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Abstract
Since the existing methods can not balance the sufficient use of information and the scale 
of the optimization problem, a new method for multi class classification problem is pro-
posed, which is called multi-class support vector machine based on the minimization of 
class variance (MCVMSVM for short). MCVMSVM adopts the idea of semi-supervised 
learning and transfers the K-class problem to K(K − 1)/2 binary classification problems. 
For each binary classification problem, a new SVM with a mixed regularization term 
which considers the margin and the distribution of examples is proposed. MCVMSVM 
can utilize the information of all examples without increasing the scale of the optimization 
problem. The performance of MCVMSVM on UCI and NDC datasets is the best compared 
with other methods, that means MCVMSVM is more effective.

Keywords  Multi-class problems · Support vector machines · Class variance

1  Introduction

Support vector machine (SVM) proposed byVapnik [1, 2] is a general learning method 
based on statistical learning theory (SLT). Support vector machines show many good prop-
erties on two classification problems [3]. While, in the real word, there are a lot of multi-
class classification problems, such as text recognition, image classification, speech recogni-
tion, face recognition and so on. Therefore, more and more researchers devote to the study 
of multi-class classification problems. There are a lot of classification algorithms in data 
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mining, such as neural network, k-nearest neighbor, decision tree, support vector machine, 
etc. Although Neural network has better classification accuracy, it has some shortcomings. 
Neural network needs a large number of parameters, such as the initial value of network 
topology, weight and threshold; it can not observe the learning process between them, and 
the output results are difficult to explain, which will affect the credibility and acceptabil-
ity of the results [16–18]. K-nearest neighbor is the easiest method, it is suitable for the 
data with large sample size, while it is easy to produce misclassifications for those data 
with small sample size. Decision tree is easy to understand and the output is more com-
prehensive, while over-fitting is easy to occur in decision tree and the decision tree ignores 
the correlation between attributes. Support vector machine (SVM) is more classical and 
representative. SVM can improve generalization performance and solve high dimensional, 
nonlinear problems, it can also avoid the problems of neural network structure selection 
and local minima.

Most of the currently existed multi classification methods based on support vector 
machine adopt the decomposition-reconstruction strategy. These kinds of methods transfer 
the K-class problem to a series of binary-classification problems and the discrimination 
functions can be obtained by solving a series of binary classification problems [4–8, 12]. 
There are totally three “decomposition reconstruction” strategies. The first one is “1-ver-
sus-rest” strategy [9] which constructs K classifiers. For the k-th problem, the examples 
belong to the k-th class are viewed as positive examples, the examples in the other classes 
are viewed as negative examples, then binary SVM is used to build the classifier. A new 
example is assigned a label according to the winner-takes-all scheme. Although “1-versus-
rest” strategy uses the information of all examples in the training set, almost all the binary 
problems are unbalanced because the number of negative examples is much larger than 
the number of positive examples. The second one is “1-versus-1” strategy [10] which con-
structs binary classifiers and each classifier involves only two class examples with aban-
doning the other K-2 classes. For a new example, its label is decided by the voting scheme. 
In “1-versus-1” strategy, the information of the remaining examples is omitted when 
constructing each binary classifier. The third one is “1-versus-1-verus-rest” which is the 
improvement of “1-versus-1” strategy, called K-SVCR [11]. KSVCR constructs K(K−1)/2 
sub-classifiers. In the process of constructing the sub-classifiers, the original training set is 
divided into three parts: positive examples (the examples belonging to i-th class in original 
training set), negative examples (the examples belonging to j-th class in original training 
set) and rest examples (all the other examples belonging to the original training set except 
the i-th class and the j-th class). KSVCR aims at finding the sub-classifier that can classify 
the positive and negative examples correctly and the rest examples are restricted within an 
ε-insensitive band. For a new example, its label is also decided by the voting scheme. Com-
pared with “1-versus-1” support vector machine, KSVCR makes full use of the information 
of training samples. Although KSVCR does not loss any information of the examples, the 
scale of its optimization problems increase largely and thus it’s difficult to be solved.

In order to overcome the shortcomings of “1-versus-1” SVM and KSVCR, a new opti-
mal method which incorporates the idea of semi-supervised learning is proposed in this 
paper. Our method is based on 1-versus-1-versus rest framework, i.e. the K-class problem 
is transferred to K(K−1)/2 binary classification problems. When solving the k-th binary 
problem, the training set is divided into three parts: positive examples (the examples in 
the i-th class), negative examples (the examples in the j-th class) and rest examples (all 
examples except the positive and negative examples). For each sub-classifier, the classifi-
cation hyperplane is required to separate the positive and negative examples correctly and 
the projections of rest examples on the normal vector of the classification hyperplane is 
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focused around zero. So, a new SVM with a mixed regularization term is proposed. The 
new regularization term considers both the margin between positive and negative examples 
and the distribution of the rest examples. Compared with currently existed methods, the 
new method uses all the information of examples without abandon any examples.

This paper is organized as follows. In Sect. 2, we give a brief introduction of SVM, min-
imization class variance SVM (MCVSVM) and K-SVCR. Our new method MCVMSVM 
is proposed in Sect. 3. The numerical experiments on several real datasets are conducted in 
Sect. 4. We summarize this paper in Sect. 5.

2 � Related Works

Some works closely related to this paper, such as SVM, MCVSVM and K-SVCR are intro-
duced in this section.

2.1 � Support Vector Machine

Consider the binary classification problem with the training set

where xi ∈ Rn is an example,yi ∈ { + 1,−1} is the corresponding label.
SVM constructs a hyperplane w ⋅ x + b = 0 by maximizing the margin between two sup-

port hyperplanes ( w ⋅ x + b = −1 and w ⋅ x + b = 1 ). Furthermore, the positive examples 
should be located above the positive hyperplane w ⋅ x + b = 1 and the negative examples 
should be located under the negative hyperplane w ⋅ x + b = −1 . SVM gets the classifica-
tion hyperplane by solving the following quadratic program:

where C > 0 is the parameter that can balance the margin and classification error, �i ≥ 0 is 
slack variable measuring the classification loss of examples. More details of SVM can be 
found in the literature [13].

2.2 � Minimization Class Variance Support Vector Machine

For the training set (1), the hyperplane generated by the traditional support vector machine 
is determined by a small number of support vectors, and it ignores the structural character-
istics of the training examples. Therefore, the SVM can not play a good classification effect 
for some data, as shown in Fig. 1. Although the SVM can find a hyperplane to separates the 
positive and negative training examples correctly, the hyperplane derived by SVM does not 
represent the distribution trend of the data well. Therefore, new point “*” may be misclassified 
by SVM. So, minimization class variance support vector machine (MCVSVM) is proposed by 

(1)T= {(x1, y1),… , (xl, yl)}

(2)
min
w,b,�

1

2
||w||2 + C

l∑
i=1

�i

yi(w ⋅ xi + b) ≥ 1 − �i, i = 1,… , l,

�i ≥ 0, i = 1,… , l,
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the literature [14]. MCVSVM adopts an intra class divergence matrix to keep the distribution 
between data. The optimization problem is as follow:

where matrix Sw is the sum of the divergence matrix of the positive examples and negative 
examples. C > 0 is the penalty parameter, �i is the slack variable measuring the classifica-
tion loss of examples.

Now, let’s give the geometric interpretation of the optimization problem (3). Minimizing 
the first term in the objective function means the intra-class examples’ projections on the nor-
mal vector of the hyperplane should be as close as possible; minimizing the second term is 
to minimize the loss of misclassification; the constraints means the examples belonging to 
positive and negative class should be located on both sides of hyperplanes (w ⋅ x + b) = 1 
and (w ⋅ x + b) = −1 . For a new example, it’s label is decided by the following discriminant 
function:

Since MCVSVM considers the distribution of examples, the hyperplane obtained by 
MCVSVM is better which is shown in Fig. 2. There is a serious shortcoming in MCVMSVM, 
when the dimension of examples is much larger than the number of examples, the inverse of 
matrix Sw may not exist.

2.3 � Support Vector Classification‑Regression Machine for K‑Class (K‑SVCR)

Given the training set

where xi ∈ Rn is an example,yi ∈ {1, 2,… ,K} is the corresponding label of xi.

(3)
min
w,b

1

2
wTSww + C

l∑
i=1

�i

yi(x
T
i
w + b) ≥ 1 − �i,

�i ≥ 0,

(4)f (x) = sgn(S−1
w

l�
i=1

�iyi⟨xi ⋅ x⟩ + b).

(5)T= {(x1, y1),… , (xl, yl)}

Fig. 1   The classification effect 
of SVM
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K-SVCR constructs K(K − 1)/2 sub-classifiers for the K-class classification problem. 
When constructing the sub-classifiers, the training set is divided into three parts: posi-
tive class, negative class and rest class. A mixed classification and regression machine 
is formulated. Firstly, the classification hyperplane w ⋅ x + b = 0 should separates the 
training examples belonging to positive and negative classes as correct as possible. 
Secondly, the examples of the rest class should be in the ε-insensitive band ( 0 < ε < 1 ) 
of the hyperplane w ⋅ x + b = 0 . According to the idea mentioned above, the optimiza-
tion problem of K-SVCR is formulated as follows:

where �i,�i,�
∗
i
 are slack variables measuring the loss of misclassification, C > 0 and D > 0 

are parameters that can balance the margin, classification error and regression error. l1 rep-
resents the number of examples in positive class. l2 represent the number of examples in 
negative class.

Now we explain the optimization problem in detail. Minimizing the first term in 
(6) is to maximize the margin between two support hyperplanes w ⋅ x + b = −1 and 
w ⋅ x + b = 1 . The second term is to minimize the sum of classification errors of the 
examples belonging to the positive and negative class, the third term is to minimizes 
the sum of regression errors of the examples belonging to the rest class. The first 
constraints mean the examples belonging to the positive class should be above the 
positive support hyperplane w ⋅ x + b = 1 and the examples belonging to the negative 
class be under the negative support hyperplane w ⋅ x + b = −1.The second constraints 
mean the examples belonging to the rest class should be in the ε-insensitive band of 
w ⋅ x + b = 0 . It is obviously that there are a lot of constraints in the optimization prob-
lem of (6). So, it takes a lot of time to be solved.

(6)

min
w,b,�,�i,�

∗
i

1

2
||w||2 + C

l1+l2∑
i=1

�i + D

l∑
i=l1+l2+1

(�i + �∗
i
)

s.t.yi(w ⋅ xi + b) ≥ 1 − �i, i = 1, ..., l1 + l2,

− � − �∗
i
≤ w ⋅ xi + b ≤ � + �i, i = l1 + l2 + 1, ..., l,

�i ≥ 0, i = 1, ..., l1 + l2,

Fig. 2   The classification effect of 
MCVSVM
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3 � Minimization class variance SVM for multi classification SVM 
(MCVMSVM)

Now, we are in the position to put out our MCVMSVM including the linear MCVMSVM and 
nonlinear MCVMSVM.

3.1 � The linear MCVMSVM

Our new method takes  “1-versus-1” strategy and totally K(K − 1)/2 classifiers are constructed, 
and the final decision is made by the voting scheme. When constructing the classifiers, the 
training set (5) is firstly divided into three parts: the examples belonging to the i-th class are 
viewed as positive class with label 1, the examples belonging to the j-th class are viewed as 
negative class with label -1 and the examples belonging to the rest class except the i-th and 
j-th class are viewed as zero class with label 0. For the re-divided training set, MCVMSVM 
wishes to find a hyperplane so that the positive and negative examples are located on both 
sides of w ⋅ x + b = 1 and w ⋅ x + b = −1 , and the projections of zero-class examples on the 
normal vector w are concentrated as close as possible to zero. The geometric explanation can 
be seen clearly in Fig. 3. The negative examples locate under the plane " w ⋅ x + b = −1 ″; the 
positive examples locate above the plane w ⋅ x + b = 1 ; the projections of zero-class examples 
on w are closed to zero. The hyperplane obtained by MCVMSVM should be the middle solid 
line H1 but not H0 which is obtained by 1-versus-1 SVM.

According to the training set (5), the matrix composed of class i is constructed as the posi-
tive sample matrix Ai:

the matrix composed of class j is constructed as the positive sample matrix Bj:

The matrix composed of zerois denoted as Ci,j Define the set Ck
i,j

 which is composed of the 
examples belonging to the k-th classas follows:

(7)Ai = [xi1, xi2,… , xili ], i = 1,… ,K,Ai ∈ Rli×n,

(8)Bj = [xj1, xj2,… , xjlj ], j = 1,… ,K,Bj ∈ Rlj×n

(9)Ck
i,j
= {xk1, xk2,… , xklk , k = 1,… ,K, k ≠ i, k ≠ j}

Fig. 3   An example learned by 
the linear MCVMSVM

wx+b=1

wx+b=−1

H1

H0

w
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Let mk
i,j

 denote the center point of Ck
i,j

.
The intra class scatter matrix of the zero class is Sw:

Suppose the i-th hyperplane is (wi,j ⋅ x) + bi,j = 0 , then the i-th problem is constructed 
as follows:

where, D > 0, 𝜆 > 0 are the parameters, ei,j = [ei, ej] and ei, ej are the vector of ones with 
appropriate dimensions, �i,j are slack variables measuring the misclassification。

Minimizing the first term in the objective function of problem (11) is to maximizes 
the interval between the support hyperplanes. Minimizing the second term is to mini-
mize the sum of classification errors. Minimizing the last term is to minimize the pro-
jection of examples in the zero class on the normal vector direction of hyperplane. The 
constraints guarantee the positive should be located above w ⋅ x + b = 1  and the nega-
tive examples should be located under w ⋅ x + b = −1 . Next, we construct the dual prob-
lem of (11). The Lagrange function of problem (11) is formulated firstly,

Then, by the Karuch-Kuhn-Tucker (KKT) conditions, we get

Substituting the Eq.  (13)–(15)s into (12), the dual problem of problem (11) can be 
abbreviated as:

(10)Sw =

K−2∑
k=1

∑
x∈Ck

i,j

(x − mk
i,j
)(x − mk

i,j
)T ,

(11)

min
wi,j ,bi,j

1

2
||wi,j||2 + DeT

i,j
�i,j +

�

2
wT
i,j
Swwi,j

(Aiwi,j + eibi,j) + �i,j ≥ ei,

− (Bjwi,j + ejbi,j) + �i,j ≥ ej,

�i,j ≥ 0,

(12)

L(wi,j, bi,j, �i,j, , �i,j,�i,j, �i,j, �i,j)

= DeT
i,j
�i,j +

1

2
||wi,j||2 + �

2
wT
i,j
Swwi,j

−�T
i,j
[(Aiwi,j + eibi,j) + �i,j − ei] − �T

i,j
�i,j

+�T
i,j
[(Bjwi,j + ejbi,j) − �i,j + ej] − �T

i,j
�i,j

(13)
�L

�wi,j

= wi,j+Swwi,j − AT
i
�i,j + BT

j
�i,j = 0 ⇒ wi,j = (I + �Sw)

−1(AT
i
�i,j − BT

j
�i,j),

(14)
�L

�bi,j
= −eT

i
�i,j + eT

j
�i,j = 0,

(15)
�L

��i,j
=

[
Dei
Dej

]
−

[
�T
i,j
ei

�T
i,j
ej

]
+

[
�T
i,j
ei

�T
i,j
ej

]
= 0 ⇒ 0 ≤ �i,j, �i,j ≤ D,
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where �i.j, �i,j are slack variables. Solving the dual problem (16), we get the optimal solu-
tion [�∗

k
, �∗

k
] , and randomly select a support vector label yk , then the optimal solution of the 

primal problem (11) is

So, the function of the k-th hyperplane can be expressed as:

Totally K(K − 1)∕2 hyperplanes like (18) are constructed in our MCVMSVM and 
thus the K(K − 1)∕2 decision functions are defined as follows:

For a new example x, a vote is given to the class (i) or class (j) based on which condi-
tion is satisfied. Finally, the example x is assigned to the class label that gets the most 
votes.

3.2 � The nonlinear classifier

In this section, the linear MCVMSVM is extended to the nonlinear case using kernel trick. 
The training set (5) is mapped into the high-dimensional feature space by introducing a 
nonlinear mapping �:

Suppose that the normal vector of the hyperplane in the feature space can be expressed 
as:

Then we define the intra-class divergence as:

We rewrite the term in (22) as follows:

(16)
max
�i,j ,�i,j

[eT
i
, eT

j
][�T

i,j
, �T

i,j
]T −

1

2
[�T

i,j
, �T

i,j
]T [AT

i
,−BT

j
]T (I+�Sw)

−1[AT
i
,−BT

j
]T [�T

i,j
, �T

i,j
]T

0 ≤ �i,j, �i,j ≤ D,

(17)
w∗
i,j
= (I + �Sw)

−1[AT
i
�∗
i,j
− BT

j
�∗
i,j
],

b∗
i,j
= yk − Ak

i
(I + �Sw)

−1[AT
i
�∗
i,j
− BT

j
�∗
i,j
],

(18)fij(x) = [x, 1][w∗T
i,j
, b∗T

i,j
]T = 0.

(19)sgn(fi,j(x)) =

{
+1, [x, 1][w∗T

i,j
, b∗T

i,j
]T > 0 i, j = 1,… ,K;i < j,

−1, [x, 1][w∗T
i,j
, b∗T

i,j
]T < 0 i, j = 1,… ,K;i < j,

(20)x → �(x)

(21)w =

l1+l12∑
i=1

�i�
(
xi
)

(22)

wTSww = wT

K−2∑
k=1

∑
x∈Ci,j

(�(x) − mk
i,j
)(�(x) − mk

i,j
)Tw

=

K−2∑
k=1

[wT
∑
x∈Ck

i,j

(�(x) − mk
i,j
)(�(x) − mk

i,j
)Tw].
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where � =
[
�1,…�l1+l2

]T , lk
r
 is the number of Ck

i,j
 , Ik

lr
 is lk

r
-order identity matrix, Lk

lr
 is lk

r
-

order matrix of all elements being equal to the square of 1
lk
r

,S = [AT
i
,BT

j
] . The k-th optimiza-

tion problem nonlinear MCVMSVM is:

where D > 0, 𝜆 > 0 are the parameters, ei,j = [ei, ej] and ei, ej are the vector of ones with 
appropriate dimensions, �i,j are slack variables measuring the misclassification. Similar to 
thelinear case, we get the optimal solution of (24) by solving the following dual problem:

where G = K(ST, ST) , Ki = K(AT
i
, ST ), Kj = K(BT

j
, ST ) , Kk

ij
= K(CkT

ij
, ST ) , Lk

ij
= Ik

lr
− Lk

lr
 . 

Solving the dual problem (25), we get the optimal solution [�∗
k
, �∗

k
] , and yk is the label of a 

support vectorxk , then the optimal solution of the primal problem (24) is

(23)

wT
�
x∈Ck

i,j

(�(x) − mk
i,j
)(�(x) − mk

i,j
)Tw

= wT
�
x∈Ck

i,j

�
(�(x)�(x)T − mk

i,j
�(x)T − �(x)mkT

i,j
+ mk

i,j
mkT

i,j
)T
�
w

= wT

⎡
⎢⎢⎣
�
x∈Ck

i,j

�(x)�(x)T − mk
i,j

�
x∈Ck

i,j

�(x)T −
�
x∈Ck

i,j

(�(x)mkT
i,j

+ lk
r
mk

i,j
mkT

i,j
)T
⎤
⎥⎥⎦
w

= wT

⎡⎢⎢⎣
�
x∈Ck

i,j

�(x)�(x)T − lk
r
mk

i,j
mkT

i,j

⎤⎥⎥⎦
w

=
�
x∈Ck

i,j

wT�(x)�(x)Tw − wTlk
r
mk

i,j
mkT

i,j
w

= �TK(Ck
i,j
, S)K(Ck

i,j
, S)T� − �TK(Ck

i,j
, S)Lk

lr
K(Ck

i,j
, S)T�

= �TK(Ck
i,j
, S)(Ik

lr
− Lk

lr
)K(Ck

i,j
, S)T�

(24)

min
w,b,�i,j

1

2
�TK(S, S)� + DeT

i,j
�i,j +

�

2

K−2∑
k=1

�TK(Ck
i,j
, S)(Ik

i,j
− Lk

i,j
)K(Ck

i,j
, S)T�

(K(AT
i
, ST )� + eibi,j) + �i,j ≥ ei,

− (K(BT
j
, ST )� + ejbi,j) + �i,j ≥ ej,

�i,j ≥ 0

(25)

max
�i,j ,�i,j

[eT
i
, eT

j
][�T

i,j
, �T

i,j
]T

−
1

2
[�T

i,j
, �T

i,j
]T [KT

i
,−KT

j
](G + �

K−2∑
k=1

Kk
i,j
Lk
i,j
KkT
i,j
)−1[KT

i
,−KT

j
]T [�T

i,j
, �T

i,j
]

0 ≤ �i,j, �i,j ≤ D,

(26)�∗=(G + �

K−2∑
k=1

Kk
i,j
Lk
i,j
KkT
i,j
)−1(�∗T

i,j
Ki − �∗T

i,j
Kj)
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Then the function of the i-th hyperplane can be expressed as:

Just as the linear case, the decision function that classifies class ( i ) and class ( j ) is 
designed as

For a new example x , a vote is given to the class ( i ) or class ( j ) based on which condi-
tion is satisfied. Finally, the example x is assigned to the class label that gets the most votes.

3.3 � Comparing with other methods

Comparing with “1-versus-1″ SVM. Our method needs to construct K(K − 1)∕2 hyper-
planes, this is just the same as “1-versus-1″ SVM. And the computational complexity of 
our method is almost the same as “1-versus-1” SVM. The information of all examples is 
used in our method. While, only the positive and negative examples are used in “1-ver-
sus-1” SVM. It is clearly that our method makes full use of the information of rest class 
compared with “1-versus-1” SVM.

Comparing with “1-versus-rest” SVM. “1-versus-rest” SVM and our MCVMSVM all 
make full use of the information of all examples. MCVMSVM makes more detailed use 
of information because it divides all examples into three parts (positive, negative and rest), 
while “1-versus-rest” SVM makes rough use of information because it divides all examples 
into two parts (positive and negative).

Comparing with K-SVCR. The “1-versus-1-versus-rest” strategy is used in both our 
MCVMSVM and KSVCR. But the processing method is quite different. A square term 
with intra class divergence of rest class is introduced in MCVMSVM, while a lot of con-
straints containing the rest examples are added in KSVCR. So, the computational complex-
ity of MCVMSVM is much less than the computational complexity of KSVCR, and the 
training time of MCVMSVM is shorter than that of KSVCR. The gap is more obvious 
when the number of categories is large which can be seen clearly in Fig. 4.

4 � Numerical experiments

To evaluate the performance of the new algorithm, several UCI [14] datasets and large 
scale NDC datasets are used in numerical experiments (Table  3). All experiments have 
been implemented in Matlab 2015b on a PC with system configuration Intel core 7CPU at 
3.5 GHz with 4 GB of RAM, and Windows 10 operating system. For the nonlinear case, 
RBF kernel is used. The parameters D are selected from the set [2−8, 2−7,… , 27, 28] and γ 

(27)b∗ = y∗
k
− �∗K(xk, S)

(28)fi,j(x) = �∗K(xT , ST )+b∗ = 0

(29)sgn(fi,j(x)) =

{
+1,𝜇∗K(xT , ST )+b∗ > 0 i, j = 1,… ,K;i < j,

−1,𝜇∗K(xT , ST )+b∗ < 0 i, j = 1,… ,K;i < j,
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is selected from � ∈ [0.1, 0.2,… , 2] . Our MCVMSVM is compared the popular multiclass 
classification methods: 1-v-1 SVM,1-r SVM and KSVCR.

Fig. 4   The comparison of the 
time consuming of MCVMSVM 
and KSVCR on the nine experi-
mental data sets
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4.1 � Benchmark datasets

In this section, we compare our MCVMSVM and other three multiclass classifica-
tion methods on UCI data sets. The five-fold cross validations are conducted on 9 UCI 
datasets, i.e. the data set is randomly split int five parts, four of them is the training 
set that helps us to learn the optimal hyperplane, one of them is the validation data 
set that test the hyperplane got by the training set. The five-fold validation results are 
shown in Table  1. We can see that our MCVMSVM performs better than the other 
four methods on five data sets: ‘wine’, ‘tea’, ‘seeds’, ‘glass’, ‘hayes’. On these five data 
sets, the accuracy on the data sets‘tea’ and ‘hayes’ are improved by up to 3.3% and 
6.8% using MCVMSVM. On the datasets‘iris’, ‘balance’ and ‘ecoli’, the accuracy of 
RBSVM is similar to that of the other method. Only on the data sets‘der’, the accu-
racy of MCVMSVM is 0.8% lower than other methods. On the whole, Table 1 shows 
that MCVMSVM has the best classification results on the seven datasets. In addition, 
the last two rows in the table are the average classification accuracy and mean stand-
ard deviation of the three classification models on the nine sets of datasets. Obviously, 
MCVMSVM has the highest accuracy and the lowest standard deviation, which indi-
cates that MCVMSVM can not only improve the classification accuracy, but also have 
a more stable classification effect. This is because MCVMSVM not only considers the 
samples of positive and negative class, but also considers the structure information 
of the rest samples, it makes full use of the information provided by the dataset. So, 
MCVMSVM has a better classification accuracy.

The classification effect is also compared on the independent test set. 30% of the 
datasets are randomly selected as the test set, the remaining 70% are used as the trains 
set. We firstly select the optimal parameters and train the classifiers using the training 
set by five-fold validation. Then we test the classifiers on the test set. Table  2 shows 
the comparison results. It is clearly that MCVMSVM performs better than all the other 
methods. Figure 5 compares the accuracies between five-fold cross validation and inde-
pendent test. It is clearly the accuracies drop more than 50% in other three methods. 
While the accuracy got by MCVMSVM almost is unchanged. So, the generalization of 
MCVMSVM is better.

Table 1   Five-fold cross validation comparison on UCI data sets

dataset 1-v-1SVM 1-rSVM KSVCR MCVMSVM

iris 96.67 ± 3.65 95.33 ± 4.52 96.67 ± 2.11 96.67 ± 3.26

wine 97.75 ± 2.09 98.86 ± 1.40 97.84 ± 2.37 98.3 ± 1.39

tea 63.58 ± 5.47 94.90 ± 4.31 63.87 ± 3.76 66.94 ± 5.71

seeds 91.9 ± 3.87 91.90 ± 3.56 92.12 ± 5.47 92.38 ± 1.78

ecoli 89.30 ± 2.55 88.58 ± 2.82 88.68 ± 1.35 89.30 ± 2.55

glass 71.55 ± 4.72 69.67 ± 4.09 72.64 ± 3.28 72.47 ± 3.91

hayes 75.01 ± 3.74 77.29 ± 4.05 78.24 ± 2.31 81.82 ± 1.43

balance 95.84 ± 2.23 88.96 ± 1.18 95.04 ± 1.87 95.84 ± 2.10

der 97.76 ± 1.41 98.04 ± 0.99 97.76 ± 1.43  96.92 ± 1.64

Average ACC​ 86.60 85.95 86.93 87.84
Average std 3.64 2.34 2.67 2.64
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We also compare the time consuming by KSVCR and MCVMSVM on 9 UCI data 
sets, the results are shown in Fig. 4. It is clearly that MCVMSVM is much faster than 
KSVCR. Because the constraint condition of the MCVMSVM model is much less than 
that of KSVCR, the computational complexity of MCVMSVM is much less than that of 
KSVCR.

4.2 � Parameter Analysis

This section will analyze the influence of model parameters on classification accuracy 
through numerical experiment. MCVMSVM has three parameters: D is penalty parameter, 
γ is kernel parameter, λ is a parameter which balance the divergence and classifier com-
plexity in the class. Considering the influence of one parameter on accuracy, the other two 
parameters remain unchanged. The influence of parameters D, λ, γ on the classification 
accuracy are given in Figs. 6, 7 and 8. 

As shown in Fig.  6, when the parameter D is small, the precision of the data sets is 
very low, and then the classification accuracy increases significantly with the increase of 
the classification accuracy, and the final classification precision tends to be slow. From the 
point of view of the change of precision, the accuracy increases significantly at the begin-
ning of the value 2−5 and the value becomes stable after 25. Therefore, the selection range 
of parameter D can be reduced between 2−3  and 25.

As shown in Fig.  7, for different data sets, the variation of γ vary greatly when 
MCVMSVM achieves the best accuracy. From the point of view of the change of precision, 
the accuracy increases significantly at the beginning of the value 0.3 and the value becomes 
stable after 1. Therefore, the selection range of parameter γ can be reduced between 0.3 
and 1.

In Fig.  8, we found that except for the "iris" and "tea" datasets with the best param-
eters of λ = 1 and λ = 4, the other seven sets of data sets had the best accuracy at λ = 0.05. 
Because λ is a parameter that balances the degree of intra class divergence and the com-
plexity of classifier, λ = 0.05 indicates that the intra class structure of the remaining class 
points has an effect on the classification model, so it is proved that the method we proposed 
is meaningful.

Table 2   The comparison on the independent test set

dataset 1-v-1SVM 1-r SVM KSVCR MCVMSVM

iris 75.33 ± 11.46  96 ± 2.49 75.33 ± 11.46 96.67 ± 2.11

wine 96 ± 2.28 97.71 ± 1.14 78 ± 4.64 98.29 ± 1.39

tea 57.33 ± 5.73 61.33 ± 6.53 58.67 ± 6.52 54.00 ± 10.5

ecoli 55.69 ± 7.24 85.23 ± 5.02 69.84 ± 0.75 85.54 ± 2.85

glass 36.67 ± 6.32 70 ± 7.91 48.57 ± 9.71 70.95 ± 5.08

hayes 78.46 ± 10.74 73.84 ± 4.48 40.77 ± 7.92 77.69 ± 8.21

balance 94.24 ± 4.59 65.92 ± 2.28 58.48 ± 3.81 95.68 ± 1.48

der 32.11 ± 6.13 96.09 ± 2.07 32.93 ± 5.44 98.87 ± 0.565

Average ACC​ 65.73 80.77 57.82 84.71
Average std 6.81 3.99 6.28 4.02
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4.3 � NDC datasets

In order to verify the classification of MCVMSVM in large-scale data sets, NDC dataset 
is selected as the training samples and the data amount increases from 500 to 50,000. 
The parameters are fixed as D = 28, P = 1, λ = 0.0039. We compare the five-fold cross 
validation accuracies. For the five-fold cross validation, the data set is randomly split 
into five parts, four of them is the training set that is used to learn the hyperplane, one 
of them is the validation set to test the hyperplane learned by the training set. Table 3 
shows the five-fold validation results. With the increase of the size of the dataset, 
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MCVMSVM has obvious advantages in classification accuracy. The average accuracy 
of MCVMSVM is 5% higher than other methods. Therefore, the proposed algorithm is 
applicable to the classification of large-scale data sets.

5 � Conclusion

In this paper, the multi-class support vector machine based on the minimization of 
class variance (MCVMSVM) is proposed by introducing the class structure informa-
tion into “1-versus-1” SVM. Comparing with “1-versus-1” SVM, we make full use of 
the information of rest class; Comparing with KSVCR, the computational complexity of 
MCVMSVM is much less than that of KSVCR. Numerical experiments demonstrate the 
effectiveness of our method.
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