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Abstract

Machine learning techniques, that are based on semantic analysis of behavioural attack pat-
terns, have not been successfully implemented in cyber threat intelligence. This is because
of the error prone and time-consuming manual process of deep learning solutions, which
is commonly used for searching correlated cyber-attack tactics, techniques and procedures
in cyber-attacks prediction techniques. The aim of this paper is to improve the prediction
accuracy and the processing time of cyber-attacks prediction mechanisms by proposing
enhanced Naive Bayes posterior probability (ENBPP) algorithm. The proposed algorithm
combines two functions; a modified version of Naive Bayes posterior probability function
and a modified risk assessment function. Combining these two functions will enhance the
threat prediction accuracy and decrease the processing time. Five different datasets were used
to obtain the results. Five different datasets containing 328,814 threat samples were used to
obtain the processing time and the prediction accuracy results for the proposed solution.
Results show that the proposed solution gives better prediction accuracy and processing time
when different examination types and different scenarios are taken into consideration. The
proposed solution provides a significant prediction accuracy improvement in threat analysis
from 92-96% and decreases the average processing time from 0.043 to 0.028 s compared
with the other method. The proposed solution successfully enhances the overall prediction
accuracy and improves the processing time by solving the TTPs dependency and the pre-
diction sets threshold problems. Thus, the proposed algorithm reaches a more reliable threat
prediction solution.

Keywords Cyber threat intelligence - Deep belief network - Machine learning - Latent
semantic indexing - Tactics - Techniques and procedures - Intrusion detection systems -
Naive Bayes

B Abeer Alsadoon
aalsadoon @studygroup.com

School of Computing and Mathematics, Charles Sturt University, Sydney Campus, Sydney,
Australia

Department of Information Technology, Study Group Australia, Sydney Campus, Sydney, Australia
Department of Computer Engineering and Informatics, Middlesex University Dubai, Dubai, UAE

Department of Islamic Sciences, Al Iraqgia University, Baghdad, Iraq

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-020-10381-x&domain=pdf
http://orcid.org/0000-0002-2309-3540

178 A. Sentuna et al.

1 Introduction

1.1 Background

Detailed investigations of cyber-attacks and threats reveal the fact that attackers or organi-
zations that perform cyber-attacks use common attack patterns to trick targets [1]. For this
reason, security communities that develop defense strategies against cyber-attacks require
intensive sharing and review of Cyber Threat Incident Reports (CTIR) in order to make these
strategies more effective [2]. Due to the large sizes of CTIR and the addition of new attacks to
concept of Advanced Persistent Threats (APT), it almost impossible for traditional methods
in cyber-attack environment [1] to identify characteristic signature of the performed attacks
[3]. Traditional methods for threat classification can be divided into two categories; machine
learning based methods and lexicon-based methods [4]. Prior methods make calculations
using lexicons to generate classification results [5]. However, reliability of results obtained
with these methods depends largely on the quality and coverage of threat reports [4]. On
the other hand, methods in the first category use handcrafted feature engineering to capture
statistical features. With statistical data, various classifiers, such as Support Vector Machine
(SVM), are used to obtain an estimated output of threat characteristics [5]. However, due to
the difficulty of applying these methods, a poor performance results in classification results.
To improve the performance of these methods, a combination of deep learning and machine
learning methods can be used to automatically extract the features from CTIRs [6].

1.2 Review

Effectiveness and usefulness of machine learning methods in cyber threat intelligence has
been proven many times. Bayesian probabilistic machine learning is based on joint prob-
ability function that graphically represents probability-based relationships between attack
tactics, techniques, and procedures (TTPs). In addition, it eliminates uncertainty and pro-
vides prediction reliability in threat intelligence reports [7]. Bayesian method allows for a
better extraction of threat features with low computation cost [8]. Despite all these supe-
rior features, performance of Bayesian method needs to be improved mainly in terms of
the activation function, the loss function, and the parameters. For improving the processing
time and prediction accuracy, optimized algorithms in threat characteristic classification can
be used [7]. Models that use machine learning have improved the processing time and the
classification accuracy with the help of various algorithms and techniques in determining
threat classification [5]. For example, the prediction accuracy in [2] reaches 92%, while the
processing time gives an average value of 0.043 s which is better compared to other models
that use conventional clustering methods [7]. In addition to that, the use of Naive Bayes algo-
rithm reduces keyword search problems and provides better performance than other models
[2]. However, this algorithm assumes that all predictive threats are independent of each other
[7]. This slows down the prediction stage and effecting the processing time performance,
making it difficult to understand associated attacks.

1.3 Aim
The purpose of this paper is to improve the prediction accuracy and the processing time

of security mechanisms against cyber-attacks. This is done by combining two functions; a
modified version of Naive Bayes posterior probability function and a modified risk assess-
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ment function. The proposed modified Bayesian probabilistic graphical function [7] is used
to overcome independent TTPs detection problems of current support function algorithm.
Moreover, it represents the probability-based relationships between TTPs, eliminates uncer-
tainty, and provides prediction reliability [7]. For the modified risk assessment function, this
paper applies the risk assessment framework, provided in [3], for the TTP classifications. This
framework [3] provides a dynamic risk management by focusing on behavioural detection
of complex TTPs. By combining these modified functions, the proposed solution has solved
the problems of the existing solutions and increased the classification and the prediction
accuracy.

1.4 Paper Structure

The rest of this paper is organized as follows: Sect. 2 reviews the literature on current solu-
tions of cyber threat classification using machine-learning methods. The proposed solution
is discussed in Sect. 3. Section 4 discusses the experiments and results of the proposed solu-
tion. Finally, Sect. 5 concludes the paper and presents the future works. Table 1 shows the
abbreviation list used in this paper.

2 Literature Review

In this section, some related papers from the literature are summarized to give better under-
standing of the study problem, methods, and techniques.

2.1 New Emerging Techniques, Tactics and Procedures in Cyber Threat Intelligence
Reports

The solution that is proposed in [9] highlights the benefits of using high-level indicators of
compromise (IoCs) in attributing cyber threats and provides a machine-learning model that
supplies effective accuracy in extracting high-level indicators of compromises from unstruc-
tured cyber threat intelligence (CTI) reports. The solution enhances automated cyber threat
attribution framework (FinTech) to minimize unstructured report errors in machine learning.
The authors offered a solution to the problem by using distributional semantics technique and
improved indexing of CTI reports. They have conducted research by integrating natural lan-
guage processing into machine learning models. In addition to that, they have profiled cyber
attackers and attack patterns with FinTech algorithm. Their solution provides 97% accu-
racy in extracting high-level IoCs from unstructured cyber-threat intelligence documents.
In FinTech algorithm, semantic matching query terms are matched to terms in text corpora
[1] but, synonyms and polysemous words cause false matching due to inaccurate concept
matching [7]. This negatively affects latent semantic analysis during obtaining and connect-
ing high-level attack processes [7]. As a result, the accuracy in terms of cyber threat actors
is acceptable, but false matching error needs to be considered to solve the issue of matching
with latent semantic query. Kim and Kim [10] enhanced cyber threat intelligence dataset that
is generated from cyber intelligence reports using an automated dataset generation system
CTIMiner. They aimed to increase the quality of data which can be used in cyber threat intel-
ligence analysis techniques. They have offered a solution by using data extraction method
which was enhanced by malware analysis platform that provides additional valuable col-
lection of detailed threat data and revealing characteristics of attackers who are performing
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Table 1 Abbreviation for annotations used in the report

ENBPP Enhanced Naive Bayes posterior probability
TTPs Tactics, techniques and procedures
CTIR Cyber threat incident reports

APT Advanced persistent threats

CTI Cyber threat intelligence

IoCs Indicators of compromise

DRA/DRM Dynamic risk assessment and management
OWL Web ontology language

SWRL Semantic web rule language

MDP Markov decision process

LSI Latent semantic indexing

ATT&CK Adversarial tactics, techniques and common knowledge
BPGM Bayesian probabilistic graphical model
IDS Intrusion detection system

EP-ANN Event-profile artificial neural networks
STIX Structured threat information expression
DMS Detection mechanism selection

TTD TTP detection

TFS Threat support function

LSTM Long short-term memory

KNN K nearest neighbor

ANN Artificial neural networks

CRF Conditional random fields

BPG Bayesian probabilistic graphical model
SVM Support vector machines

SIRS Semantic indexer and retrieval system
TTP Tactics, techniques and procedures
STIX Structured threat information expression
MILP Mixed-integer linear programming
DLNN Deep learning neural network

CNN Convolutional neural network

SVD Singular value decomposition

cyber-attacks. The conducted research is done by running CTIMiner system on 612 pub-
lic reports and categorizing the different types of collected data. It provides an increase of
valuable data by 43%. In addition, this solution supplies high quality and structured dataset
that is obtained from open sources, which provides cyber analysis techniques and statistical
features suitable for CTI analysis [11]. However, quality of the results, which is obtained dur-
ing parsing indicators of compromise extraction stage [12], is critically affected by parser’s
performance. Due to the parsers’ functional limitations, there could be remaining IoCs that
was not extracted from the reports database. This effects the threat analysis results and the
prediction accuracy [12]. As a result, accuracy in terms of valuable threat data is accept-
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able, but parser performance errors need to be considered to solve extraction issue of attack
patterns [5].

Subroto and Apriyana [13] in their work have proposed statistical machine learning algo-
rithmic model to minimize unstructured and constantly changed data errors in cyber-threat
intelligence reports. In their proposed solution, they used CVE-details, R software, and den-
drite/pyramid functions of Plotrix package to improve the learning confusion matrix. Their
solution conducted research by integrating term document matrix [14] into CVE databases
to automate statistical machine learning algorithm. Their work provides 96.73% prediction
accuracy with artificial neural networks (ANN) algorithm, which analyse vulnerability pat-
terns. With this solution a good range of prediction accuracy with better positives prediction
is reached, which provides high true positive rate [15] in analysis of vulnerability patterns.
In addition to that, while analysing cyber threat big data, machine-learning algorithms are
used to organise and clean the data. Therefore, analysis of vulnerability patterns became
more accurate. However, false-negative error is not considered [15] in this solution and lack
of risk management algorithm leads to short-term information delays [14] during cyber risk
analysis in CVE database. This creates an environment for false-negative errors [15]. As a
result, prediction accuracy in terms of threat patterns is acceptable, but risk management
algorithm needs to be considered where false-negative errors are defined. Improvement of
risk calculation accuracy in security management process to minimize security events, that
become an incident during cyber-threat intelligence risk assessment, is the purpose of Riesco
et al. [3] study. Their solution minimises emerging threats error (also called as unknown
threats error) that occurs during CTI risk management process. Authors have enhanced risk
management frameworks using dynamic risk assessment and management (DRA/DRM)
algorithm to minimise merged threat errors. Web ontology language (OWL) and Semantic
Web Rule Language (SWRL) are used to improve operational level triggers. Authors have
conducted research by integrating value added semantic algorithm format into DRM for fur-
ther DRA/DRM implementation. This provides 65% risk assessment accuracy in security
events. The developed dynamic risk-management framework is compatible with widely used
management standards and risk assessments [16]. It also provides a degree of details and
effectiveness that are required for risk management frameworks and an acceptable range of
risk assessment accuracy with tactical and strategic levels of risk relationships. This supplies
near real time dynamic risk assessment [16]. However, not all cyber threats that are encoun-
tered in the virtual environment were included in the risk calculation algorithm. This causes
incorrect detection in real time responses [8]. As a result, prediction accuracy in terms of
near real time severity gives good results, but the missing threat error need to be considered
to solve the issue of detection in real time responses.

2.2 Modelling Attacker Activities Based on Close Attacks

Durkota et al. [17] developed intelligent and rational security with mathematical algorithm
framework (game theory) to downgrade decision-making errors in cyber threat prediction.
Their work improves accuracy of computing optimal defense strategies against complex
cyber-attacks in real computer networks (multiple decision-making) environments. The
offered solution uses Stackelberg equilibrium (SE), MILP formulation and Markov deci-
sion process (MDP) to improve the process of computing optimal attack policies. Authors
conducted research by integrating the attack graphs into MDP algorithm to compute optimal
attacker policy. This gives good results in terms of decision-making accuracy. In addition
to that, the provided framework successfully found 88% optimal strategy. The proposed
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solution provides an improved accuracy on decision-making process even if the attack com-
plexity level is high. With the provided algorithm, a method which can be calculated quickly
has been developed and the attack prediction rates can give high results [18]. However, the
algorithm needs a large amount of processed data [4] (aggressive motivations, attack success
percentages, etc.) which increases margin of error in sensitivity of decision-making strategy
development [18]. As a result, the provided solution gives high results for action-success
probability accuracy, but the sensitivity error needs to be considered to solve the issue of
strategy development. Noor et al. [2] developed a novel machine learning based framework
to minimize cyber-threat prediction errors in cyber threat intelligence. They have offered a
solution to the problem by using Latent Semantic Indexing (LSI) [1] which has improved the
correlated attack detection. Their work improves threat analysis process in attack prediction
mechanisms that may help to identify TTPs based on artefacts that are observed with the
help of appropriate machine learning algorithms. The proposed solution conducted research
by ranking threat incident reports and adversarial tactics, techniques and common knowl-
edge (ATT&CK) repositories based on historical data that measures maximal detection with
novel machine learning based framework [1]. It provides attack pattern prediction accuracy
of 92% and detection time of 0.04 s. This solution supplies high prediction accuracy and
quite low detection time as compared to considerable time it typically takes to predict data
breach incidents. This improvement provides threat analysis process using SIRS system with
effective security analysis mechanism against attacks [5]. However, the algorithm assumes
that all predictive TTPs are independent of each other [7]. This slows down the prediction
stage making it difficult to understand associated attacks. The threat support function of
the algorithm, which measures the maximal support of the detected TTPs towards a threat
occurrence, tends to set all predictor TTPs as independent when function value approaches
1 or O [7]. This affects the model’s ability to recognise attacks and reduces the overall threat
prediction reliability. As a result, the prediction accuracy in terms of attack prediction is
acceptable but TTPs independency needs to be considered to solve the issue of detecting
unknown attacks.

Sun et al. [7] proposed a solution that enhanced the machine learning method based on
Hawkes Process. The solution is for modelling attacker activities with latent distance model
to effectively identify activity pattern and structure of cyber-attacks. Their work uses only
temporal information without the need for complicated feature engineering. Moreover, it
filters out dissimilar attacker patterns of clusters. Since the graphical clustering algorithm,
that is used in the developed model, does not require prior knowledge of the number of
clusters and the cluster size [2], this method has a great generality. This solution provides
acceptable predictive log likelihood and it effectively models and clusters attacker activity
using machine learning. The study conducted research by integrating Bayesian Probabilistic
Graphical Model (BPGM) and quality-based clustering algorithm in machine learning. It
provides lowest sparsity property gained by the network prior — 9.5 and effectively detect
connection between attackers in large number of events. However, Gibbs sampling algorithm,
that is used in the BPGM, is a time-consuming method of inference [19]. Failure to detect
order of attack (attack pattern) on time arises as an important problem for security of this
solution [2]. As a result, predictive log likelihood in terms of attacker activity is acceptable,
but cluster size needs to be considered to solve algorithm performance issues.
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2.3 Advanced Malware Prediction with Regression Models

Husak et al. [6] have enhanced the attack prediction using attack projection and inten-
tion recognition algorithm to minimize prediction mistakes in intrusion detection system
(IDS). In their study, the authors used artificial neural network and support vector machine
(SVM) machine learning algorithms to improve attack prediction. They conducted research
by integrating data mining and neutral networks into intrusion detection system to reduce the
complexity and learning time of prediction algorithm [13]. Depending on the length of the
applied attack scenario, the proposed work provides 92.3-99.2% accuracy rate. This solution
provides a good range of accuracy with a minimal time delay, which supplies prediction for
even very specific attacks [12]. Attack prediction accuracy has been increased since data
mining has been added to the machine-learning algorithm for learning and generating attack
models or attack plans [20]. However, the loss function, which causes small changes in the
beginning of attack prediction in SVM algorithm, causes a slowdown in prediction of attacks
that use different models [20]. As a result, the accuracy in terms of frequency of mistakes
is acceptable, but automated attack plan library generation needs to be considered to solve
the issue of prediction changes. Lee et al. [5] aimed to improve capacity of deep learning-
based methods to transform security incidents that are collected into individual activities to
prevent advanced cyber threats. For this reason, to minimize false positive errors, they devel-
oped artificial intelligence security information and event management cyber-threat detection
technique (AI-SIEM). They offered a solution to the problem by using large-scaled event
profiles and deep learning detection methods has enhanced accuracy performance. The inte-
gration of term frequency-inverse document frequency (TF-IDF) indexing mechanism for
very large scale of data in AI-SIEM algorithm improves true positive accuracy. Overall best
accuracy was delivered by the proposed event-profile artificial neural networks (EP-ANN)
models with accuracy score of 0.93-0.99 in four experiment datasets in cyber-threat intelli-
gence analysis. This work provides an acceptable improvement of true positive accuracy with
rapidly respond time, which supply cyber-threat detection ability in large-scale cyber security
environment. AI-SIEM system quickly and effectively compares long-term security analysis
[21] and highlights important security alerts, therefore, false positive alerts are reduced [6].
AI-SIEM algorithm yield very good results on benchmark datasets, but accuracy inconsis-
tencies are observed with application of the system in EP-ANN algorithm [21]. As a result,
accuracy in terms of true positive and false positive is accepted, but rare attack data learning
algorithm needs to be considered to solve application of system in EP-ANN algorithm issue.

Bahtiyar et al. [20] enhanced advanced malware prediction with multi-dimensional
machine learning technique to downgrade malware detection errors. The proposed solution
uses linear, polynomial, and random forest regression models [22] to improve correlation
value. This solution conducted research by the integration of regression algorithms into cor-
relations among features and provides 0.8203 extracted correlation value between advanced
malware software features and 0.558 closeness rate to advanced malware. The study provides
improved prediction accuracy and efficiency with extracted closeness score and correlation
value. This supplies certain identification in advanced malware prediction. Machine learning
approach uses correlations among five features and four regression algorithms to predict
advanced malwares [4]. In this study, random forest regression four feature has yielded bet-
ter results on analysis, but an acceptable threshold value has not been achieved in precise
definition of advanced malware software [8]. This mean that advanced malware features
dependencies are not taken into account [4]. Therefore, machine-learning datasets, which
contain newly founded advanced malicious software samples, should be added to multi-
dimensional algorithm. Moreover, a threshold value should be entered into the system as
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fixed value not as random value [8]. As a result, the accuracy in terms of malware features is
acceptable, but fixed value needs to be considered to solve this issue in precise definition of
advanced malware software.

2.4 State of Art

In this part, system’s features, which are highlighted inside blue broken line in Fig. 1, and
limitations, which are highlighted inside red broken line in Fig. 1, are presented. Noor et al.
[2] proposed an enhanced novel machine learning based framework algorithm to minimize
cyber-threat prediction errors. The use of Latent Semantic Indexing (LSI) has improved the
correlated attack detection. This study conducted research by ranking threat incident reports
(CTIR) and adversarial tactics, techniques and common knowledge (ATT&CK) repositories
based on the historical data in order to measure maximal detection with novel machine
learning based framework [2]. It provides attack pattern prediction accuracy of 92—100 and
detection time of 0.04 s. This model consists of three stages shown in Fig. 1 which are 1-
semantic indexer and retrieval system stage, 2-TTD semantic network stage, and 3- cyber
threat prediction stage.

Stage 1 Semantic Indexer and Retrieval System (SIRS)

Cyber threat incident reports and adversarial tactics, techniques and common knowledge
documentations are the inputs of the system. While a CTIR corresponds to a single cyber
threat, an ATT&CK document may correspond to several detection mechanisms associated
with a TTP. To build threat TTP Detection (TTD) network, TTPs are extracted from struc-
tured threat information expression (STIX) and encoded as cyber-threat incident reports.
After that, TTPs dictionary is built [2]. In this stage, a second step is to make every single
TTP semantically correlated with malware attacks in the CTIR and with TTPs in ATT&CK
documents. In order to connect TTPs with detection mechanism, instead of using simple
keyword search, ranking process is applied with the help of LSI to CTIR and ATT&CK for
each TTPs present in TTD [2].

Stage 2 TTD Semantic Network Stage

In this stage, threats are linked to their TTPs and detection mechanisms. In order to represent
semantic relations of TTPs under three specific concept, the detection mechanism set, threat
set, TTP set for cyber threat reports, ranked cyber threat incident reports, and ATT&CK threats
are linked to their relative TTPs and detection mechanisms [2]. Then, to predict threats based
on the existence of determined artefacts, a network of probable events is trained between
threats and TTPs based on historical data to measure the maximal support of detected TTPs
towards a threat occurrence. Limitation Experiment results illustrates that the state of art
solution even in the worst case scenario where TTPs have high level overlap, has achieved
prediction of attack pattern accuracy average of 92% and in ideal situation threat prediction
accuracy becomes %100. However, with this model, threat support function in threat TTP
detection semantic network algorithm assumes that all predictive TTPs are independent
of each other [7]. This slows down prediction stage [7] making it difficult to understand
the associated cyber-attacks [5]. Limitation Justification the threat support function of the
algorithm, which measures the maximal support of detected TTPs towards a threat occurrence,
tends to set all predictor TTPs as independent when function value approaches 1 or 0. This
affects the model’s ability to recognize attacks and reduces the overall threat prediction
reliability [5].
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Fig. 1 Block diagram of state of art system [2]. Good features of state of art are shown inside blue broken lines
and limitations of state of art are shown inside red broken lines

Stage 3 Cyber Threat Prediction Stage

The first step of this stage is the threat investigation (TD) module. The responsibility of
this step is to produce a predicted threat based on the detected TTPs in order to predict a
set of threats. Next step is reliability assessment (RA) in which reliability of prediction is
measured. In case of high reliability, threat investigation is considered completed. Otherwise,
a set of existing TTPs are considered by detection mechanism selection. Therefore, RA step
reduces time and resource consumption by minimizing likelihood of incorrect prediction
caused by the prediction with low reliability and presence determination of TTPs [2]. Last
step of this stage is detection mechanism selection (DMS). This step is needed to help the
cyber-security analyst to investigate threat artefacts against most likely attack family. This
is done by recommending the most efficient and cost-effective detection mechanism a set of
existing TTPs linked with detection mechanism is calculated based on cost efficiency. In case
of sufficient reliability grow, the prediction is terminated. Otherwise, the TD receives set of
predicted TTPs [2]. Limitation There is a problem in the prediction sets which give highest
probability of occurrence values for classification of detected TTPs. This problem arises as
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to which malware instances should be included in prediction sets [3]. Limitation Justification
When constructing prediction sets correctly, it is necessary to determine a threshold to reach
more reliable threat prediction values. Expert opinion is used to determine this threshold
which could be inaccurate and compromise the reliability of threat prediction [2].

This model presented prediction of attack pattern accuracy of 92—-100%, prediction reli-
ability in terms of number of detected TTPs of 50-60% and prediction threat incidents for
detected TTPs in an average time of 0.04 s [2].

To link each threat in the dependency table to its respective TTPs and detection mechanism,
a normalized table is used and normalized probability or normalized conditional probabil-
ity is calculated. Normalized posterior probability defines the objective function, which is
computed by Naive Bayes technique as shown in Eq. (1) [2]. However, this slows down the
prediction stage making it difficult to understand the associated attacks and downgrade the
prediction reliability.

w(ilip) = w(ttp;|t)p() 0
ZtieTt,p;‘”(”pi |t)p(ti)
where (tjlttp;): normalized posterior probability using Naive Bayes; w(ttp;ttplt;) normal-
ized conditional probability; p(t;): prior class probability; t;: threat in dependency table built
between threat incidents and TTPS; Typ;: set of detected TTPs; p(ttpjlt;): conditional proba-
bility between TTPs and threats; ttp;ltj: event ttp; given event t;.

The threat set that is associated with the detected TTPs from dependency table is built, and
historical threat occurrences, threat likelihood, and threat set prior probability are obtained to
build Bayesian probabilistic graphical model for the threat probability estimation. Normalized
conditional probability is calculated using Eq. (2) [2].

p(ttpl- |t1-)
ZtieT,,,,ip(”pi |ti)

where w(ttp;t;): normalized conditional probability; p(ttp;lt;): conditional probability between
TTPs and threats; ttp;: detected TTPs; t;: threat in dependency table; ttp;lt;: event ttp; given
event t;; Tyyp;: detected TTPs set.

Belief network is implemented in TTD semantic network stage. A network of probable
events is trained between threats and TTPs based on historical data to measure the maximal
support of detected TTPs towards a threat occurrence. To show maximal support, threat
support function is calculated as shown in Eq. (3) [2]. However, accuracy and prediction
reliability can be increased by techniques for best alignment.

Zttp,-eTTPDf, M(ti ltp;)
Yiperrpi(tlitp;)

where S(t;): threat support function; TTPD;: set of detected TTPs due to threat t;; TTP;;: TTPs
set, associated with a threat t;; pL(t;Ittp;): normalized posterior probability using Naive Bayes;
tilttp;: event t;given event ttp;; t;: threat in dependency table; ttp;: detected TTPs (Table 2).

o(ttp;|t) = 2

S) =

3

3 Proposed System
In cyber threat intelligence environment, machine learning algorithms which use different

feature extraction and classification techniques has been analysed in detail, pros and cons of
each method have been determined. After analysis, it has been found that accuracy, reliability,

@ Springer



A Novel Enhanced Naive Bayes Posterior Probability... 187

Table 2 Belief network algorithm

Algorithm: Belief network to measure maximum support of detected TTPs
Input: Linked threats and TTPs (Tupi)
Output: TTD network with detected threats
BEGIN
Step 1: Get threat t;
Step 2: Check the dependency table (p(ttpjti)). If the threat t; is associated with the detected set of TTPs (Tupi)
then go to Step 3, otherwise go back to Step 1.
Step 3: Calculate conditional probability p(ttpilt;) € (0, 1) based on historical threat occurrences. Go to Step 4.
Step 4: If null values from step 3, then normalize value by adding 1 to all entries of the frequency table and go to
Step 6. Otherwise go to Step 5.
Step 5: Calculate normalized conditional probability (w(ttpi/t)) and go to Step 6.
Step 6: Calculate normalized posterior probability p(tilttpi) using prior class probability (p(ti)) and go to Step 7.
Step 7: Consider all Ty to calculate the maximal support of TTPD; towards t; and go to Step 8.
Step 8: If threat t; for the given TTP; has the maximum posterior probability, then add threat t; to the prediction
set (TTD network) and exit. Otherwise, go back to Step 1.

END

detection time, and false detection are key factors that impact threat prediction neural network
algorithm. Noor et al. [2] was selected as the state of the art for the proposed solution in this
paper among other collected and analysed methods. The main reason behind this selection
was the proposed novel machine learning based framework for cyber-attack prediction. Novel
machine learning based technique semantically extracts threats and attack tactics, techniques,
procedures from known threat sources to create a semantic network [2]. Semantic network
establishes probability relationships between threats and TTPs using Naive Bayes machine
learning to identify and predict threats. Naive Bayes computing normalises conditional prob-
ability of threat TTP mapping and therefore, finds a best candidate threat prediction set. In
addition to that, to enhance the prediction accuracy, a novel machine learning based technique
is combined with the belief network model [2]. However, this work has several limitations.
One limitation is that the threat support function of the algorithm, which measures the max-
imal support of detected TTPs towards a threat occurrence, tends to set all predictor TTPs
as independent when function value approaches O or 1. This affects the model’s ability to
recognise attacks and reduces the overall threat prediction reliability. Moreover, it slows
down prediction stage, making it difficult to understand associated cyber-attacks. Another
limitation is that there is a problem in prediction sets which give the highest probability of
occurrence values for classification of detected TTPs. This problem arises as to which mal-
ware instances should be included in prediction sets. To overcome independent TTP detection
problem of support function algorithm, Bayesian probabilistic graphical model that is based
on joint probability function inspired by Sun et al. [7] was used. This model graphically
represents probability-based relationships between TTPs, eliminates uncertainty, and pro-
vides prediction reliability. Another new feature of the proposed solution is the application
of risk assessment framework that was proposed by Riesco et al. [3] in TTP classifications.
This framework provides dynamic risk management by focusing on behavioural detection of
complex TTPs. Application of these new features has solved problems of existing solution,
increased classification and prediction accuracy, and reduced processing time.

The proposed system consists of three major stages (Fig. 2) which are: (1) semantic indexer
and retrieval system (SIRS), (2) TDD semantic network, and (3) cyber threat prediction.

Stage 1 Semantic Indexer and Retrieval System (SIRS)

This stage follows architecture of Noor et al. [2] solution where threat incident reports and
adversarial tactics, techniques and common knowledge documentations are the input of the
system, see Fig. 2. While a CTIR corresponds to a single cyber threat, an ATT&CK document
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Fig. 2 Block diagram of the proposed threat prediction method using Bayesian probabilistic graphical algo-
rithm. Green borders refer to the new parts in the proposed system

may correspond to several detection mechanisms associated with a TTP. As shown in Fig. 2,
to build threat TTP detection network, TTPs are extracted from structured threat information
expression and encoded as cyber threat incident reports. After that, TTPs dictionary is built.
Instead of using simple keyword search, ranking process is applied with the help of LSI to
CTIR and ATT&CK for each TTPs present in TTD. Therefore, every single TTPs semanti-
cally correlated with malware attacks in CTIR and with TTPs in ATT&CK documents TTPs
with detection mechanism connected (see Fig. 2).

Stage 2 TTD Semantic Network

In the second stage of the proposed model as shown in Fig. 2, in order to represent semantic
relations of TTPs under three specific concepts (detection mechanism set, threat set, and TTP
set for cyber threat reports), ranked cyber threat incident reports and adversarial tactics, tech-
niques and common knowledge threats are linked to their relative TTPs. After that, to predict
threats based on existence of determined artefacts, Bayesian probabilistic graphical model is
used to identify associated attacks [7]. Historical threat occurrences, threat likelihoods, and
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threat set probabilities are obtained to build the Bayesian probabilistic graphical model [7],
see Fig. 2. In addition to this step, joint distribution threat posterior probability is calculated
to build a dependency table between TTPs and threat set. Therefore, the algorithm’s threat
probability estimation and normalised conditional probability are improved. Compared to
threat support function, graphical model is simpler and solves dependency problem of TTPs.
As a next condition, a network of probable events is trained between threats and TTPs based
on historical data to measure maximal support of detected TTPs towards a threat occurrence.

Stage 3 Cyber Threat Prediction

To predict a set of threats, the responsibility of this step is to produce a predicted threat
based on the detected TTPs. Next, the reliability of prediction is measured. In case of high
reliability, threat investigation is completed. Otherwise, a set of existing TTPs are considered
by detection mechanism selection, see Fig. 2. Therefore, this step reduces time and resource
consumption by minimizing the likelihood of incorrect prediction caused by the prediction
with low reliability and determination of the presence of TTPs. At this stage, the proposed
work applies a dynamic risk management framework (see Fig. 2). This framework assesses
the risk using threat impact and decreasing values of probability due to the implemented and
new proposed measures [3]. Therefore, all threat sets of detected TTPs can be considered
to assess the maximal support of a set of detected TTPs towards dependency table [3]. As a
result, threat set with maximum posterior probability can be considered as predicted threat
set. This framework solves prediction sets threshold problem and helps the algorithm to reach
more reliable threat prediction level. To help investigation of threat artefacts against most
likely attack family by recommending efficient detection mechanism, a set of existing TTPs
linked with detection mechanism is calculated (see Fig. 2). In case of sufficient reliability
grow, the prediction is terminated. Otherwise, threat diagnosis receives a set of predicted
TTPs.

3.1 Proposed Equation

Identify prediction sets that induce observed data and capture distributions that characterize
relationships between hidden states and hidden variables are critical to threat prediction.
Bayesian probabilistic graphical model, that is based on joint distribution, is used to calcu-
late posterior probability to avoid the problem arises as to which malware instances should
be included in prediction sets. It increases probability accuracy due to associated threats
consideration compared to Posterior Naive Bayes probability that is based on normalised
conditional probability. Joint distribution is defined as in Eq. (4) [7].

p(ti. Tupilttp;) = p(t1p;1ti, Trupi) p(ti1 Tripi) p(Tiapi) 4

where p(ti, Tiepi |ttp,»): joint distribution; t;: threat in threat incidents and TTPs dependency
table; ttp;: detected TTPs; Tyyp;: detected TTP threat set; p(t; | Typi): likelihood t; if Tyepi; p(Tepi):
prior Typiprobability.

Historical artifacts, which show presence of cyber-attack, are used to calculate the prob-
ability between threats and TTPs. To configure probability, historical data that make up
frequency tables are used for TTP—threat mapping. Accordingly, it is necessary to nor-
malise the frequency table in order to avoid null values. History probability of threat for the
detected threat set (p(t; ITypi)) is used to find threat that is associated with a certain threat set
and detected TTPs [7]. Therefore Eq. (4) is modified by us in Eq. (5).

Mp(t;) = p(til Ttipi)P(Tr1pi) (&)
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where M p(t;): modified prior class probability; t;: threat in dependency table; ttp;: detected
TTPs; Typi: detected TTP threat set; P(t; Typi): history likelihood for threat set; P(Tiy;): prior
Typiprobability.

For a predictive nature, malware class TTP with the highest posterior probability is con-
sidered as predicted output. Similarly, among all TTPs, TTD network estimates threat event,
host and network artifacts using symptoms to calculate the highest probability. Based on
this, with prior threat class probability, the enhanced equation is used to get threat posterior
probability. Therefore, Eq. 1 is modified by us to be in Eq. 6.

w(ttp;lt;)
= .o |Mp@) (6)
Zt,'eT,,p,-w(”pi“i)) P

where M(t;, Ty Ittp;): modified version of Naive Bayes posterior probability; t;: threat in
dependency table built between threat incidents and TTPs; ttp;: detected TTP. Typ;: Threat
set of detected TTP; u)(ttp i |tl~): normalized conditional probability.

The risk assessment approach, which is used to identify most relevant threats in the threat
set, increases the accuracy of probability function and reduces the time for threat prediction.
Posterior probability threat risk assessment is performed using threat impact, decreasing
values of probability, and the new proposed measures as given in Eq. 7 [3].

My (ti, Tyupilttp;) = (

Ry = Py +1; — Cly; — C2y @

where Ry: risk of threat t;; Pyi: probability of threat t;; I;: impact of threat t;; C1: decreasing
value of probability Py; C2;: decreasing value of probability Py;.

To consider treat probability after risk assessment and to assess maximum support of
a set of detected TTPs (depending on security events and time), threat support function is
used. Since risk assessments may be updated dynamically, risk management treatments and
classification may also be updated automatically. Therefore Eq. 7 is modified by us in Eq. 8.

MR =1;; — Cl; — C2y (3)

where MRy;: modified residual risk assessment; I;;: impact of threat t; then it materialized;
Cl1y: decreasing value of probability Py due to implemented measures; C2;: decreasing value
of probability Py; due to new modified measures.

The threat support function defines the best candidate threat prediction set (prediction sets
which give highest probability of occurrence values for classification of detected TTPs) with
maximum probability value [21]. Therefore, Eq. 3 is enhanced by us to propose Eq. 9.

Zttp,-eTTPD,-M“‘(ti’ Tupilttp;) N
Zttp,-eTTP,,-Mp“(tiv Tzzpi|”17i)

where ES(ti): enhanced Naive Bayes posterior probability; detected TTPs set (TTPD;)
ttp;={ttpy, ttp, ttp3,...ttpy }; detected threat ti= {ty, ta, t3,...t;} in detected threat set Tygy;;
TTPy;: TTPs set associated with threat t;. TTPD;: Detected TTPs set due to threat t;; M (t;, Tygp;

Ittpi): modified version of Naive Bayes posterior probability; MR;: modified residual risk
assessment.

ES(t;) = MR;i (C))

3.2 Area of Improvement
In this solution, two equations were proposed, and the current method performance was

improved. First, threat support function is modified to calculate best candidate threat predic-
tion set with maximum probability value as shown in Eq. (3). It uses Bayesian probabilistic
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graphical model which is based on joint distribution to calculate posterior probability. The
purpose of posterior probability is to create a dependency table between TTPs and threat
set. Therefore, dependency table with the help of prior threat class-probability calculation
is used to find threat that is associated with a certain threat set which gives the best threat
class probability. This solves dependency problem of the function and improves the threat
prediction accuracy. Second, dynamic risk management function is combined with cyber
threat prediction. With the help of Eqs. (8 and 9), posterior probability threat risk assessment
is performed using threat impact and decreasing values of probability. The purpose of risk
management is to assess the maximal support of a set of detected TTPs towards dependency
table and to consider as predicted threat set with maximum posterior probability. This helps
the algorithm to provide more reliable threat prediction and improves processing time.

Why enhanced Naive Bayes posterior probability: Naive Bayes posterior probability
emphasizes that security incidents can be matched to tactics mapped to artificial objects
in such a way that machines can identify these possibilities with certain possibilities. Using
modified threat support function (TSF) as an activation function in the threat prediction
algorithm, effectively avoids dependency problem of TTPs. It uses threat set associated with
detected TTPs, threat likelihood, threat set prior, and historical threat occurrence as input val-
ues. The proposed work can solve dependency problem as graphical model of the Bayesian
probabilistic effectively find best threat class probability. Appropriate matching of threat
classes enhances prediction performance. In addition, Naive Bayes is simpler and faster
than other algorithms, resulting in a more effective training process. Moreover, the proposed
study considers risk management during threat prediction phase. Risk management frame-
work considers treat probability after risk assessment to assess the maximum support of a set
of detected TTPs towards threat using enhanced TSF. This improves the overall performance
and enhances the prediction accuracy and processing time.

Independent detection of TTPs by threat-TTP-detection algorithm makes it almost impos-
sible to detect associated threats while slowing down prediction stage. This affects the
algorithm’s ability to recognize attacks and reduces the overall threat prediction reliabil-
ity. Therefore, the proposed work provides precise analysis of related threats using Posterior
Naive Bayes based on normalised conditional probability, which increases probability accu-
racy. In addition to that, in prediction algorithms, lack of risk management during threat
prediction phase reduces the overall classification performance. This becomes a problem in
prediction sets, which give the highest probability of occurrence values for classification of
detected TTPs. The proposed work considers treat probability after risk assessment to gener-
ate maximum support results of detected TTPs. This effectively prevents threshold mistakes
in prediction sets and enhances reliable threat prediction values.

The threat support function that is used as an activation function in the state of art system
faces dependency problem of TTPs. The proposed study solved this problem with modified
threat support function based on Bayesian probabilistic graphical model. Moreover, there
have been prediction reliability problems in the state of art system since risk assessment
during threat prediction stage is not performed. The proposed work addresses this problem
by including dynamic risk management framework in the prediction algorithm (Fig. 3, Table
3).
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Fig. 3 Flowchart of the proposed modified Bayesian probabilistic graphical model for threat prediction

4 Results and Discussion

In this research, Python version 3.6.9, Scikit Learn, Matplotlib, Keras, Tensorflow, and
Numpy libraries were used in the application and test stages. Five datasets are used from
NSL-KDD, CICIDS2017 [5], and ATT&CK [2]. These datasets are publicly accessible and
free. In total, the number of records of each dataset is different; the specifications are given
in detail in Table 4. Data is divided into five different sets. One of them was used for test
purposes and the remaining sets were used for training purposes (Figs. 4 and 5). These proce-
dures were performed by applying holdout cross-validation. The used system configuration
for experiment is as follows: Intel® Core ™ [7-8550U CPU @ 1.80 GHz and 16 GB installed
memory (RAM). Python 3.6.9 Keras library Metric method was used to calculate the predic-
tion accuracy and the processing time values of the five different datasets. In addition, average
prediction accuracy and average processing time values were calculated using Mean method
of Python 3.6.9 Numpy library. Figures 6 and 7 show results of the different datasets.
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Table 3 Proposed Bayesian probabilistic graphical model (BPGM) algorithm

Algorithm: Bayesian probabilistic Graphical model (BPGM) to measure the maximum support of the
detected TTPs.
Input: Threat set associated with detected TTPs, threat likelihood, threat set prior, historical threat
occurrence.
Output: Predicted threat set with maximum risk probability.
BEGIN
Step 1: Get threat set (Tupi) associated with detected TTPs from dependency table (p(ttpi/t;)) and go
to Step 2.
Step 2: Build Bayesian probabilistic graphical model for threat probability estimation based on the
historical threat occurrences p(ttpi/t;), threat likelihood P(ti| Typi), and the threat set prior
probability P(Tyi). Go to Step 3.
Step 3: Calculate the normalized conditional probability (ttpilt;) using p(ttpi/t;) and go to Step 4.
Step 4: Calculate threat posterior probability p(t; Tupi [ttpi) using joint distribution and go to Step 5:

o(ttpilt;)

Mu(t; , Teepi | tED; :<7
(@ Tenletp) = 5o i

) Mp(t;)

Step S5: Assess the risk using threat impact ; and the decreasing values of probability Py due to
implemented and new proposed measures C1;;, C2;;, Go to Step 6.
Step 6: Consider all Ty to assess the maximal support of a set of detected TTPs towards t; (TTPD;).
Go to Step 7.
Step 7: If the threat set Ty, has the maximum posterior probability, then consider it as predicted
threat set and exit. Otherwise, use detection mechanism to evaluate the threat set.
END

Dataset 2
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Fig. 4 Dataset 2 classification accuracy for state of art and the proposed solution. a Orange line indicates
classification accuracy values of state of art study [2]. b Blue line indicates classification accuracy of the
proposed solution

Classification accuracy values for the different TTP types, that are available in the used
datasets, were obtained using Predict method of Python 3.6.9 Keras library. Processing time
values have been calculated again with the help of Python 3.6.9 Keras library Now method.
Microsoft Excel functions are used to calculate average processing time and accuracy values.
All results can be seen in Figs. 8,9, 10, 11, 12, 13, 14, 15, 16 and 17.

Belief network model was created during feature extraction and classification stages. Using
this model, features that are obtained from training data are extracted. Features that make
up feature maps are considered by belief network in linear time [23]. After this, posterior

@ Springer



A. Sentuna et al.

194

8IT°€8 4! (3944 0¥91 0¢ 1866 9CL 6¢ 81¢y 9vS'8T 10T°¢€ Glesered
9Ly 6¢€L 8LT¢E 0¢0¢ LT PETT 0861 891 L89¢ 8STT1 T1zee iosereq
8€0°ST €C 918 2001 6 1€9 69T 00¢ Ieye 8SYL 11L6 gresereq
v18°9€1 LL8 IS €76 SYe SvL8 S66 43 95911 LT6'SY €VE‘LY wsereq
TTT9€ el 1569 (4% g 80¢¢€ 60¢ Il 68¢C ¥€C6 6vyEl [3eseleq

reloL JorvIoUIA )1qpunos TXOUWIY Angromod IO[OARITION Yo dnoig snieze| Ienzey| nbng sewreyole)
SPI0JAI JO JoqUINN jasere(q

Sjasejep Yora JO SPI0JAI JO IquinN ¢ 3|qel

pringer

As



A Novel Enhanced Naive Bayes Posterior Probability... 195

Dataset 2
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Fig. 5 Dataset 2 classification accuracy for state of art and the proposed solution. a Orange line indicates
classification accuracy values of state of art study [2]. b Blue line indicates classification accuracy of the
proposed solution

Average prediction accuracy for five different datasets
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Fig. 6 Average prediction accuracy calculated for five different datasets (in percentage). Blue lines show the
proposed solution values. Orange lines show the state of art solution [2] values. a First two lines show average
accuracy of Dataset (1). b Second two lines show average accuracy of Dataset (2). ¢ Third two lines show
average accuracy of Dataset (3). d Fourth two lines show average accuracy of Dataset (4). e Fifth two lines
show average accuracy of Dataset 5

probabilities are calculated using support function to generate the classification of TTPs
based on incident frequency. After the training process, the model was evaluated with the
use of validation dataset.

The classification accuracy performance of Dataset 2 is shown in Fig. 4. Results compares
the values of state of art system [2] and the proposed solution during the training phase. State
of art system and the proposed solution have similar accuracy values. However, in order to
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Average processing time for five different datasets
proposed solution and state of art solution
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Fig. 7 Average processing time calculated for five different datasets (in seconds). Blue lines show the proposed
solution values. Orange lines show the state of art solution [2] values. a First two lines show average processing
time of Dataset (1). b Second two lines show average processing time of Dataset (2). ¢ Third two lines show
average processing time of Dataset (3). d Fourth two lines show average processing time of Dataset (4). e Fifth
two lines show average processing time of Dataset 5

Average prediction accuracy of the proposed solution and the state of art solution for true
positive and true negative values from datasetl
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Fig. 8 Average prediction accuracy calculated for true positive and true negative results (in percentage) from
Dataset 1. Blue lines show the proposed solution values. Orange lines show the state of art solution [2] values.
a First two lines show average accuracy of true positive. b Second two lines show average accuracy of true
negative

achieve optimum accuracy values, less epochs are taken by the proposed solution, it means
that in case of increasing dataset size, the proposed solution will reduce the processing time
values in model training process.
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Average processing time of proposed solution and state of art solution for true
positive and true negative values from dataset1
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Fig. 9 Average processing time calculated for true positive and true negative results (in seconds) from Dataset
1. Blue lines show the proposed solution values. Orange lines show the state of art solution [2] values. a First
two lines show average processing time of true positive. b Second two lines show average processing time of
true negative
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Fig. 10 Average prediction accuracy calculated for true positive and true negative results (in percentage) from
Dataset 2. Blue lines show the proposed solution values. Orange lines show the state of art solution [2] values.
a First two lines show average accuracy of true positive. b Second two lines show average accuracy of true
negative
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Average processing time of proposed solution and state of art solution for true positive
and true negative values from dataset2
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Fig. 11 Average processing time calculated for true positive and true negative results (in seconds) from Dataset
2. Blue lines show the proposed solution values. Orange lines show the state of art solution [2] values. a First
two lines show average processing time of true positive. b Second two lines show average processing time of
true negative
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Fig. 12 Average prediction accuracy calculated for true positive and true negative results (in percentage) from
Dataset 3. Blue lines show the proposed solution values. Orange lines show the state of art solution [2] values.
a First two lines show average accuracy of true positive. b Second two lines show average accuracy of true
negative
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Average processing time of proposed solution and state of art solution for true
positive and true negative values from dataset3
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Fig. 13 Average processing time calculated for true positive and true negative results (in seconds) from Dataset
3. Blue lines show the proposed solution values. Orange lines show the state of art solution [2] values. a First
two lines show average processing time of true positive. b Second two lines show average processing time of
true negative

Average prediction accuracy of proposed solution and state of art solution for
true positive and true negative values from dataset4
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Fig. 14 Average prediction accuracy calculated for true positive and true negative results (in percentage) from
Dataset 4. Blue lines show the proposed solution values. Orange lines show the state of art solution [2] values.
a First two lines show average accuracy of true positive. b Second two lines show average accuracy of true
negative
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Average processing time of proposed solution and state of art solution for true
positive and true negative values from dataset4
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Fig. 15 Average processing time calculated for true positive and true negative results (in seconds) from Dataset
4. Blue lines show the proposed solution values. Orange lines show the state of art solution [2] values. a First
two lines show average processing time of true positive. b Second two lines show average processing time of
true negative

Average prediction accuracy of proposed solution and state of art solution for
true positive and true negative values from dataset5
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Fig. 16 Average prediction accuracy calculated for true positive and true negative results (in percentage) from
Dataset 5. Blue lines show the proposed solution values. Orange lines show the state of art solution [2] values.
a First two lines show average accuracy of true positive. b Second two lines show average accuracy of true
negative
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Average processing time of proposed solution and state of art solution for true
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Fig. 17 Average processing time calculated for true positive and true negative results (in seconds) from Dataset
5. Blue lines show the proposed solution values. Orange lines show the state of art solution [2] values. a First
two lines show average processing time of true positive. b Second two lines show average processing time of
true negative

Table 5 After training and validation stages, the classification accuracy and processing time results of the
proposed solution and the state of art solution for the five datasets

Dataset ~ Scenario  Stage Proposed solution State of art solution
Classification Processing Classification Processing
accuracy (%) time (epochs) accuracy (%) time (epochs)

Datasetl 1,2,3 Training 96 13 91 17

Validation 88 7 81 10

Dataset2 1,2,3 Training 94 9 89 14

Validation 83 5 80 10
Dataset3 1,2,3 Training 93 10 89 15
Validation 86 4 79 9
Dataset4 1,2,3 Training 95 6 90 11
Validation 87 2 83 9
Dataset5 1,2,3 Training 94 11 91 16
Validation 81 5 83 12

Accuracy performance of Dataset 2 is shown in Fig. 5. Results compare the values of
state of art [2] and the proposed solution during validation phase. When Fig. 5 examined, it
can be observed that the proposed solution offers 4% more accurate classification accuracy
compared to state of art solution. After training and validation stages, the results of all dataset
classification accuracy and processing time can be seen in Table 5.
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Table 6 Prediction accuracy—processing time results are given for the proposed solution and the state of art
solution [2]. Results obtained for true positive values from Dataset 1

Sample TTP Proposed solution State of art solution
Prediction accuracy ~ Processing time (s)  Prediction accuracy ~ Processing time (s)
(%) (%)
1. Catchamas 90.32 0.036 85.21 0.042
2. Duqu 88.25 0.046 81.54 0.053
3. Kazuar 82.12 0.044 70.12 0.048
4. Lazarus Group 73.01 0.041 60.24 0.059
5. Machete 86.87 0.051 74.87 0.069
6. NetTraveler 88.36 0.049 82.56 0.053
7. PowerDuke 90.89 0.043 86.52 0.048
8. Remexi 91.05 0.039 88.45 0.044
9. Soundbite 89.54 0.038 83.36 0.043
10. Winerack 89.74 0.044 86.32 0.049

Data eport and bar graphs were used to compare the proposed solution results with the
state of art system [2] in order to generate the presented tables and graphs. Results are based
on three scenarios that are applied over the datasets. According to small, medium and large
datasets, different results were obtained, and these results were used for comparison.

Results of different scenarios are evaluated according to the training and validation stages.
Results of each dataset provide the accuracy and the processing time. To elaborate this; the
accuracy values are determined by the ratio of correctly classified TTP samples to the total
number of TTPs in the datasets [24]. The processing time values are calculated according to
the number of predicted threats models that are required to reach reliable prediction level. The
test dataset is 20% of the samples covered by the five datasets (Dataset1, Dataset2, Dataset3,
Dataset4, and Dataset5).

Figure 6 shows the results of average accuracy that is calculated by the average of results
obtained after the training phase and validation phase of respective five datasets. Figure 7
illustrates the average processing time, which is calculated by the average of results obtained
after the training phase and validation phase of respective five datasets.

In the test phase, the average number of detected threats of each dataset was analysed
based on three different scenarios. Results are presented in Tables 6,7, 8,9, 10, 11, 12, 13,
14 and 15. The prediction accuracy and the processing time values were obtained for TTPs
based on the number of records in the datasets. While the probability of correct relation of
TTPs is based on the prediction accuracy measurement.

The duration of classification process of TTPs is taken into consideration in the processing
time measurement. As explained previously, results were analysed in two positions and
the classification stage of belief network is the stage where results were obtained. With
the help of Eq. (6), the proposed solution improves the prediction accuracy by enhancing
threat posterior probability values. At the same time, according to Eq. (8) calculations, threat
risk assessment is performed and the required processing time values are decreased for the
prediction probability. The proposed system helps to identify the threat artifacts against most
likely attack scenarios suggesting that real-time security analyses uses lowest cost and most
likely mechanisms.
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Table 7 Prediction accuracy—processing time results are given for the proposed solution and the state of art
solution [2]. Results obtained for true negative values from Dataset 1

Sample TTP Proposed solution State of art solution
Prediction accuracy ~ Processing time (s)  Prediction accuracy ~ Processing time (s)
(%) (%)
1. Catchamas 93.42 0.039 88.74 0.044
2. Duqu 91.21 0.044 84.55 0.054
3. Kazuar 85.45 0.049 73.48 0.043
4. Lazarus Group  76.69 0.041 63.12 0.055
5. Machete 89.47 0.053 77.33 0.067
6. NetTraveler 92.66 0.047 89.69 0.051
7. PowerDuke 90.79 0.045 86.47 0.049
8. Remexi 86.41 0.043 74.71 0.048
9. Soundbite 78.24 0.039 68.54 0.045
10. Winerack 89.36 0.042 76.98 0.046

Table 8 Prediction accuracy—processing time results are given for the proposed solution and the state of art
solution [2]. Results obtained for true positive values from Dataset 2

Sample TTP Proposed solution State of art solution

Prediction accuracy ~ Processing time (s)  Prediction accuracy ~ Processing time (s)

(%) (%)
1. Catchamas 91.42 0.034 87.26 0.043
2. Duqu 89.45 0.045 83.15 0.051
3. Kazuar 82.92 0.045 73.17 0.044
4. Lazarus Group  75.56 0.042 68.28 0.053
5. Machete 87.63 0.051 78.92 0.064
6. NetTraveler 87.82 0.049 83.04 0.049
7. PowerDuke 91.32 0.039 87.82 0.051
8. Remexi 92.43 0.042 89.08 0.046
9. Soundbite 88.97 0.039 84.81 0.041
10. Winerack 90.02 0.042 88.37 0.045

When results are evaluated, it is observed that the proposed solution model improves
the prediction accuracy and the processing time values compared to the state of art model
based on TTP classification. The proposed solution offers an average classification accuracy
of 96% with Naive Bayes posterior probability and modified prior class probability using
joint distribution functions. This result is 4% higher than the results of the state of art model.
Moreover, the proposed solution achieves an average processing time of 0.028 s with the help
of risk assessment for maximum support of set of the detected TTPs function. This value is
0.015 s less than the state of art solution.

Accuracy of datasets for each TTP was evaluated using the predict function of Python
3.6.9 Keras library. In this step, true positive and true negative were used to calculate the
accuracy of correctly retrieved documents. In order to calculate the processing time values,
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Table 9 Prediction accuracy—processing time results are given for the proposed solution and the state of art
solution [2]. Results obtained for true negative values from Dataset 2

Sample TTP Proposed solution State of art solution
Prediction accuracy ~ Processing time (s)  Prediction accuracy ~ Processing time (s)
(%) (%)
1. Catchamas 94.23 0.037 89.65 0.045
2. Duqu 91.78 0.041 83.14 0.048
3. Kazuar 86.01 0.046 77.24 0.046
4. Lazarus Group 77.32 0.042 67.18 0.045
5. Machete 89.49 0.049 81.42 0.057
6 .NetTraveler 91.97 0.048 88.01 0.051
7.PowerDuke 91.13 0.043 87.13 0.048
8. Remexi 85.14 0.042 76.71 0.047
9. Soundbite 79.86 0.041 69.98 0.045
10. Winerack 89.92 0.047 79.78 0.048

Table 10 Prediction accuracy—processing time results are given for the proposed solution and the state of art
solution [2]. Results obtained for true positive values from Dataset 3

Sample TTP Proposed solution State of art solution
Prediction accuracy ~ Processing time (s)  Prediction accuracy ~ Processing time (s)
(%) (%)
1. Catchamas 95.14 0.033 89.21 0.044
2. Duqu 94.18 0.022 93.74 0.050
3. Kazuar 94.74 0.046 76.22 0.045
4. Lazarus Group 88.54 0.041 88.16 0.050
5. Machete 88.41 0.029 79.77 0.052
6. NetTraveler 89.25 0.027 83.21 0.046
7. PowerDuke 96.13 0.039 89.15 0.048
8. Remexi 96.03 0.043 91.16 0.042
9. Soundbite 89.99 0.038 88.24 0.042
10. Winerack 94.24 0.029 89.33 0.041

Python 3.6.9 functions were used. Start time and end time intervals are determined with
Now method. Moreover, the average accuracy and average time values were calculated with
the help of Microsoft Excel average function. The improvements in the accuracy and the
processing time values were investigated for the proposed solution against the state of art
algorithms. In [2] the accuracy is calculated using Eq. (10):

True positive

Accuracy = — : (10
True positive + True negative

where True positive: correctly retrieved TTPs from datasets dictionary. True negative: cor-
rectly dropped ttps from datasets dictionary.

In summary, using modified prior class probability threat support function (TFS), as the
activation function in cyber-threat prediction algorithm, effectively avoids dependency prob-
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Table 11 Prediction accuracy—processing time results are given for the proposed solution and the state of art
solution [2]. Results obtained for true negative values from Dataset 3

Sample TTP Proposed solution State of art solution
Prediction accuracy ~ Processing time (s)  Prediction accuracy ~ Processing time (s)
(%) (%)
1. Catchamas 95.21 0.033 89.36 0.040
2. Duqu 93.74 0.020 88.25 0.041
3. Kazuar 88.20 0.041 89.32 0.041
4. Lazarus Group 88.24 0.032 92.26 0.038
5. Machete 93.11 0.021 86.14 0.045
6. NetTraveler 93.97 0.028 91.37 0.041
7. PowerDuke 92.89 0.038 89.57 0.047
8. Remexi 87.18 0.022 89.21 0.039
9. Soundbite 89.97 0.039 92.88 0.038
10. Winerack 96.42 0.029 86.72 0.041

Table 12 Prediction accuracy—processing time results are given for the proposed solution and the state of art
solution [2]. Results obtained for true positive values from Dataset 4

Sample TTP Proposed solution State of art solution

Prediction accuracy ~ Processing time (s)  Prediction accuracy ~ Processing time (s)

(%) (%)
1. Catchamas 96.84 0.023 92.15 0.041
2. Duqu 94.22 0.032 89.14 0.035
3. Kazuar 89.16 0.036 92.21 0.041
4. Lazarus Group 91.14 0.024 89.24 0.042
5. Machete 89.47 0.029 92.15 0.039
6. NetTraveler 95.12 0.024 86.18 0.040
7. PowerDuke 96.87 0.031 88.10 0.039
8. Remexi 96.99 0.031 89.29 0.038
9. Soundbite 92.36 0.022 95.11 0.038
10. Winerack 94.25 0.023 89.92 0.040

lem of TTPs in the proposed solution model. TSF defines the best candidate threat prediction
set with the maximum probability value. Bayesian probabilistic graphical model that is based
on joint distribution calculates posterior probability. Therefore, this increases the probability
accuracy as the graphical model of the Bayesian probabilistic effectively finds the best threat
classification probability. Risk assessment function is another new feature of the proposed
solution model. This function is used to identify the most relevant threats in the threat set,
therefore, increases the accuracy of the probability function and reduces the processing time
for threat prediction. As a result, it can be stated that the proposed solution provides increased
accuracy and decreased processing time in cyber-threat prediction.

Various techniques have been used to detect and predict cyber-attacks. The most impor-
tant limitation of these techniques has always been the attack prediction accuracy and the
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Table 13 Prediction accuracy—processing time results are given for the proposed solution and the state of art
solution [2]. Results obtained for true negative values from Dataset 4

Sample TTP Proposed solution State of art solution
Prediction accuracy ~ Processing time (s)  Prediction accuracy ~ Processing time (s)
(%) (%)
1. Catchamas 96.41 0.030 91.12 0.044
2. Duqu 93.23 0.029 89.25 0.040
3. Kazuar 92.16 0.021 88.38 0.039
4. Lazarus Group 95.15 0.026 90.01 0.039
5. Machete 88.85 0.022 92.17 0.044
6. NetTraveler 92.14 0.027 87.39 0.042
7. PowerDuke 96.92 0.033 95.87 0.044
8. Remexi 89.58 0.032 87.91 0.038
9. Soundbite 89.47 0.031 93.80 0.041
10. Winerack 94.01 0.024 89.77 0.043

Table 14 Prediction accuracy—processing time results are given for the proposed solution and the state of art
solution [2]. Results obtained for true positive values from Dataset 5

Sample TTP Proposed solution State of art solution
Prediction accuracy ~ Processing time (s)  Prediction Processing time (s)
(%) Accuracy (%)
1. Catchamas 96.15 0.023 93.54 0.046
2. Duqu 96.04 0.031 89.17 0.049
3. Kazuar 95.92 0.032 93.24 0.044
4. Lazarus Group  96.41 0.031 90.18 0.048
5. Machete 94.24 0.021 94.04 0.040
6. NetTraveler 94.18 0.025 95.19 0.038
7. PowerDuke 95.17 0.022 94.03 0.039
8. Remexi 95.12 0.027 90.10 0.041
9. Soundbite 96.95 0.030 89.02 0.044
10. Winerack 96.47 0.021 91.07 0.041

processing time during identification of attacks. The proposed solution solves the limitations
encountered in the state of art model, achieving 96% prediction accuracy and achieving a
4% enhancement to the state of art solution which has 92% accuracy. At the same time, the
proposed solution is superior to the state of art with processing time values. The proposed
solution improves the state of art solution with an average processing time of 0.028 s against
current processing time of 0.043 s. Threat support function is used to solve TTPs dependency
problem, which is used as an activation function, and risk assessment function that improves
processing time values were effective in obtaining improved results in different dataset sce-
narios. The main comparison between the proposed solution and the state of art is discussed
in Table 16.
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Table 15 Prediction accuracy—processing time results are given for the proposed solution and the state of art
solution [2]. Results obtained for true negative values from Dataset 5

Sample TTP Proposed solution State of art solution
Prediction accuracy ~ Processing time (s)  Prediction accuracy ~ Processing time (s)
(%) (%)
1. Catchamas 96.47 0.021 91.20 0.044
2. Duqu 96.12 0.024 95.13 0.041
3. Kazuar 92.17 0.031 89.01 0.037
4. Lazarus Group 97.04 0.022 91.29 0.039
5. Machete 93.35 0.022 95.72 0.041
6. NetTraveler 95.97 0.027 89.04 0.040
7. PowerDuke 96.72 0.023 90.21 0.042
8. Remexi 95.19 0.021 93.09 0.039
9. Soundbite 92.98 0.020 95.27 0.040
10. Winerack 96.87 0.021 89.17 0.041

5 Conclusion and Future Work

Methods and results that are presented with the proposed solution show that security incidents
can be matched with cyber threat tactics in cyber threat intelligence. Machine learning can
be used to artificially-link these mappings using specific possibilities and algorithms. In this
context, it is worth noting that the prediction accuracy and the processing time are still limited.
This study worked on the improvement of these two limitations. The proposed solution
was inspired by the study that developed second best solution [7], and new features were
developed such as modified version of Naive Bayes posterior probability and modified prior
class probability. These functions increase the probability accuracy due to associated threats
consideration compared to posterior Naive Bayes probability based on normalized conditional
probability. Moreover, a new feature for risk management framework has been developed
that allows the improvement in processing time limitation by using third best solution [3].
With posterior probability threat, risk assessment approach identifies the most relevant threats
(using threat impact) in the cyber-threat set with increased accuracy of probability function
and reduced time for threat prediction. Therefore, the proposed solution improves the average
prediction accuracy by 4% and reduces the average processing time by 0.015 s. In future, in
order to enable the developed model to be used in wider domains, multiple class datasets will
be provided during testing and training stages of machine learning. In addition to that, studies
will be carried out for mitigation integrations and automation of threat incidents detected in
cyber threat intelligence. In this regard, development methods will be used to improve the
threat classification performance and feature extraction.
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Table 16 Comparison table between the proposed solution and the state of art solution

Proposed solution

State of art solution

Name of the solution

Applied area

Prediction accuracy
Detection time

Proposed equation

Used datasets and samples

Contribution 1

Contribution 2

Enhanced Naive Bayes posterior
probability (ENBPP)

Attack patterns based cyber threats

Prediction of attack pattern accuracy
average is 96%

Predict threat incidents for detected
TTPs in an average time of 0.028 s

Modified version of Naive Bayes

posterior probability

M (i, Trpilttp;) =

o(ttp;lti) M
t

1 €Typi o(ttp; ’i)) pUi)

Enhanced Naive Bayes posterior

probability (ENBPP)

ES() =
an,-eTTPD,»MM(li,Tnpi lttp;)
iepjert py Mit(t: Tuupiltip;)

ti

Processing time and classification
accuracy results were obtained by
using five different datasets
containing 328,814 (Datasetl:
36,222 samples, Dataset2: 136,814
samples, Dataset3: 25,038
samples, Dataset4: 47,622
samples, Dataset5: 83,118
samples) threat samples.

Activation function is modified
threat support function based on
Bayesian probabilistic graphical
model, which increases probability
accuracy.

Risk management framework during
threat prediction stage considers
treat probability after risk
assessment to generate maximum
support results of detected TTPs.
This effectively prevents threshold
mistakes in prediction sets,
improving processing time and
enhances reliable threat prediction
values.

A novel machine learning based
framework

Attack patterns based cyber threats

Prediction of attack pattern accuracy
average is 92%

Predict threat incidents for detected
TTPs in an average time of 0.043 s

Posterior Naive Bayes probability

rin) — o(ttp;|4)p(t)
w(iletpi) = ZtieTnpi""(”Pi|ti)P(ti)

State of art solution created three
different datasets, and used
133,450 (Datasetl1: 45,019
samples, Dataset2: 23,574
samples, Dataset3: 64,857
samples) threat samples.

Threat support function used as an
activation function in the system
faces dependency problems of
TTPs. This affects ability to
recognize attacks and reduces
overall threat prediction reliability.

State of art does not provide a
solution to deal with prediction
reliability problems.
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