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Abstract
Brain tumor represents one of the most fatal cancers around the world. It is common cancer 
in adults and children. It has the lowest survival rate and various types depending on their 
location, texture, and shape. The wrong classification of the tumor brain will lead to bad 
consequences. Consequently, identifying the correct type and grade of tumor in the early 
stages has an important role to choose a precise treatment plan. Examining the magnetic 
resonance imaging (MRI) images of the patient’s brain represents an effective technique to 
distinguish brain tumors. Due to the big amounts of data and the various brain tumor types, 
the manual technique becomes time-consuming and can lead to human errors. Therefore, 
an automated computer assisted diagnosis (CAD) system is required. The recent evolu-
tion in image classification techniques has shown great progress especially the deep con-
volution neural networks (CNNs) which have succeeded in this area. In this regard, we 
exploited CNN for the problem of brain tumor classification. We suggested a new model, 
which contains various layers in the aim to classify MRI brain tumor. The proposed model 
is experimentally evaluated on three datasets. Experimental results affirm that the sug-
gested approach provides a convincing performance compared to existing methods.

Keywords  Deep learning · MRI · Brain tumor · Classification · CNN

1  Introduction

The brain tumor is considered as the most common brain diseases. It is an uncontrolled 
and unnatural growth of brain cells [1]. It represents one of the most lethal cancers and 
life-threatening. According to cancer statistics in the USA, it is about 23,000 patients was 
diagnosed with a brain tumor in 2015. After 2 years, based on statistics, this sort of tumor 
is considered as the leading cause of cancer mortality around the world both in children 
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and in adults [2]. In the aim to detect the tumor, the radiologist widely exploits medical 
imaging techniques [3]. Among the various available techniques, MRI is more favorited 
for brain tumors according to its harmless nature. In daily routine, the radiologist identi-
fies the brain tumors manually. The tumor classification process needs an extremely time 
consuming and it is based on the skills and experience of the radiologist. With the increase 
of patient number, the amount of data to be daily analyzed is large which make the read-
ings based on visual interpretation expensive and inaccurate. Furthermore, the classifica-
tion of brain tumors to various pathological types is more challenging compared to binary 
classification. The related challenges are attributed to some factors such as the high varia-
tions with respect to shape, size, and intensity for the same tumor type [4] also the similar 
appearances for varied pathological types [5]. A wrong diagnosis of a brain tumor can lead 
to a serious problem and decrease the chance of survival for the patient. In order to surpass 
the manual diagnosis drawbacks, there is a surge of interest in designing automated image 
processing systems [6–8]. Many researchers have suggested several techniques to ame-
liorate the CAD system that can classify some tumors in brain MRI images. Traditional 
machine learning methods used in the classification process are usually based on differ-
ent steps such as preprocessing, dimension reduction, feature extraction, feature selection, 
and classification. The feature extraction represents the crucial phase in an effective CAD 
system [9]. It is a challenging task and requires prior knowledge about the problem domain 
since the classification accuracy based on the good features extracted. The traditional tech-
niques for feature extraction can be sorted into three types: Spatial domain features, Wave-
let and frequency features and Contextual and Hybrid features. The new CAD methods 
yield an improved performance due to the uses of deep learning (DL).

DL represents a subset of machine learning which does not require handcrafted features 
[10, 11]. It has been successfully proven to minimize the gap between human vision and 
computer vision in pattern recognition and can provide higher performance than traditional 
techniques [12]. It surpassed state-of-the-art schemes in several fields as generating text 
[13], face verification [14], image description [15], the game of Go [16], and grand chal-
lenges [17]. The higher performance in several fields encouraged the exploitation of DL 
in the medical image for classification, detection, and segmentation [18–24]. According to 
[25] and only in 2016, there are about 220 works based on deep learning at medical images 
are reported and this number will increase in the next years. Around 190 of them used 
CNN. DL permits the exploitation of a pre-trained CNN model for medical images espe-
cially for brain tumor classification, which was developed for other applications as AlexNet 
[26], GoogLeNet [4], ResNet-34 [5].

CNNs have gained higher performance on huge, labeled datasets as ImageNet [17] that 
contains more than one million images. However, it is hard to exploit such deep CNNs in 
the medical field. First, the size of the medical datasets is generally small because such 
datasets need the availability of expert radiologists to manually examine and label the 
images, which is time-consuming, laborious, and costly. Second, training deep CNN is 
a complicated task for a small dataset because of over-fitting and convergence problems. 
Third, domain expertise is needed to repeatedly revise the model and adjust the learning 
parameters to provide better performance. Therefore, training deep CNN from scratch rep-
resents a challenging task that is tedious and demands much diligence and patience.

A new model for brain tumor classification based on CNN is discussed in this paper. It 
contains various layers as convolution, Rectified Linear Unit (ReLu), and a pooling. Our 
new approach does not involve any segmentation in the pre-processing step, in contrast 
to some previous methods, which require prior segmentation of tumors. We validated our 
algorithm on three public datasets.
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Our contribution in this work comprises of the following key points:

•	 A novel and robust model is presented for automated classification of brain tumors, 
which is effective in the extraction of important features on the MRI dataset.

•	 The model suggested exploiting 3 × 3 kernels for all convolutional layers with a small 
stride in the aim to learn the small texture of tumors in brain images, unlike other mod-
els, which use 11 × 11 or 9 × 9 as kernels size with higher strides.

•	 The novel model achieves good accuracy in brain tumor classification with few pre-
processing compared to other techniques, which need a tumor segmentation before the 
classification step.

•	 Our model provides an acceptable classification accuracy compared to new methods, 
despite the few training data samples.

This paper is structured into eight sections. Some previous works are briefly given in 
Sect. 2. A background is outlined in Sect. 3. The proposed model is discussed in Sect. 4. 
The performance evaluation is outlined in Sect. 5. Section 6 is provided to describes the 
dataset exploited. Section  7 summarizes the results. Section  8 discussion and Sect.  9 
concludes.

2 � Related Work

Different methods had been suggested in the past years for classification and segmentation. 
These techniques used traditional machine learning [27–29] and recently exploited deep 
learning models [30–44]. We have looked into this section of the works exploited for brain 
tumor classification.

A new technique for MRI brain tumor classification which is proposed by Hemanth 
et al. [45] used a modified Neural Network. 540 MR brain images were exploited to test the 
suggested method. The dataset consists of four tumors class which are namely astrocytoma, 
meningioma, metastase, and glioma. The used images are of 256 × 256 size. Normalization 
is performed as a preprocessing step. Eight features are acquired based on the first-order 
histogram and GLCM. The suggested method provides promising results that can reach 
95% as sensitivity, 98% as specificity, and 98% as accuracy.

Other work is proposed by Lin et al. [46] to classify meningioma tumor in a different 
grade. Grade-I contains the non-cancerous, which are slow-growing tumors. Grade-II con-
tains cancerous and noncancerous tumors. The grade-III contains cancerous tumors, which 
can grow quickly. Different features are exploited as contextual and radiological features. 
No segmentation or preprocessing process is performed. In the classification step, the 
authors used multiple logistic regression. The proposed scheme is tested using 120 patients 
MRI images, were 90 with Grade I and 30 with Grade II or III. They exploited several 
sequences as FLAIR T1 and T2. DWI transformation is utilized to extract features. The 
results are acceptable with the exploited dataset. However, this kind of method requires 
many large datasets to ensure its validity.

Other work aimed to classify multi-grade brain tumors is presented in [47]. The pro-
posed method is based on a pre-trained CNN model and segmented images. The model is 
tested based on three datasets. Various techniques for data augmentation are exploited in 
order to enhance accuracy. The technique is experimentally evaluated on the original and 
the augmented dataset. The provided results are convincing compared to previous works.
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In order to help the radiologists in MRI classification, Sachdeva et  al. [48] have sug-
gested a semi-automatic classification scheme that contains varied steps. To detect tumor 
areas, a content based active contour system that allows the radiologist to manually indi-
cate the region of interest (ROI), which is saved as a segmented ROI (SROI) is applied in 
the first step. Then, 71 texture and intensity features are extracted using the SROI. Optimal 
feature selection is performed with the application of the Genetic Algorithm (GA). The 
last phase classifies the chosen features using two classifier SVM and ANN. The suggested 
scheme is tested on different datasets. The first dataset contains 428 MR images and the 
second includes 260. The first set of images contains six tumors categories as Glioblastoma 
Multiforme (GBM), Meningioma (MEN), Astrocytoma (AS), childhood tumor-Medullo-
blastoma (MED), and secondary tumor-Metastatic (MET). The second dataset contains 
only three tumor categories, which are AS, MEN, and Low-Grade Glioma. The suggested 
GA-SVM aims to find a preliminary probability for the tumor category, while GA-ANN 
aims to confirm the accuracy. The performance calculated on the first group of images 
shows that GA based approach enhanced SVM accuracy to 91.7% while ANN accuracy 
to 94.9%. SVM accuracy has raised to 89% and 94.1% for ANN in the second group of 
images. The results demonstrate that the classifier GA-ANN offered the highest results 
compared to GA-SVM. Besides, the GA-SVM yields the speed while GA-ANN yields the 
accuracy. According to results, the suggested scheme has acceptable performance and can 
assist radiologists in taking a better decision to classify brain tumors.

Cheng et al. [27] are the first authors exploited the famous dataset [49]. The suggested 
system takes advantage of the manually delineated tumor border for feature extraction. 
They utilized the augmented tumor region as a region of interest (ROI), which was spliced 
into subregions based on the adaptive spatial division method. The feature was extracted 
in three manners, which are the gray-level co-occurrence matrix (GLCM), intensity histo-
gram, and the bag of words (BoW). SVM achieved the highest accuracy. The experiments 
followed a standard five-fold cross-validation procedure. Accuracy, sensitivity, and speci-
ficity are the performance measures calculated. The highest accuracy is about 91.28%.

Ismael et  al. [28] used Gabor filter and discrete wavelet transform (DWT) in the aim 
to extract statistical features for the classification. This algorithm exploits the tumor seg-
mented as input and the multi-layer perceptron (MLP) as a classifier. A random division 
of database images into 70% and 30% was done to form the training set and validation set, 
respectively. The accuracy achieved is about 91.9%.

Different preprocessing manners are investigated by Tahir et al. [29] to ameliorate the 
classification result. They grouped these techniques into three groups: noise removal, edge 
detection, and contrast enhancement. The possible combinations are applied to different 
image sets. The authors affirm that the combination of various preprocessing techniques 
is more beneficial than applying a single technique. The SVM classifier was exploited and 
reported 86% as the highest accuracy on Figshare dataset.

According to the results, the available tumor detection systems are not providing satis-
factory output. For this reason, there is a big need to get robust automated CAD systems. 
The conventional machine learning requires domain-specific expertise and experience. It 
needs efforts for manual extraction of features, which can decrease the efficiency of the 
system. The deep learning-based techniques surpass these drawbacks due to automatic 
feature extraction, which are robust for classification purposes based on the convolutional 
layers.

In the aim to ameliorate the classification accuracy in this dataset, Paul et  al. [33] 
applied three different classifiers: CNN, fully connected neural network, and random forest. 
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CNN provides the highest accuracy rate, which attained 90.26%. The proposed model con-
tains various layers as convolutional, MaxPool, and fully connected.

In this regard, Afshar et  al. [34] propose a modified CNN architecture called capsule 
network (CapsNet) for the brain tumor classification. The proposed CapsNet exploits the 
spatial relationship between the tumor and its surrounding tissues. 86.56% present the high-
est accuracy provided based on segmented tumors and 72.13% based on raw brain images.

Other work used the deep belief network (DBN) in the aim to discriminate between 
healthy controls and patients with schizophrenia presented by 83 and 143 patients respec-
tively from Radiopaedia dataset [50]. The proposed DBN provides 73.6% as accuracy com-
pared to SVM which provides 68.1%.

Zhou et al. [35] proposed a holistic brain tumor classification technique. The features 
are extracted from the axial view using an auto-encoder and classified based on the Long 
Short Term Memory (LSTM). The proposed technique is tested on selected slices (989, 
axial only) and it reported 92.13% as the best accuracy.

Similarly, Pashaei et  al. [36] developed a new architecture for the brain tumors clas-
sification. The proposed model contains five layers to extract features. A kernel Extreme 
Learning Machines (KELM) is used to classify images based on these extracted features. 
The accuracy achieved is about 93.68%, which exceeds Support Vector Machine, Radial 
Base Function, and some other classifiers.

Abiwinanda et al. [37] investigated the application of CNN for this data set and designed 
seven various neural networks. The second model provided the highest performance, which 
contains two convolutional and one fully connected layers. This simple model and with-
out any previous segmentation achieve 98.51% as training accuracy and 84.19% as test 
accuracy.

Another reported use of CNN on this dataset is by Ghassemi et  al. [38] where they 
proposed a new model for multi-class brain tumors classification. The model is pre-trained 
firstly as a discriminator in a generative adversarial network (GAN) in order to extract 
important features. Then, the last fully connected layer was replaced with a SoftMax classi-
fier in the aim to differentiate three tumors. The proposed model contains six layers. It was 
used with various data augmentation techniques. It achieved 93.01% and 95.6% as accu-
racy on introduced and random split respectively.

Recently, various new architectures have been suggested in the goal to generalize the 
CNN to the graph domain, especially in the medical image classification [51].

Different authors choose the graph CNN (GCNN) as a solution for tumor classifica-
tion [51–53]. In [52], Song et al. exploit a GCNN model in order to classify Alzheimer’s 
disease (AD) into four categories. The proposed network contained eleven layers: nine 
convolutional and two FC. The ReLU activation is exploited after each layer. A Softmax 
is employed as the final layer in order to compute the class probabilities. The proposed 
scheme is tested based on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
set. The original dataset contains 12 images per class. Due to the few data volume, various 
data augmentation is applied. The dataset is increased from 12 to 132 images per class. 
In the aim to generate a robust assessment, the author exploits a 10-fold CV. The average 
accuracy provided is about 65% for the SVM classifier and 89% based on GCNN.

Another work for AD classification is proposed by Guo et al. [53]. The author exploits 
GCNN in the goal to classify AD into 2 and 3 classes. The proposed model is tested based 
on the ADNI dataset. For the 2 class classification, the proposed GCNN attain 93% com-
pared to the known ResNet architecture and SVM classifier where they reached 95% and 
69% respectively. In the classification of the 3 classes scenario, the proposed GCNN attain 
77%, and 65% and 57% for ResNet and SVM respectively.
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A modified GCNN architecture is used in [51] for the early detection of AD. 160 images 
of patients from the ADNI dataset are used to test the suggested scheme.  5-fold CV is 
exploited to calculate the performance of the suggested model. The accuracy results sur-
pass 90%.

Despite the various proposed schemes for the classification of brain tumors, these tech-
niques suffer from several limitations that can be summarized as follows. The accuracy 
provided by the state-of-the-art schemes is inadequate considering the importance of MRI 
classification in the medical area. Several methods used the manually delineated tumor 
regions for the classification that prevented them from being fully automated. The algo-
rithms utilized CNN and its variants could not provide an influential improvement in per-
formance. Hence, performance evaluation based on various metrics other than accuracy 
becomes significant. Besides, the CNN models provide generally poor performance with 
small data sets, which is the case for the medical image database.

A new scheme is suggested to exceed these drawbacks. The suggested system provides 
the highest classification performance, compared to previous works, using three open data-
sets. Despite the use of a smaller number of training samples, the proposed method pro-
vides acceptable results.

3 � Background

In the last years, DL has shown promising performance in several domains. DL models 
have the ability to learn automatically multiple levels of information from a large set of 
data. They have a huge advantage compared to traditional machine learning that needs a lot 
of effort for tuning the features and expert knowledge. Several architectures are proposed 
for DL. CNN represents the most exploited in image processing field due to its ability to 
recognize patterns in images [54].

CNN model can contain several types of layers. The frequently used are convolutional, 
pooling, and fully connected layers. The convolutional layer represents the main layer in a 
CNN scheme. It is used for feature extraction as edges and colors of the image. The pool-
ing layer is exploited to decrease the dimensionality of extracted features, which leads to 
minimizing the complexity and the computational time. The fully connected layer repre-
sents the last step in CNN model, which aims to achieve linearity in the networks.

An optimizer algorithm is exploited by each CNN model in the training phase with the 
aim to update the weights. The model utilizes the classification loss as input and back prop-
agate the error into the network to update the filters and the weights. At the final step, a 
SoftMax activation function is exploited in order to normalize the output sum. According 
to literature, a deeper CNN model can solve more complex tasks and improve accuracy.

In the medical image area, especially for brain tumor classification, several works have 
been suggested. In the last years, researchers have proposed multi-class brain tumor clas-
sification [33–38] since the binary classification [55] is insufficient for the doctor to choose 
the suitable treatment for the patient.

Despite the different techniques proposed in the literature, the brain tumor classifica-
tion method still has such limitations that need to be considered. The binary classification 
leaves various ambiguities for the doctors and it is not enough to decide the good treatment. 
For a clear understanding of the doctor, the multi-classification is needed. Furthermore, the 
several datasets used, represent an obstacle for researchers to achieve precise comparison. 
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To overcome these limitations, we suggested a new deep CNN scheme for multi-class brain 
tumor classification using three publicly datasets.

A new scheme was proposed in the aim to generate an accurate classification system. 
The suggested approach is illustrated in Fig. 1. Our technique comprises various steps. 
The input images are obtained from the dataset. Normalization and contrast enhancer 
are exploited to ameliorate image quality. A new CNN scheme is suggested to extract 
the important feature. The test image is classified in one of input classes based on Soft-
max activation function in the last step.

4 � Proposed Model

Recently, CNN is widely exploited in all types of medical image processing applications 
particularly in MRI brain tumor classification and segmentation. In this work, a new 
CNN model is suggested for brain tumor multi-class classification.

The general architecture of the proposed sequential model is outlined in Fig. 2 and 
details are described in Table  1. It is consisted of several layers each having its own 
functionality. Image with 256 × 256 size represents the input model. Ten convolutional 
layers are exploited to extract the important feature. Max-pooling layer after every two 
convolutional layers is employed to reduce the data size. Each convolutional layer use 
3 × 3 filters while 2 × 2 are applied in pooling layers. A non-linearity layer is added to 
ameliorate the fitting ability of CNN. Furthermore, a batch Normalization is used after 

Fig. 1   The suggested approach

Fig. 2   The proposed architecture
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each convolution layer to get the best-optimized results and speed up the network con-
vergence. Fully connected layers with 64 neurons is employed. The output layer exploits 
softmax classifier. We will briefly introduce these layers in this section.

4.1 � Convolution Layer

This layer represents the most important part and the core component in the CNN 
model, which is also the origin of the name “Convolution Neural Network”. It is 
exploited as the first layer, in the aim to extract different features from input data. The 
first convolutional layer aims to extract the low-level features, while the complex fea-
tures can be extracted based on more convolutional layers [56, 57]. The convolution 
layer is calculated as flow (Eq. 1):

where Fi represent the i-th input feature map, F̂j is the j-th output feature map, Ki,j repre-
sents the convolutional kernel, bj is the bias, and ⊗ denotes the 2-D convolution operation. 
Both Ki,j and bj are learnable parameters in CNNs.

(1)F̂j =
∑

i

Fi ⊗ Ki,j + bj

Table 1   CNN proposed structure Layer Output shape Kernel size

Width Height Depth

Conv/relu/BatchNorm 254 254 32 3
Conv/relu/BatchNorm 252 252 64 3
MaxPool 126 126 64 2
Conv/relu/BatchNorm 124 124 96 3
Conv/relu/BatchNorm 122 122 128 3
MaxPool 61 61 128 2
Conv/relu/BatchNorm 59 59 160 3
Conv/relu/BatchNorm 57 57 192 3
MaxPool 28 28 192 2
Conv/relu/BatchNorm 26 26 224 3
Conv/relu/BatchNorm 24 24 256 3
MaxPool 12 12 256 2
Conv/relu/BatchNorm 10 10 288 3
Conv/relu/BatchNorm 8 8 320 3
MaxPool 4 4 320 2
Flatten 1 1 5120 –
Dense 1 1 64 –
Sotmax 1 1 3 –
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4.2 � Non‑linearity Layer

The second layer of the model represents the non-linearity layer. The nonlinear factor is 
added to ameliorate the fitting ability of CNN. It is achieved by using activation func-
tions as Sigmoid, ReLU, leaky ReLU, ELU, etc. The ReLU function is the most used 
due to its simplicity and easy to applicate since it does not need much calculation [58]. 
It is expressed as follows (Eq. 2), where x is the input value.

4.3 � Batch Normalization Layer

The suggested model used the batch normalization layer after each convolution layer. For get-
ting the best-optimized results, this layer is utilized. It is exploited also to speed up the net-
work convergence and to train the data perfectly.

4.4 � Pooling Layer

The features obtained from the convolutional layer are still very large. If directly used, the 
training phase will be prone to overfitting and very time-consuming. To deal with this prob-
lem, this layer adopts a downsampling manner to compress the image and minimize the 
parameters. Several forms of subsampling are exploited in literature as mean pooling, max-
pooling. In the proposed model, the dimension of feature maps is reduced by performing max-
pooling operation since it is very easy to apply and it is achieving the highest results [59].

4.5 � Fully Connected Layer (FC)

The FC layer is adopted at the end of the network. Since the features must be one-dimensional 
(1D) data before training with the classifier, the purpose of this layer is to flatten the output 
of the previous layer. When it is utilized as the last layer, the output is fixed as the number of 
classes used [60–62].

5 � Performance Metrics

Following the same performance metrics in the previous references, the efficiency of images 
classification into three classes is measured based on Accuracy, Specificity, Sensitivity, Preci-
sion, and F1 Score. The formula for calculating these performance measures are written as 
below in Eqs. 3–7 respectively:

(2)ReLU(x) =

{

x, if x > 0,

0, otherwise

(3)Accuracy =
TP + TN

(TP + TN + FP + FN)

(4)Specificity =
TN

TN + FP
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where TP identifies the True Positive, TN identifies the True Negative, FP identifies the 
False Positive and FN identifies the False Negative. These parameters are estimated from 
the confusion matrix, which provides the details about the false and successful classifica-
tion of images from all categories.

6 � Image Data

6.1 � Figshare Dataset

We exploited the publicly available brain tumor dataset Figshare [49], to evaluate our 
proposed model. It was collected from Nanfang Hospital, Guangzhou, China, and Gen-
eral Hospital, Tianjin Medical University, China, from 2005 to 2010. The dataset contains 
233 patients suffering from brain tumors, wherein three classes of tumors are apparent, 
namely, meningioma, pituitary, and glioma tumors. They represent about 15%, 15%, and 
45%, respectively, among all tumors [63]. The images have a size of 512 × 512 pixels. The 
dataset comprises 3064 slices, including 708 meningioma, 1426 gliomas, and 930 pituitary 
tumors [64]. Table 2 explains the details of the images data exploited in the experiments.

For every patient, three experienced radiologists initially examined independently the 
MRI image to obtain the pathology type. This data set is complicated, and some tumors 
are similar in color, shape, position… Some examples of MRI images are given in Fig. 3. 
Figure 3a, b present two patients having the same category of tumors, where they exhibit 
different appearances. Conversely, a visual similarity is shown in Fig.  3c, d, where are 

(5)Sensitivity (Recall) =
TP

TP + FN

(6)Precision =
TP

TP + FP

(7)F1 Score = 2 ∗
Recall*Precision

Recall + Precision

Table 2   Summary of the image dataset

Tumor category Number of 
patients

Number of slices View Number 
of slices

Meningioma 82 708 Transverse 209
Sagittal 231
Coronal 268

Pituitary 62 930 Transverse 291
Sagittal 320
Coronal 319

Glioma 89 1426 Transverse 494
Sagittal 495
Coronal 437
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containing different pathological categories. In this study, two images include the same 
tumor category are considered as similar; else, they are considered dissimilar.

6.2 � Radiopaedia Dataset

Radiopaedia [65] represents the second dataset exploited in this paper. It contains 121 MR 
images correspond to four different grades as shown in Table 3. This dataset suffers from 
a few numbers of images in each grade. Whereas, big data with various examples rep-
resent a key for effective deployment of various deep learning models [66]. This dataset 
lacks a satisfactory volume of data to use deep learning models and earn good accuracy. In 
order to attain higher performance, we augmented the original data by using four various 
augmentation methods which are detailed in Table 4. For geometric transformations, we 
exploit rotation and flipping. Gaussian blur and sharpening are applied to reduce the noise. 
About 17 parameters and four augmentation techniques are exploited, which can gener-
ate 17 other samples for each image of the dataset. The augmented dataset is detailed in 
Table 3. The performances are evaluated based on a five-fold CV.

6.3 � REMBRANDT Dataset

The last dataset used in this paper is the Repository of Molecular Brain Neoplasia Data 
(REMBRANDT), which was exploited in various previous works [67]. It contains 130 
brain tumor patients with an average survival rate of 47 months. The dataset consists of 
various brain tumor types, which are astrocytoma (AST), oligodendroglioma (OLI), 

Fig. 3   Some examples of brain tumors (indicated by the yellow arrows). a and b presents a Gliomas in dif-
ferent subjects. c Present a meningioma and d present a pituitary tumor from different subjects [3]

Table 3   Radiopaedia dataset 
before and after using data 
augmentation

Tumor grades Tumor types Number of images

Before aug-
mentation

After 
augmenta-
tion

Grade I Menigiomas 36 648
Grade II Gliomas 32 576
Grade III Gliomas 25 450
Grade IV Glioblastmoas 28 504
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glioblastoma multiforme (GBM), and other patients with unknown tumor. The AST type 
includes 47 patients divided into 2 grades: grade 2 and grade 3 which contain respec-
tively 30 and 17 patients. The OLI type includes 21 patients divided into 2 grades: grade 
2 and grade 3 which contain respectively 14 and 7 patients. The GBM type consists of 40 
patients with grade 4. The data set is summarized in Table 5. In order to augmented data, 
we exploit 4 data augmentation techniques, which are Flip LEFT_RIGHT, Flip TOP_BOT-
TOM, Gaussian Blur (2.0), and Sharpen (2.0).

This dataset consists of various MRI protocols as FLAIR, T1W, T2W, and diffusion-
weighted imaging (DWI). The data set slices were manually labeled by experts. In this 
paper, the slice is considered a negative sample if the tumor lesion was not visible. If the 
tumor lesion is visible, the slice is labeled as a positive sample. Based on this dataset, five 
sub-datasets can be designed, which are detailed below.

Table 4   Various data 
augmentation methods with the 
used parameters

Technique 
number

Augmentation technique Parameters

1 Rotation 45°
90°
135°
180°
225°
270°
315°

2 Flip LEFT_RIGHT
TOP_BOTTOM

3 Gaussian Blur (Sigma value) 0.25
0.50
1.0
2.0

4 Sharpen (lightness value) 0.50
1.00
1.50
2.0

Table 5   Rembrandt details Tumor type Total patients Grade Total 
patients in 
grade

AST 47 Grade 2 30
Grade 3 17

OLI 21 Grade 2 14
Grade 3 7

GBM 44 Grade 4 44
Unknown tumor 18 – 18
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6.3.1 � Two‑Class Data (C2)

The main objective of this dataset is to classify the brain MRI into tumorous and normal 
classes. The dataset was divided into these two categories. Each slice from the dataset 
is included in the tumor class if the tumor is visible, while, it is included in the normal 
class. In this paper, we exploit 1041 and 1091 MRI slice as normal and tumorous samples, 
respectively. The original data set include 2132 MRIs, which are increased to 10,660 using 
the data augmentation technique.

6.3.2 � Three‑Class Data (C3)

The main objective of this dataset is to discriminate the brain MRI into three classes: nor-
mal, LGG, and HGG. As mentioned in the previous dataset, the normal class contains 1041 
images. The LGG dataset included AST grade 2 and OLI grade 2, while the HGG dataset 
included grade 3 of AST and OLI and the GBM samples. In general, C3 includes 1041 sam-
ples in a normal class, 484 samples in LGG class, and 631 samples in HGG class. C3 details 
are shown in Table 6.

6.3.3 � Four‑Class Data (C4)

The main objective of this dataset is to classify the brain MRI into four classes, namely nor-
mal, AST, OLI, and GBM. The AST class includes AST grade 2 and grade 3. OLI class also 
includes OLI grade 2 and grade 3. These classes, normal, AST, OLI, and GBM contain 1041, 
557, 219, and 339 samples, respectively. The C4 data set is summarized in Table 7.

Table 6   C3 dataset detail Tumor grades Number of images

Before augmentation After augmentation

Normal 1041 5205
LGG 484 2420
HGG 631 3155
Total samples 2156 10,780

Table 7   C4 dataset detail Tumor grades Number of images

Before augmenta-
tion

After augmentation

Normal 1041 5205
AST (G2 + G3) 557 2785
OLI (G2 + G3) 219 1095
GBM 339 1695
Total samples 2156 10,780
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6.3.4 � Five‑Class Data (C5)

This dataset is designed to classify brain MRI into different classes, which are AST (grade 
2), AST (grade 3), OLI (grade 2), OLI (grade 3), and GBM (grade 4). These classes contain 
respectively 356, 201, 128, 91, and 339 samples. The dataset details are shown in Table 8.

6.3.5 � Six‑Class Data (C6)

The last proposed dataset aims to discriminate brain MRI into six classes, which are 
normal, AST (grade 2), AST (grade 3), OLI (grade 2), OLI (grade 3), and GBM (grade 
4). This dataset includes 1041, 356, 201, 128, 91, and 339 samples for these classes, 
respectively. The C6 data set is summarized in the next table (Table 9).

7 � Experimental Results

The suggested model was trained using a desktop computer equipped with Intel Xeon 
Processor E5-2620 v4 and 64 GB RAM. It was implemented on Python 2.7, using Keras 
library and Tensor Flow. In this work, we have proposed a new model for brain tumor 
classification. It is tested on three datasets.

Table 8   C5 dataset detail Tumor grades Number of images

Before augmentation After 
augmenta-
tion

AST (G2) 356 1780
AST (G2) 201 1005
OLI (G2) 128 640
OLI (G3) 91 455
GBM 339 1695
Total samples 1115 5575

Table 9   C6 dataset detail Tumor grades Number of images

Before augmentation After augmentation

Normal 1041 5205
AST (G2) 356 1780
AST (G2) 201 1005
OLI (G2) 128 640
OLI (G3) 91 455
GBM 339 1695
Total samples 2156 10,780
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Our model consists of a 10-convolution layer in order to extract features from MRI 
images followed by 10 batch normalization layers in order to speed up the learning. In 
the aim to add more nonlinearity to the network and reduce the size of the layers, five 
max-pooling layers are exploited. To make Convolution output suitable for FC layers, 
the feature is reshaped to one dimension. An FC layer with 64 filters is exploited. The 
SoftMax classifier layer is used for classification [68]. It has three or four output neu-
rons as the number of classes. All convolution layers in this model employ filters of size 
3 × 3. The ReLu activation function is used, as it is already the standard activation func-
tion in the image classification models. The size of the max pool kernel is 2 × 2.

7.1 � Hyper‑parameters

The Figshare dataset images are in the size of 512 × 512. Because of computational cost 
reasons, this size is reduced to 256 × 256. To enhance image quality, we exploit intensity 
normalization and contrast enhancer as a preprocessing step. We use the 5-fold proposed 
by the dataset in the aim to make valid and comparable results. The method is evaluated 
using 70% from train fold as training and 30% as validation. Each run is repeated ten times 
and calculated the average as a result in order to improve the soundness of the outcome. 
Various tests are important before the final model evaluation in order to assure the hyper-
parameters value choices. Based on Tables 10 and 11, the best optimizer is Adagrad with a 
0.003 learning rate. The number of epochs is 20 with 16 as batch size.

The performance of our suggested model is evaluated based on five-fold cross-valida-
tion. The results are presented in the next tables. Figure 4 shows the training-validation 
process of the network. In these figures, the red and blue lines illustrate respectively the 
training and validation process.

The benefit of the suggested scheme is to speed the convergence and reduce the overfit-
ting, which is very clear from the accuracy and the loss history in Fig. 4. As outlined in 
these figures, our suggested CNN model reached very fast its maximum performance and 
there is a consistency between the training-validation accuracy and loss.

Table 10   Comparison between 
different optimizers and learning 
rates

Optimizer Learning rate

0.1 0.01 0.001 0.002 0.003 0.004

Adam 66.5 70.69 79.37 79.04 81.85 76.30
SGD 85.31 91.09 86.71 89.26 88.54 89.91
Adadelta 86.40 83.35 76.69 79.56 81.07 81.33
Adagrad 81.07 88.83 92.98 93.21 94.74 92.46

Table 11   Comparison between 
various numbers of epochs

Number of epochs 10 20 30 40

Accuracy 94.35 94.74 94.32 94.64
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Fig. 4   Accuracy and loss history of the proposed model based on fivefold cross-validation. a–e represent 
each set Accuracy and Loss history
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7.2 � Complexity Analysis

Computational complexity represents one of the important criteria for measuring the qual-
ity of the CNN model. We know that the time complexity of the CNN model depends on 
several parameters as the number of layers, the training phase In Table 1, we list the differ-
ent layers used in the proposed model. We use 10 convolution layers, which is a medium 
size for a CNN model. The complexity of the CNN model will be increased also with the 
increase of input size. Therefore, size reduction can be used to minimize the complexity of 
time. We start data preprocessing by reducing the input image size for all data used. The 
pooling layer can be another important technique to reduce computational complexity of 
the model. In this regard, our model exploits 5 layers of pooling. The main goal behind 
these operations is to reduce the computational complexity that can be helpful to generate a 
low power, and less complexity model. According to the results presented in Table 12 and 
to balance between accuracy and used time per epochs, we use 256 × 256 as input size and 
3 × 3 as filter size. The number of parameters used is about 3.3 M. Therefore, we can say 
that the complexity of our scheme is acceptable.

7.3 � Experimental Results for Figshare Dataset

A summary of predictions provided by the proposed model can be presented as a confu-
sion matrix where each row illustrates the actual class and each column illustrates the pre-
dicted class [69]. Table 13 shows the confusion matrix. From this table, we can note that 
the proposed technique classifies 2903 cases correctly and 161 cases incorrectly. It yields 

Table 12   Comparison between 
various numbers of epochs

Time (s) Accuracy

Image size (with filter 
size 3 × 3)

64 × 64 25 82.07
128 × 128 125 89.29
256 × 256 550 94.74

Filter size 5 × 5 896 88.02
9 × 9 2500 83.9

Table 13   Confusion matrix for 
the suggested model

True/Auto Meningioma Glioma Pituitary tumor

Meningioma 635 49 24
Glioma 64 1347 15
Pituitary tumor 9 0 921

Table 14   Performance of the proposed method on the test dataset

Class Accuracy Sensitivity Specificity Precision F1-score

Meningioma 95.23 89.68 96.9 89.68 89.68
Glioma 95.43 94.46 97 96.48 95.45
Pituitary tumor 98.43 99.03 98.17 95.93 97.45
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acceptable results, which attain 94.74% as the whole accuracy. We can note also that the 
meningioma tumor class gains the highest misclassifications rate. The misclassification is 
due to the fewer images number furnished for this class in the original dataset and no aug-
mentation technique was used.

Generally, many previous works utilized accuracy to evaluate model performance. 
In this study, we have exploited other measures as sensitivity, specificity, precision, and 
f1-score, in order to have a clear indicator of the generalization of the model. Table  14 
summarizes the classification performance of each tumor type and the average of best per-
formed proposed CNN model.

From Table  14, we note that the proposed model provides 95.23%, 95.43%, and 
98.43% as accuracy for Meningioma, Glioma, and Pituitary tumor, respectively. The 
sensitivity is another factor of classification performance, which attains respectively 
89.68%, 94.46%, and 99.03%. For all the classes, the specificity values are high which 
means that the model correctly recognizing the samples without a specific disease.

The performances of our model are compared with new classification methods that 
exploit the same dataset. As shown in Table 15, our model surpasses the newest methods 
based on classification accuracy. The table contains only accuracy as a performance metric 
since it is the common metric that is exploited in all the related works. Previous works [27, 
29] exploited the traditional machine learning technique which needs manual feature extrac-
tion that is a tedious task and time consuming. Other models based on CNN have exploited 
shallower networks that caused a limitation to provide high accuracy [33, 34, 37]. In this 
study, the choice of architecture and the hyper-parameters for the brain tumor classification 
has proven to process the MRI images effectively and attain higher accuracy results.

The MRI images classification of brain tumor represent a challenging problem 
owing to the variety in intensities, size, orientation, and shape. In addition to images 
contrast and the noise perturbations. Furthermore, the medical datasets exploited are 
often limited in size and hard to access. Various inferences are made through perfor-
mance analysis. From the confusion matrix in Table  13, we noticed that most of the 

Table 15   Comparison with previous works

Author Manual segmentation Number of images used Best accuracy

Guo et al. [53] No 327 2 classes: 93%
3 classes: 77%

Abiwinanda et al. [37] No 2100 (700 from each tumor 
type)

84.19

Paul et al. [33] No 989 (axial only) 84.52
Paul et al. [33] No 989 (axial only) 90.26
Tahir et al. [29] No 3064 86
Afshar et al. [34] Both 3064 86.56 using segmentation

72.13 using raw images
Afshar et al. [70] Bounding box 3064 90.89
Cheng et al. [27] Yes 3064 91.28
Ismael et al. [28] Yes 3064 91.9
Zhou et al. [35] No 989 (axial only) 92.13
Ghassemi et al. [38] No 3064 93.01
Pashaei et al. [36] Not mentioned 3064 93.68
Proposed No 3064 94.74
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misclassifications pertain to the class meningioma. This is due to the fewer samples in 
the dataset from this class and we don’t use any technique for class-specific data aug-
mentation to balance the dataset. The handling of smaller amounts of training data rep-
resent the other part that our work concentrated on. According to Fig. 4, we notice that 
the training loss decreases, and the validation loss increases during the first iterations. 
This indicates that the phenomenon of overfitting took place, which leads to lower clas-
sification accuracy. This overfitting could be avoided by data augmentation. This aspect 
offers a scope for future works.

7.4 � Experimental Results for Radiopaedia Dataset

7.4.1 � Experimental Results Before Data Augmentation

The confusion matrix for the second datasets is given in Table 16. It can be shown that the 
accuracy attains 95.61%, 92.98%, 93.85%, and 98.24% respectively for grade I, II, III, and 
IV. The overall accuracy (OA) can reach about 90.35%. The results gained from the origi-
nal dataset are not convincing enough and it cannot be trusted in the clinical environment 
due to the height error rate. The poor OA indicates the confused of some grades, which not 
acceptable.

7.4.2 � Experimental Results After Data Augmentation

Due to the poor results obtained by the original dataset, we use various data augmentation 
to enhance the performance provided by the proposed model. The confusion matrix for the 
new dataset is presented in Table 17.

Based on the calculated performances, the OA is increased from 90.35 to 93.71%, which 
is much better than the OA gained without data augmentation. Similarly, accuracies for 
grades I, II, III, and IV are increased respectively from 95.61 to 96.32%, 92.98 to 95.31%, 
93.85 to 96.18%, and 98.24 to 99.61%.

Various other performances can be calculated in order to have a clear indicator of the 
generalization of the model. Tables 16 and 17 summarizes the classification performance 
of each tumor grade.

Table 16   Confusion matrix for 
Radiopaedia dataset before using 
data augmentation

Class Accuracy Sensitivity Specificity Precision F1-score

Grade I 95.61 88.23 98.75 96.77 92.3
Grade II 92.98 93.33 92.85 82.35 87.49
Grade III 93.85 84 96.62 87.5 85.71
Grade IV 98.24 96 98.87 96 96

Table 17   Confusion matrix for 
Radiopaedia dataset after using 
data augmentation

Class Accuracy Sensitivity Specificity Precision F1-score

Grade I 96.32 90.79 98.75 96.94 93.76
Grade II 95.31 95.66 95.18 87.87 91.59
Grade III 96.18 90.84 97.61 91.05 91.05
Grade IV 99.61 98.22 100 100 99.1
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The suggested model provides 90.79%, 95.83%, 90.84%, and 98.22% as sensitivity for 
Grade I, Grade II, Grade III, and Grade IV, respectively. For all the grades, the specificity 
values are high which indicates that the proposed model correctly recognizing the sam-
ples without a specific group. The F1-score is another factor of classification performance, 
which attains respectively 96.38%, 89.3%, 91.05%, and 99.1%.

According to the experimental results, it is evident that the use of data augmentation 
techniques enhances the classification performance.

7.4.3 � Comparison with Previous Methods

A comparison with previous techniques is detailed in Table 18. Sachdeva et al. [48] used 
428 MRI images in order to classify 5 classes. Various intensity and texture features are 
extracted from each image. The OA is about 94%. Pinaya et al. [50] classified MRI into 
Healthy control and Schizophrenia based on deep belief network and SVM. 231 images are 
exploited in this work. The OA attained is about 73.6%.

Recently, Sajjad et al. [47] propose a new deep CNN in order to classify 4 grades of 
brain tumors. The original dataset contains 121 images. The OA attains 87.38%. Due to 
the poor result and the reduced dataset used for Deep CNN model, the author uses data 
augmentation to provide several examples for the dataset. The new dataset contains 3630 
images and the OA is increased to 90.67%.

In our work, two scenarios are realized, before and after data augmentation. The original 
data contain 121 images as used by Sajjad et al. [47]. It includes 4 grades: Grade I (Meni-
giomas), Grade II (Gliomas), Grade III (Gliomas), and Grade IV (Glioblastmoas). Each 
grade includes 36, 32 25, and 28 images, respectively. The OA attained is 90.35%. Due 
to the poor result, we use several techniques for data augmentation, which are detailed in 
Table 4. The data set is augmented from 121 to 2178 images. The OA attained is 93.71%.

7.5 � Experimental Results for REMBRANDT Dataset

7.5.1 � Experimental Results Before Data Augmentation

The image size is reduced to 128 × 128 with the aim to reduce the time complexity. The 
confusion matrix for the third datasets is given in Tables  19, 20, 21, 22 and 23. From 
Table 19, it can be shown that the proposed model gained excellent accuracy, which attains 
100%. This is due to the simplicity of this kind of classification and the accepted data 
volume exploited. According to Table 20, the normal class attains 100% accuracy, while 
LGG and HGG attain both 95%. The overall accuracy (OA) can reach about 95%. In C4 
and based on Table 21, the normal class attains 98.6% accuracy. The accuracy for AST 
(G2 + G3) can reach about 95.34%, and 99.06% and 95.81% for OLI (G2 + G3) and GBM 
respectively. The OA is about 94.41%. Based on Table 22, the C5 accuracy attains 90.43% 
for AST (G2), 98.26% for AST (G3), 98.26% for OLI (G2), 96.52% for OLI (G2), and 
88.69% for GBM. The OA reaches about 86.08%. According to Table 23, the last dataset 
proposed (C6) provide 97.67% as accuracy for normal class, 95.34% for AST (G2), 98.13% 
for AST (G3), 99.06% for OLI (G2), 99.06% for OLI (G3) and 94.88% for GBM. The OA 
attains 92.09%. The poor OA obtained indicates the confusion of some classes, which not 
acceptable in the clinical environment. We can surpass this issue using some data augmen-
tation techniques.
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7.5.2 � Experimental Results After Data Augmentation

Various data augmentation techniques are exploited in the aim to enhance the performance 
provided by the proposed model. The confusion matrix for the new dataset is presented in 
Tables 24, 25, 26, 27 and 28.

Table 19   Confusion matrix for 
C2

Class Accuracy Sensitivity Specificity Precision F1-score

Normal 100 100 100 100 100
With tumor 100 100 100 100 100

Table 20   Confusion matrix for 
C3

Class Accuracy Sensitivity Specificity Precision F1-score

Normal 100 100 100 100 100
LGG 95 100 93.07 84.7 91.71
HGG 95 70 100 100 82.35

Table 21   Confusion matrix for C4

Class Accuracy Sensitivity Specificity Precision F1-score

Normal 98.6 99 98.26 98.01 98.5
AST (G2 + G3) 95.34 96.36 95 86.88 91.37
OLI (G2 + G3) 99.06 92 100 100 95.83
GBM 95.81 80 98.88 93.33 85.87

Table 22   Confusion matrix for 
C5

Class Accuracy Sensitivity Specificity Precision F1-score

AST (G2) 90.43 85.71 92.5 83.33 84.5
AST (G3) 98.26 90 100 100 94.73
OLI (G2) 98.26 86.66 100 100 92.85
OLI (G3) 96.52 80 98.09 80 80
GBM 88.69 85.71 90 78.94 82.18

Table 23   Confusion matrix for 
C6

Class Accuracy Sensitivity Specificity Precision F1-score

Normal 97.67 100 95.65 95.23 97.55
AST (G2) 95.34 85.71 97.22 85.71 85.71
AST (G3) 98.13 90 98.97 90 90
OLI (G2) 99.06 86.66 100 100 92.85
OLI (G3) 99.06 80 100 100 88.88
GBM 94.88 82.85 97.22 85.29 84.05
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Table 25   Confusion matrix for 
C3

Class Accuracy Sensitivity Specificity Precision F1-score

Normal 100 100 100 100 100
LGG 97.22 98.4 96.76 92.21 95.20
HGG 97.22 86 99.4 96.99 91.16

Table 26   Confusion matrix for C4

Class Accuracy Sensitivity Specificity Precision F1-score

Normal 99.81 99.8 99.82 99.8 99.8
AST (G2 + G3) 97.58 97.09 97.75 93.68 95.35
OLI (G2 + G3) 98.69 90.4 99.78 98.26 94.16
GBM 97.95 93.71 98.77 93.71 93.71

Table 27   Confusion matrix for 
C5

Class Accuracy Sensitivity Specificity Precision F1-score

AST (G2) 94.43 88.5 97 92.81 90.6
AST (G3) 96.69 94 97.26 87.85 90.82
OLI (G2) 97.91 96 98.2 88.88 92.3
OLI (G3) 96.69 62 100 100 76.54
GBM 92 90.85 92.5 84.12 87.35

Table 28   Confusion matrix for 
C6

Class Accuracy Sensitivity Specificity Precision F1-score

Normal 99.81 100 99.65 99.6 99.8
AST (G2) 98.79 93.14 99.88 99.79 96.16
AST (G3) 97.48 88 98.46 85.43 86.69
OLI (G2) 99.25 98.66 99.3 91.35 94.86
OLI (G3) 98.79 76 99.9 97.43 85.39
GBM 97.3 94.85 88 89.24 87.67

Table 24   Confusion matrix for 
C2

Class Accuracy Sensitivity Specificity Precision F1-score

Normal 100 100 100 100 100
With tumor 100 100 100 100 100

According to the calculated performances, all the performances are increased which 
indicates that the suggested model works well with the augmented data. The OA for the 
augmented C2 stays fixed at 100%. The OA for the augmented C3 is increased from 95 to 
97.22%. Similarly, OA for the augmented C4, C5 and C6, are increased respectively from 
94.41 to 97.02%, 86.08% to 88.86%, and 92.09 to 95.72%. Several other performances 
can be calculated which are summarized in the previous tables in the aim to have a clear 
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indicator of the generalization of the model. Based on the experimental results, data aug-
mentation techniques significantly ameliorate the classification performance.

7.5.3 � Comparison with Previous Methods

A comparison with previous techniques used in the same dataset is detailed in Table 29. 
Anaraki et al. [71] evolved two CNN strategies based on GA. The first model exploits 7 
layers in the aim to classify brain MRIs into three grades. The second model uses 8 layers 
to distinguish between 3 brain tumor classes. These two models can achieve 90.9% and 
94.2% accuracy, respectively. The proposed approach is computationally expensive due to 
the complexity of parameter selection based on the GA method.

In a similar study, Yang et  al. [4] exploit two well-known CNN models, which are 
AlexNet and GoogLeNet with transfer learning (TL) for glioma classification. The TL 
technique outperformed the “learning from scratch” technique for both models. The height 
accuracy provided is about 93%.

Recently, Tandel et  al. [72] proposed a new technique based on the AlexNet model 
with the aim to classify 5 MRI brain tumor dataset. The used datasets include two, three, 
four, five, and six classes, respectively. The suggested technique outperforms several other 
machine learning techniques like SVM, Decision Tree, K-nearest neighbor, etc. The accu-
racy provided in about 100%, 95.97%, 96.65%, 87.14%, and 93.74% for the 5 used datasets, 
respectively.

Table 29   Comparison with previous works

Author Classes Method Class accuracy (%)

Anaraki et al. [71] 3 CNN-1
(7-layer)
CNN-2
(8-layer)

Acc I = 90.9
Acc II = 94.2

Yang et al. [4] 3 AlexNet:
8 layer
GoogleNet:
22 layer

Acc = 93

Tandel et al. [72] 2, 3, 4, 5, 6 AlexNet:
8 layer

Acc C2 = 100
Acc C3 = 95.97
Acc C4 = 96.65
Acc C5 = 87.14
Acc C6 = 93.74

Proposed method 2, 3, 4, 5, 6 New Deep CNN model Before augmentation:
Acc C2 = 100
Acc C3 = 95
Acc C4 = 94.41
Acc C5 = 86.08
Acc C6 = 92.09
After augmentation:
Acc C2 = 100
Acc C3 = 97.22
Acc C4 = 97.02
Acc C5 = 88.86
Acc C6 = 95.72
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In our work, we exploit two scenarios, before and after data augmentation. For the origi-
nal dataset, the OA attained is about 100%, 95%, 94.41%, 86.08%, and 92.09% for the 5 
proposed datasets, respectively. Due to the poor result, we use several techniques for data 
augmentation, which are mentioned above. The new OA achieved is about 100%, 97.22%, 
97.02%, 88.86%, and 95.72% respectively

8 � Discussion

In this paper, we have suggested a new deep CNN model for MRI brain tumor classifi-
cation. Our model exploits various layers with different sizes and Softmax classifier. The 
experimental study of the proposed technique is carried out based on three public datasets, 
as discussed earlier.

The first brain tumor dataset is Figshare, which is a free and available dataset. It con-
tains 3064 images correspond to meningioma, glioma, and pituitary tumors. The second 
exploited dataset is Radiopaedia, which is used as an extra validation to affirm that our sug-
gested model can also classify the tumor grade with acceptable results. The original data 
contain 121 MRI images correspond to 4 grades. Due to the small data volume, we use sev-
eral data augmentation techniques in order to increase the data set size which can enhance 
the model accuracy. We have employed rotation in different angles, Flipping, Gaussian 
Blur, and Sharpen with several parameters. The new dataset contains 2178 images. We 
adapted the proposed model for this dataset by modifying the last FC layer to have 4 neu-
rons, which correspond to the number of grades. The classification results are analyzed, 
and various evaluation metrics are calculated as accuracy, sensitivity, specificity, precision, 
and F1-score.

In general, only the accuracy is exploited in the majority of the previous works to evalu-
ate the proposed scheme. However, the use of the accuracy only for comparison can be 
misleading since it ignores the sensitivity to imbalanced data. In this case, some class per-
formances can become better than others.

In this work, we use various measures in the aim to gain a clear indicator of the gener-
alization of the proposed model. As shown in Table 14, the suggested Deep CNN provides 
good accuracy for the first data set, which reaches 95.23% for Meningioma, 95.43% for 
Glioma, and 98.43% for Pituitary tumor. The OA is 94.74%. Furthermore, the obtained 
results are compared with some new previous works. As detailed in Table 15, it is clear 
that our model achieved higher accuracy and outperformed the various previous works.

The second dataset is tested based on two scenarios: before and after augmentation. 
From Table 16, the original dataset attains 95.61%, 92.98%, 93.85%, and 98.24% as accu-
racy for grade I, grade II, grade III, and grade VI, respectively. The OA gained is about 
90.35%. From Table  17, the augmented dataset achieves 96.32%, 95.31%, 96.18%, and 
99.61% as accuracy for the 4 grades, respectively. The OA is about 93.71%. A compari-
son with some previous works is detailed in Table 18. It is clear that the proposed model 
achieved higher accuracy and outperformed the various previous works.

In the last dataset, we exploit two scenarios: before and after augmentation for the 5 
sub-datasets. From the experiment results obtained, the OA gained before data augmenta-
tion is about 100%, 95%, 94.41%, 86.08%, and 92%, respectively. The augmented datasets 
achieve 100%, 97.22%, 97.02%, 88.86% and 95.72 as OA respectively. A comparison with 
some previous works that exploit the same datasets is detailed in Table 29. It is clear that 
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our model gained the highest accuracy and outperformed all the previous works. Despite 
the variety of grade, classes, position, and intensity for the used MRI, the suggested model 
generates promising results.

Based on the obtained results, the proposed model gained the highest accuracy in MRI 
brain tumor classification using the three datasets. It can generate promising results either 
for a small dataset. However, the MRI brain images classification represents a challeng-
ing problem owing to the variety in intensities, size, orientation, and shape. In addition to 
image contrast and the noise perturbations. Furthermore, the medical datasets exploited are 
often limited in size and hard to access. Several previous works [27, 29, 48] used the tra-
ditional machine learning technique, which needs manual feature extraction that is a tedi-
ous task and time consuming. Some other works that used CNN [33, 37] have exploited 
shallow networks with a few MRI data, which lead to lower accuracy value. In this study, 
the choice of architecture and the hyper-parameters for the brain tumor classification has 
proven to process the MRI images effectively and attain higher accuracy results.

In our opinion, the suggested scheme is effective to classify MRI brain tumors as type or 
grade, which help doctors to take the precise decision in a short time. We believe also that 
our model can be exploited to classify other tumor types as breast cancer, lung cancer, liver 
cancer… and other medical image types as ultrasound, X-ray.

9 � Conclusion and Future Work

Our paper presents an innovative model for multi brain tumors classification based on 
CNN. It is an automatic system, which requires a minimum of pre-processing. The model 
was tested on three brain tumor datasets. Various performance metrics were studied to 
evaluated model accuracy and ascertain the robustness of the system. The suggested model 
recorded the best classification accuracies compared to previous related works on the same 
dataset. The experiment results show the effectiveness of this model despite the smaller 
amount of training data. The suggested approach can be used for other MRI classification 
since it requires minimum preprocessing and does not use handcrafted features. As future 
work, we attend to exploit images from different modalities as T1, T2, and Flair, which aim 
to augment the dataset size and added robustness to our scheme.
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