to the space of pseudo almost automorphic functions.
Our results can complement the results in [9].

4 Simulation Results

In this section, we apply our main results to a specific system and demonstrate the efficiency
of our new stability criteria. Consider the following neutral type Clifford-valued HOHNNs
model[

xi (t) − qi (t)xi (t − ri (t))

]′
= −ci (t)xi (t) +

2∑
j=1

ai j (t) f j (x j (t − τi j (t)))

+
2∑
j=1

2∑
l=1

αi jl(t)g j (x j (t − σi jl(t)))gl(xl(t − νi jl(t)))

+
2∑
j=1

βi j (t)

+∞∫
0

Gi j (s)h j (x j (t − s))ds
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+
2∑
j=1

2∑
l=1

pi jl(t)

+∞∫
0

Pi jl(t − s)k j (x j (s))ds

×
+∞∫
0

Qi jl(t − s)kl(xl(s))ds + Ii (t), (22)

where xi (t) = x0i (t)e0 + x1i (t)e1 + x2i (t)e2 + x12i (t)e12 and i = 1, 2.

For 1 ≤ i ≤ 2, let e0 =
(
1 0
0 1

)
, e1 =

(
1 0
0 −1

)
, e2 =

(
0 1
1 0

)
and e12 =

(
0 1

−1 0

)
.

For μ, ν ∈ M, satisfying (A1) and (A2), we consider the measure μ(t) where its Radon-
Nikodym derivative is ρ1(t) = esin t , and the measure ν(t) where its Radon-Nikodym
derivative is

ρ2(t) =
{
et if t ≤ 0,

1 if t > 0.

We take the following parameters:

f (xi ) = g(xi ) = h(xi ) = k(xi ), i = 1, 2,

f (xi ) = |x0i + 1| − |x0i + 1|
22

e0 + 1

20
cos x1i e1 + 1

27
cos x2i e2 + 1

21
cos x12i e12

⇒ L f
j = Lg

j = Lh
j = Lk

j = 1, dgj = dkj = 0.1,

ri (t) = 0.5, τi j (t) = σi jl(t) = νi jl(t) = 0.5| cos t |.
Let

Gi j (t) = Pi jl(t) = Qi jl(t) = e−t , Ki = e0.1 and κι = 0.5 for ι = 1, 2, 3.

c1(t) = (4 + cos2 t)e0, c2(t) = (4 + sin2 t)e0,

and

q1(t) = 0.12 sin(t)e0,

q2(t) = 0.12 cos(t)e0,

and

a11(t) = 0.1 sin

⎛
⎝ 2π

2 + sin t + sin
(√

3t
)

⎞
⎠ e0 + 0.3 sin

(√
3t

)
e1,

a12(t) = 0.1e0 + 0.1e−t2e2,

a21(t) = 0, a22(t) = 0.1e0 + 0.1e−t e12,

and

α111(t) = α121(t) = α122(t) = 0,

α112(t) = 0.3 cos

(
1

2 + sin t + sin
√
2t

)
e0 + 0.1

1 + t2
e12,

α211(t) = 0.6 sin(
√
5t)e1 + 0.3 sin

(
1

2 + cos t + sin
√
5t

)
e2 + 0.1

1 + t
e12,

α212(t) = α221(t) = α222(t) = 0,
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and

β11(t) = 0.4 sin

(
1

2 + cos t + cos
√
2t

)
e0 + 0.4 sin

(√
2t

)
e1,

β12(t) = β21(t) = 0,

β22(t) = 0.2e0 + 0.2 cos
(√

7t
)
e1 + 0.1

1 + t2
e12,

and

p111(t) = p121(t) = p122(t) = 0,

p112(t) = 0.2 sin

(
1

2 + sin t + sin
√
2t

)
e2 + 0.1

1 + t
e12,

p211(t) = p212(t) = p222(t) = 0,

p221(t) = 0.4 sin

(
1

2 + sin t + sin
√
2t

)
e1 + 0.1

1 + t
e2,

and

I1(t) = 0.7 sin

(
1

2 + sin t + sin
√
2t

)
e0 + 0.7e1 + 0.7 sin te2 + 0.7 cos

(√
2t

)
e12,

I2(t) = 0.7 cos

(
1

2 + cos t + cos
√
5t

)
e0 + 0.7

(
sin t + 0.3

1 + t2

)
e1

+0.7 cos t e2 + 0.7 sin
(√

7t
)

+ e−t2e12.

We have

� = max
1≤i≤2

{
q∗
i + Ki

c̃i∗

[
c∗
i q

∗
i +

2∑
j=1

a∗
i j L

f
j +

2∑
j=1

2∑
l=1

α∗
i jl L

g
j L

g
l +

2∑
j=1

β∗
i j L

h
j

+∞∫
0

|Gi j (u)|du

+
2∑
j=1

2∑
l=1

p∗
i jl L

k
j L

k
l

+∞∫
0

|Pi jl(u)|du
+∞∫
0

|Qi jl(u)|du
]}

= 0.9509 < 1,

	 = max
1≤i≤2

{
q∗
i + Ki

c̃i∗

[
c∗
i q

∗
i +

2∑
j=1

a∗
i j L

f
j +

2∑
j=1

2∑
l=1

α∗
i jl(L

g
j d

g
l + Lg

l d
g
j )

+
2∑
j=1

β∗
i j L

h
j

+∞∫
0

|Gi j (u)|du

+
2∑
j=1

2∑
l=1

p∗
i jl

+∞∫
0

|Pi jl(u)|du
+∞∫
0

|Qi jl(u)|du(Lk
j d

k
l + Lk

l d
k
j )

]}

= 0.8825 < 1
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Fig. 1 Curves of x0i , i = 1, 2, of the system (22)

and

ϒ0 = sup
t∈R

{
− c̃i (t) + Ki

[
1

1 − q∗
i
c∗
i q

∗
i +

2∑
j=1

a∗
i j L

f
j

1

1 − q∗
j

+
2∑
j=1

2∑
l=1

α∗
i jl

(
Lg
j d

g
l

1

1 − q∗
j

+ Lg
l d

g
j

1

1 − q∗
j

)

+
2∑
j=1

β∗
i j L

h
j

+∞∫
0

|Gi j (u)|du 1

1 − q∗
j

+
2∑
j=1

2∑
l=1

p∗
i jl

[
Lk
j d

k
l

+∞∫
0

|Pi jl(u)|du

+Lk
l d

k
j

+∞∫
0

|Qi jl(u)|du
]

1

1 − q∗
j

]}
= −1.1779 < 0.

By a direct computation, we can check that all the conditions of Theorem 3 are satisfied.
Therefore, the system (22) has an unique (μ, ν)−PAAsolutionwhich is represented in Figs. 1,
2, 3 and 4.

Besides, the unique (μ, ν)−PAA solution of the system (22) is global exponential stable.
Almost automorphy is not always as easy to identify visually. In the above example x0i , x

1
i ,

x2i and x12i with i = 1, 2 never exactly repeat themselves. They are not periodic. Figs. 5,6,7
and 8 confirm the global exponential stability of the (μ, ν)−PAA solution for the system
(22). Figures 1–8 confirm that the proposed conditions in our theoretical results are effective
for the above example.

Remark 9 In the above example, ri (·), τi j (·), σi jl(·), νi jl(·) represent the time-delay func-
tions. The time-delay as an inherent feature of signal transmission between different neurons
is one of the main sources for causing dynamic properties of the system (22). It should be
mentioned that the presence of time-delay is a particularly harmful source of potential insta-
bility. In this example, the established criteria are straightforward to test and independent of
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Fig. 2 Curves of x11 and x12 of the system (22)
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Fig. 3 Curves of x2i for i = 1, 2, of the system (22)

delays, that is, the stability of the considered NN models is insensitive to the presence of the
delays.

5 Conclusion

In this manuscript, neutral type Clifford-valued HOHNNs with mixed delays and D operator
have been studied. By employing the fixed point theorem and differential inequalities, new
sufficient conditions for the existence, uniqueness and global exponential stability of the
(μ, ν)-pseudo almost automorphic solutions have been established. To our best knowledge,
this is the first paper studying the (μ, ν)-pseudo almost automorphic solutions in Clifford
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Fig. 4 Curves of x12i for i = 1, 2, of the system (22)

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

Time(t)

x
10

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

Time (t)

x
20

x
1

0
(0)=1 x

1

0
(0)=2 x

1

0
(0)=−1 x

1

0
(0)=−2

x
2

0
(0)=1 x

2

0
(0)=2 x

2

0
(0)=−1 x

2

0
(0)=−2

Fig. 5 Stability of x0i , i = 1, 2, of the system (22)
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Fig. 6 Stability of x1i for i = 1, 2, of the system (22)
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Fig. 7 Stability of x2i for i = 1, 2, of the system (22)
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Fig. 8 Stability of x12i for i = 1, 2, of the system (22)

algebra for such kind of NNs. As future research, there are some paths in this article that can
be explored further. For instance:

1. In the model (1), the activation functions of signal transmission f j (·), g j (.), h j (·) and
k j (·) are continuous functions. They can be considered as discontinuous functions due to
the impulse behavior of firing neurons.

2. The concept of Stepanov like pseudo weighted almost automorphy (WPAASp) is quite
sophisticated. However, the dynamic oscillations of delayed systems with WPAASp

parameters are still relatively new. Soon, we will try to investigate dynamic oscillations
of HOHNNs with WPAASp parameters in Clifford algebra.

3. The study of second-order such systems [35,36].
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