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Abstract
In this paper, we consider the finite time anti-synchronization (A-SYN) of master-slave cou-
pled quaternion-valued neural networks, where the time-varying delays can be asynchronous
and unbounded. Without adopting the general decomposition method, the quaternion-valued
state is considered as a whole, which greatly reduces the hassle of further analysis and cal-
culations. The designed controller is delay-free, and the terms with time delay do not need
to be bounded globally. Several sufficient conditions for ensuring the finite time A-SYN are
obtained under 1-norm and 2-norm respectively. The A-SYN error will be proved to evolve
from the initial value to 1 in finite time, and evolve from 1 to 0 also in finite time, hence the
finite time A-SYN is proved, which is called two-phases-method. Moreover, adaptive rules
for control strengths are also designed to realize the finite time A-SYN. Lastly, a numerical
example is presented to demonstrate the correctness and effectiveness of our obtained results.

Keywords Anti-synchronization · Asynchronous · Finite time · Quaternion-valued neural
network · Time delay · Unbounded

1 Introduction

In 1843, British mathematician Hamilton introduced quaternion, which was an extension of
complex numbers. However, quaternion did not get too much attention or development for
quite a long time, where one significant reason was that, unlike complex numbers, quaternion
multiplication did not satisfy the commutative law. By the late twentieth century, quater-
nion ushered in recovery due to its effectiveness in describing spatial rotations. Specifically,
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researchers found that quaternion gave a simple way to encode the rotation information into
four numbers, which was more compact and simpler than matrices and Euler angles. Hence,
in recent years, quaternion has been widely applied in computer graphics, computer vision,
robotics, navigation, and so on.

Neural network [1,2] has becomeoneof themost popular researchfields in the past 30years
due to the promising development andwide applications in signal processing, pattern recogni-
tion, optimization problems, deep learning, etc. Just as real-valued neural networks (RVNNs)
are extended by complex-valued neural networks (CVNNs), QVNNs can also be regarded
as an extension of CVNNs, where the neurons’ state, activation functions, self-feedback
weights, connections weights, and external inputs are all quaternion. Isokawa et al. [3] found
that QVNNs performed better on 3D affine transformation task than that with two CVNNs,
which illustrated the superiority of QVNNs when dealing with problems related to multi-
dimensional information. According to the stringent Cauchy–Riemann–Fueter (CRF) and the
generalized Cauchy–Riemann conditions, only constants and linear functions were globally
analytical in quaternion domain. Fortunately, researchers have studied this analyticity prob-
lem and an alternative condition to CRF (local analyticity condition, LAC) was found [4],
which allowed to use standard activation functions, such as tanh function. QVNNs have been
successfully applied to various network structures, speech recognition, image processing and
classification, and so on [5–7].

Synchronization (SYN) has been a hot topic in network literature for a decade, and many
classical results were obtained. However, as a special case of SYN, A-SYN received less
attention,whichwasfirst observed byHuygens in seventeenth century between twopendulum
clocks. When A-SYN occurs, the sum of two correspond state vectors will decrease to zero.
A-SYN has been found distinctive applications in communication system, where the security
and secrecy of systems can be greatly strengthened by transforming from SYN and A-SYN
periodically [8]. Therefore, A-SYN deserves further study in both theory and practice [9,10].

One important factor for network dynamic is time delay, which is inevitable in the real
world. There have been many studies on neural network systems with time delays, see [11–
26]. For example, Liu and Chen [11] investigated the exponential stability for CVNNs with
asynchronous time delays by using the decomposition method, which was a widely used
method in the study of CVNNs and QVNNs. Liu et al. [15] decomposed QVNN into two
CVNNs. In [20], the pseudo almost periodic SYN of QVNNs with time-varying delays
was studied, where the fixed point theorem and Lyapunov functions were applied to ensure
the global exponential SYN. Song and Chen [22] focused on the multistability issue for
QVNNs with time delays. The decomposition method used in the above papers decouples
multi-dimensional state, which simplifies the original problems, but on the other hand, this
approach brings more redundancy in calculations and analysis. In fact, if the activation
functions satisfy certain characteristics, we can consider the multi-dimensional state as a
whole, and analyze it with special calculation arts, for example, Song et al. [24] did not
decompose the CVNN, but used the property of ‖u(t)‖ to analyze the entire complex-valued
u(t), which made the proof briefer, and this advantage was more obvious for QVNNs. Zhu
and Sun [25] investigated the existence and stability criteria for QVNN with mixed delays
by using quaternion-modulus inequality technique. Wei and Cao [26] investigated the SYN
of drive-response coupled memristive QVNNs with bounded and differential delay.

It must be stated that, the previous stability/SYN researches are under the concept of
asymptotic, exponential, orμ-rate convergence, i.e., the theoretically required time is infinite.
Actually, there is another type of convergence: finite/fixed time convergence, and the settling
time is dependent/independent on initial values. Finite time stability/SYN is more useful
in real applications [27–38]. Since time delay is almost inevitable, there have been many
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research results on finite/fixed time SYN/A-SYN, which are mainly based on the finite
time stability theorem, and two general techniques have been usually applied to deal with
time delay. One is designing delay-dependent external controller [31–34], for example (17)
in [31], (24) in [32], (22) in [33], (7) in [34]; the other technique is designing delay-free
controller but with the boundedness assumption for terms with delay, for example, (H3) in
[31], Assumption 1 in [35], and (H1) in [36]. Since delay-dependent controller is complex
in application, using delay-free controller but without the global boundedness assumption
is the trend in recent study of finite time literature, where [37,38] realized this aim, but the
time delays were required to be bounded and differentiable. On the other hand, without using
finite time stability theorems, recent papers [39–42] investigated the finite time SYN/A-SYN
for (inertia) neural networks with delay by developing an integral inequality method.

Recently, a novel method explicitly called two-phases-method (2PM) was proposed in
[43], which was inspired by [44,45]. Using 2PM, general frameworks for finite/fixed time
stability of delayed system were set up in our works [46–49]. In the first phase, the con-
cerned/measured variable (for example, SYN/A-SYN error) would be proved to evolve from
the initial value to 1 in finite time, where the convergence rate is related to the form of the
time delay, so this phase can be regarded as a repetition of proving infinite time (including
exponential, μ-rate) stability. In the second phase, one can easily enlarge terms with delay
by previous obtained boundedness property for system variables, and prove that the con-
cerned/measured variable would evolve from 1 to 0 also in finite time. 2PM has been used to
solve finite time A-SYN problem in [43], and can be extended to other hypercomplex-valued
neural networks, such as QVNNs in this paper.

To the best of our knowledge, the finite time A-SYN of QVNNs with unbounded asyn-
chronous time delays has not been investigated so far. Motivated by the aforementioned
discussions, this paper will concentrate on solving this problem by treating the quaternion
state as a whole, and the advantages/contributions of our result can be listed as follows: (1)
the finite time A-SYN of QVNNs with delays is realized with just two delay-free controllers.
We know one linear negative term cannot realize finite time A-SYN, and three terms can
realize A-SYN in [43], in this paper, we prove that only two terms can realize A-SYN, so
two can be regarded as the necessary and sufficient terms for finite time A-SYN in this
sense; (2) the global boundedness of terms with delay is not required by using 2PM, which
is especially important for higher-dimension systems, for example, according to Liouville-
theorem, activation functions in CVNN cannot be both bounded and analytic simultaneously;
(3) the asynchronous time-varying delays can be unbounded and un-differentiable by using
the maximum-value function [11], compared with the bounded and differentiable require-
ment in [37,38]; (4) the adaptive finite time A-SYN is also realized by designing a suitable
adaptive rule and its validity is also strictly proved, which is rarely discussed in mentioned
works except for [36].

In Sect. 2, the model description is given, as well as some definitions, assumptions, and
lemmas. Sufficient criteria for ensuring (adaptive)finite timeA-SYNare derivedunder 1-norm
and 2-norm in Sect. 3. In Sect. 4, a numerical example is presented to show its effectiveness.
Finally, Sect. 5 concludes this paper.

2 Model Description

Some notations throughout the whole paper are firstly presented. R and H denote the sets of
real numbers and quaternions. n denotes {1, 2, . . . , n}. For any a = a R +aI i +a J j +aK k ∈
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H, where i2 = j2 = k2 = −1, i j = k = − j i, jk = i = −k j, ki = j = −ik, the 1-norm
of a is defined as ‖a‖1 = |aR | + |aI | + |a J | + |aK |, and the 2-norm is ‖a‖2 = √

aa, where
a = aR − aI i − a J j − aK k. For any vector A = (A1, A2, . . . , An) ∈ R

1×n , AT is its
transposition, A > 0 means that Ap > 0 for any p ∈ n.

Next, we present some matrices to show the property of the dot product between two
quaternion numbers a and b, where a = aR+aI i+a J j+aK k and b = bR+bI i+bJ j+bK k.

Define a 4-dimensional matrix

M =

⎛
⎜⎜⎝
1 i j k
i −1 k − j
j −k −1 i
k j −i −1

⎞
⎟⎟⎠ = M R + M I i + M J j + M K k, (1)

where

M R =

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ , M I =

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ ,

M J =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ , M K =

⎛
⎜⎜⎝
0 0 0 1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞
⎟⎟⎠ .

Definition 1 For any two quaternion numbers a, b ∈ H, denote

−→a = (aR, aI , a J , aK )T ,
−→
b = (bR, bI , bJ , bK )T , (2)

then

ab = −→a T
M

−→
b = −→a T

M R−→
b + −→a T

M I −→b i + −→a T
M J −→

b j + −→a T
M K −→

b k,

i.e.,

−→
ab =

⎛
⎜⎜⎜⎝

−→a T
M R−→

b
−→a T

M I −→b
−→a T

M J −→
b

−→a T
M K −→

b

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

aRbR − aI bI − a J bJ − aK bK

aRbI + aI bR + a J bK − aK bJ

aRbJ − aI bK + a J bR + aK bI

aRbK + aI bJ − a J bI + aK bR

⎞
⎟⎟⎠ . (3)

Especially, aa = (aR)2 + (aI )2 + (a J )2 + (aK )2 = ‖a‖22.
Remark 1 This special notation is also used in [13,43], which can greatly reduce the redun-
dancy of calculation and representation in our proof.

Consider the followingQVNNmodel consisting of n neurons and involving asynchronous
time-varying delays:

ẋ p(t) = −dpx p(t) +
n∑

q=1

apq fq(xq(t)) +
n∑

q=1

bpq gq(xq(t − τpq(t))) + Ip, (4)

where x p ∈ H is the state of the pth neuron, p ∈ n; dp ∈ H is the feedback self-connection
weight; f p(·) and gp(·) : H → H are quaternion-valued activation functions without and
with time delays; apq , bpq ∈ H denote the connection weights without and with time delays;
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τpq(t) is the asynchronous time-varying delay, and satisfies 0 ≤ τpq(t) ≤ τ(t), where τ(t)
is the upper bound of all τpq(t) and t − τ(t) → +∞ if t → +∞; Ip(t) ∈ H is time varying
and denotes the bounded external input.

Let (4) be the master system, and the slave system is given as follows:

ẏp(t) = −dp yp(t) +
n∑

q=1

apq fq(yq(t)) +
n∑

q=1

bpq gq(yq(t − τpq(t))) + Ip + u p(t), (5)

where p ∈ n, and parameters in (5) are the same as those in (4), u p(t) ∈ H is the external
controller and will be defined later.

Assumption 1 There exist nonnegative real numbers L f
ι , Lg

ι , H f
ι , H g

ι such that

‖ f p(x p) + f p(yp)‖ι ≤ L f
ι ‖x p + yp‖ι + H f

ι ,

‖gp(x p) + gp(yp)‖ι ≤ Lg
ι ‖x p + yp‖ι + H g

ι ,

where f p(·), gp(·) : H → H, x p, yp ∈ H, ι = 1, 2, p ∈ n.

Remark 2 If H f
ι = 0, H g

ι = 0, for any ι, then above conditions can be regarded as the
common used Lipschitz condition, thus the above assumption is more general.

Lemma 1 For any quaternion numbers a, b ∈ H, the following properties hold:

(i). a = a, (ii). a + a = 2aR, (iii). ab = ba.

Proof Results (i) and (ii) are obvious, we just need to prove (iii). From (3),

−→
ab =

⎛
⎜⎜⎜⎝

−→a T
M R−→

b

−−→a T
M I −→b

−−→a T
M J −→

b

−−→a T
M K −→

b

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

aRbR − aI bI − a J bJ − aK bK

−aRbI − aI bR − a J bK + aK bJ

−aRbJ + aI bK − a J bR − aK bI

−aRbK − aI bJ + a J bI − aK bR

⎞
⎟⎟⎠ , (6)

and

−→
ba =

⎛
⎜⎜⎜⎜⎜⎜⎝

−→
b

T
M R−→

a
−→
b

T
M I −→a

−→
b

T
M J −→

a
−→
b

T
M K −→

a

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

bRaR − (−bI )(−aI ) − (−bJ )(−a J ) − (−bK )(−aK )

bR(−aI ) + (−bI )aR + (−bJ )(−aK ) − (−bK )(−a J )

bR(−a J ) − (−bI )(−aK ) + (−bJ )aR + (−bK )(−aI )

bR(−aK ) + (−bI )(−a J ) − (−bJ )(−aI ) + (−bK )aR

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

aRbR − aI bI − a J bJ − aK bK

−aRbI − aI bR − a J bK + aK bJ

−aRbJ + aI bK − a J bR − aK bI

−aRbK − aI bJ + a J bI − aK bR

⎞
⎟⎟⎠ .

Therefore,
−→
ab = −→

ba, i.e., ab = ba. �	
Definition 2 A sign function for quaternion variables a = a R + aI i + a J j + aK k ∈ H can
be defined as

sig(a) � sign(aR) + sign(aI )i + sign(a J ) j + sign(aK )k. (7)
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Similar definition of sign function for complex-variables can be found in [34,37]. This
new sign function takes the variable as a whole and will play an important role for the finite
time A-SYN analysis, whose properties are presented in the next.

Lemma 2 For any e(t) : R → H,

(i). sig(e(t))e(t) + e(t)sig(e(t)) = 2‖e(t)‖1 ≥ 2‖e(t)‖2,
(ii). sig(e(t))sig(e(t)) = sig(e(t))sig(e(t)) = ‖sig(e(t))‖1,

(iii).
d‖e(t)‖1

dt
= 1

2

(
sig(e(t))

de(t)

dt
+ de(t)

dt
sig(e(t))

)
.

Proof According to Lemma 1, we have

sig(e(t))e(t) + e(t)sig(e(t)) = 2
−−−−−→
sig(e(t))

T
M R−→

e(t) = 2
−−−−−→
sig(e(t))

T −→
e(t)

= 2(|eR(t)| + |eI (t)| + |eJ (t)| + |eK (t)|) = 2‖e(t)‖1 ≥ 2‖e(t)‖2,
where the last inequality is based on norm equivalence property, so (i) is proved.

As for (ii), according to (3),
−−−−−−−−−−−→
sig(e(t))sig(e(t)) = (sign2(eR(t)) + sign2(eI (t)) +

sign2(eJ (t)) + sign2(eK (t)), 0, 0, 0)T , therefore, sig(e(t))sig(e(t)) = |sign(eR(t))| +
|sign(eI (t))| + |sign(eJ (t))| + |sign(eK (t))| = ‖sig(e(t))‖1, similar arguments can also
be used for sig(e(t))sig(e(t)) = ‖sig(e(t))‖1.

As for (iii), it can be directly obtained by differentiating (i). �	
Remark 3 Above results allow us to study the QVNNs without decomposition. We can use
1-norm and 2-norm to quantify the error and convert the norms into the simple quaternion
state instead of expanding all dimensions.

Definition 3 For any vector v = (v1, v2, . . . , vn) ∈ R
1×n , its∞-norm is defined as: ‖v‖∞ =

maxp∈n |vp|. Especially, for any e(t) = (e1(t), . . . , en(t))T , where ep(t) ∈ H, then we can
define

‖e(t)‖{ι,∞} = max
p∈n

‖ep(s)‖ι. (8)

Remark 4 ∞-norm has the advantage to deal with asynchronous time delays. A generalized
∞-norm is used to investigate finite time A-SYN for CVNNs [43], which can also be used
here, but in order to state our main results more clearly, we adopt the classical ∞-norm,
interested readers are encouraged to try by yourself.

Definition 4 QVNNs (4) and (5) are said to achieve finite time A-SYN, if there exists a
settling time T depending on (or not) initial functionals, such that

lim
t→T

‖x(t) + y(t)‖{ι,∞} = 0, and ‖x(t) + y(t)‖{ι,∞} = 0, t ≥ T ,

where x(t) = (x1(t), . . . , xn(t))T and y(t) = (y1(t), . . . , yn(t))T , ι can be 1 or 2.

Remark 5 In fact, finite time SYN can also be defined by replacing x(t)+ y(t) by x(t)− y(t).
Since A-SYN ismore complex and difficult to realize than SYN, so we just discuss finite time
A-SYN in this paper, interested readers can deduce finite time SYN by yourself according
to our following analysis in the next section.
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3 Main Results

Define e(t) = x(t) + y(t) as the A-SYN error between (4) and (5), thus the error system is
as follows:

ėp(t) = −dpep(t) +
n∑

q=1

apq f̃q(eq(t))

+
n∑

q=1

bpq g̃q(eq(t − τpq(t))) + 2Ip + u p(t), (9)

where f̃q(eq(t)) = fq(xq(t)) + fq(yq(t)), g̃q(eq(t − τpq(t))) = gq(xq(t − τpq(t))) +
gq(yq(t − τpq(t)). Initial states of (9) are denoted as ep(θ), θ ∈ (−τ(0), 0], p ∈ n.

The delay-free controller now can be designed as:

u p(t) = −λpep(t) − ρpsig(ep(t)), (10)

where λp, ρp ∈ R are positive real constants.

Assumption 2 With the above controller, a necessary condition for A-SYN is that: when
e(t) = 0, Ip(t) = 0, f̃ p(ep(t)) = 0 and g̃p(ep(t)) = 0, p ∈ n.

Then we define a special function μ(t) [50] which is nondecreasing and satisfies the
following three properties:

lim
t→+∞ μ(t) = +∞, lim

t→+∞
μ̇(t)

μ(t)
= ς, lim

t→+∞
μ(t)

μ(t − τ(t))
= 1 + η, (11)

where ς and η are nonnegative constants.

Theorem 1 Under Assumption 1, 2 and controller (10), the master–slave coupled QVNNs
(4) and (5) can achieve finite time A-SYN if

λp > ς + |d I
p| + |d J

p | + |d K
p | − d R

p + Ap1 + (1 + η)Bp1, (12)

ρp > Bp1 + Cp1 + 2‖Ip‖1, (13)

where

Ap1 = L f
1

n∑
q=1

‖apq‖1, Bp1 = Lg
1

n∑
q=1

‖bpq‖1, Cp1 =
n∑

q=1

(H f
1 ‖apq‖1 + H g

1 ‖bpq‖1).

(14)

Proof According to 2PM, the whole process can be analyzed in two phases. From condition
(12), there must exist a time T0 such that

μ̇(t)

μ(t)
+ |d I

p| + |d J
p | + |d K

p | − d R
p + Ap1 + μ(t)

μ(t − τ(t))
Bp1 − λp < 0 (15)

holds for all t ≥ T0 and p ∈ n.
The following discussions are all from T0, which is just determined by time delays but

not initial values.
Phase 1:We prove that supt−τ(t)≤s≤t ‖e(s)‖{1,∞} will reach 1 in finite time.
We define a maximum-value function as

M(t) = sup
t−τ(t)≤s≤t

(
μ(s)‖e(s)‖{1,∞}

)
= sup

t−τ(t)≤s≤t

(
μ(s)max

p∈n
‖ep(s)‖1

)
. (16)
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Obviously, μ(t)‖ep(t)‖1 ≤ M(t) holds for any p ∈ n, t ≥ T0. Moreover, this fact contains
two cases.

(I) If μ(t)maxp∈n ‖ep(t)‖1 < M(t), then there must exist a constant δ1 > 0 such that
M(s) ≤ M(t) for any s ∈ (t, t + δ1).

(II) If there exist an index p1 and a time point t1(t1 ≥ T0) such that μ(t1)‖ep1(t1)‖1 =
M(t1), then

d(μ(t)‖ep(t)‖1)
dt

∣∣∣∣
p=p1,t=t1

=
[
μ̇(t)‖ep(t)‖1 + μ(t)

d‖ep(t)‖1
dt

]∣∣∣∣
p=p1,t=t1

(17)

From Lemma 2, we have

d‖ep(t)‖1
dt

= 1

2

(
sig(ep(t))

dep(t)

dt
+ dep(t)

dt
sig(ep(t))

)

= −1

2

(
sig(ep(t))dpep(t) + dpep(t)sig(ep(t))

)

+ 1

2

n∑
q=1

(
sig(ep(t))apq f̃q(eq(t)) + apq f̃q(eq(t))sig(ep(t))

)

+ 1

2

n∑
q=1

(
sig(ep(t))bpq g̃q(eq(t − τpq(t)))

+ bpq g̃q(eq(t − τpq(t)))sig(ep(t))
)

+
(
sig(ep(t))Ip + Ipsig(ep(t))

)
+ 1

2

(
sig(ep(t))u p(t) + u p(t)sig(ep(t))

)
.

(18)

In the next, we will analyze each term separately in (18) by using (3) and (6).

− 1

2

(
sig(ep(t))dpep(t) + dpep(t)sig(ep(t))

)

= −(sig(ep(t))dpep(t))
R = −−−−−−−→

sig(ep(t))
T

M R−−−−→
dpep(t)

= −sig(ep(t))
R−→

dp
T

M R−−→
ep(t) − sig(ep(t))

I −→dp
T

M I −−→
ep(t)

− sig(ep(t))
J −→

dp
T

M J −−→
ep(t) − sig(ep(t))

K −→
dp

T
M K −−→

ep(t)

= −|ep(t)
R |d R

p + (ep(t)
I d I

p + ep(t)
J d J

p + ep(t)
K d K

p )sign(ep(t)
R)

− |ep(t)
I |d R

p + (−ep(t)
Rd I

p + ep(t)
J d K

p − ep(t)
K d J

p )sign(ep(t)
I )

− |ep(t)
J |d R

p + (−ep(t)
Rd J

p − ep(t)
I d K

p + ep(t)
K d I

p)sign(ep(t)
J )

− |ep(t)
K |d R

p + (−ep(t)
Rd K

p + ep(t)
I d J

p − ep(t)
J d I

p)sign(ep(t)
K )

≤ −‖ep(t)‖1d R
p + |ep(t)

I ||d I
p| + |ep(t)

J ||d J
p | + |ep(t)

K ||d K
p |

+ |ep(t)
R ||d I

p| + |ep(t)
J ||d K

p | + |ep(t)
K ||d J

p |
+ |ep(t)

R ||d J
p | + |ep(t)

I ||d K
p | + |ep(t)

K ||d I
p|

+ |ep(t)
R ||d K

p | + |ep(t)
I ||d J

p | + |ep(t)
J ||d I

p|
= (|d I

p| + |d J
p | + |d K

p | − d R
p )‖ep(t)‖1. (19)
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With the same argument as (19),

1

2

n∑
q=1

(
sig(ep(t))apq f̃q(eq(t)) + apq f̃q(eq(t))sig(ep(t))

)

=
n∑

q=1

(
sig(ep(t))apq f̃q(eq(t))

)R ≤
n∑

q=1

‖apq‖1‖ f̃q(eq(t))‖1

≤
n∑

q=1

‖apq‖1(L f
1 ‖eq(t)‖1 + H f

1 ) (20)

= M(t)

μ(t)
L f
1

n∑
q=1

‖apq‖1 + H f
1

n∑
q=1

‖apq‖1. (21)

Similarly, according to the definition of M(t) in (16), we have

1

2

n∑
q=1

(
sig(ep(t))bpq g̃q(eq(t − τpq(t))) + bpq g̃q(eq(t − τpq(t)))sig(ep(t))

)

≤
n∑

q=1

‖bpq‖1
(
Lg
1‖eq(t − τpq(t))‖1 + H g

1

)
(22)

= 1

μ(t)
Lg
1

n∑
q=1

‖bpq‖1 μ(t)

μ(t − τpq(t))
μ(t − τpq(t))‖eq(t − τpq(t))‖1 + H g

1

n∑
q=1

‖bpq‖1

≤ M(t)

μ(t)

μ(t)

μ(t − τ(t))
Lg
1

n∑
q=1

‖bpq‖1 + H g
1

n∑
q=1

‖bpq‖1. (23)

Moreover,

sig(ep(t))Ip + Ipsig(ep(t)) ≤ 2‖Ip‖1, (24)

1

2

(
λp

(
sig(ep(t))u p(t) + u p(t)sig(ep(t))

)
≤ −λp‖ep(t)‖1 − ρp. (25)

Therefore, according to (17)–(19), (21), (23)–(25), we have

d(μ(t)‖ep(t)‖1)
dt

∣∣∣∣
p=p1,t=t1

≤
( μ̇(t)

μ(t)
+ |d I

p| + |d J
p | + |d K

p | − d R
p + Ap1 + μ(t)

μ(t − τ(t))
Bp1 − λp

)
M(t)

+ (Cp1 + 2‖Ip‖1 − ρp)μ(t) < 0. (26)

Through the two cases presented above, we have proved that M(t) is non-increasing for
all t ≥ T0, which means that

μ(t − τ(t)) sup
t−τ(t)≤s≤t

(‖e(s)‖{1,∞}) ≤ M(t) ≤ M(T0),

i.e.,

sup
t−τ(t)≤s≤t

(‖e(s)‖{1,∞}) ≤ M(T0)
μ(t − τ(t))

. (27)
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The properties of μ(t) are given in condition (11), it is easy to see that limt→+∞ μ(t −
τ(t)) = +∞. According to the intermediate value theorem, there exists a time point T1(T1 ≥
T0) such that supt−τ(t)≤s≤t (‖e(s)‖{1,∞}) ≤ 1 holds for all t ≥ T1, hence the proof of phase
1 is completed.

Phase 2:We prove that supt−τ(t)≤s≤t ‖e(s)‖{1,∞} will flow to 0 in finite time.
From condition (13), we can pick a small constant ϑ such that

0 < ϑ < ρp − Bp1 − Cp1 − 2‖Ip‖1, (28)

holds for all p ∈ n. We define another function

V(t) = sup
t−τ(t)≤s≤t

(‖e(s)‖{1,∞} + ϑs) = sup
t−τ(t)≤s≤t

(max
p∈n

‖ep(s)‖1 + ϑs). (29)

Similar to the proof in phase 1, we will analyze its property in two cases.
(I) If maxp∈n ‖ep(t)‖1 +ϑ t < V(t), for all p ∈ n, then there must exist a constant δ2 > 0

such that V(s) ≤ V(t) for any s ∈ (t, t + δ2).
(II) If there exist an index p2 and a time point t2(t2 ≥ T1), such that ‖ep2(t2)‖1 + ϑ t2 =

V(t2), then according to (18)–(20), (22), (24), (25),

d

dt

(
‖ep(t)‖1 + ϑ t

)∣∣∣∣
p=p2,t=t2

= d‖ep(t)‖1
dt

∣∣∣∣
p=p2,t=t2

+ ϑ

= (|d I
p| + |d J

p | + |d K
p | − d R

p + Ap1 − λp)‖ep(t)‖1

+ Lg
1

n∑
q=1

‖bpq‖1‖eq(t − τpq(t))‖1 + Cp1 + 2‖Ip‖1 − ρp + ϑ (30)

≤ Bp1 + Cp1 + 2‖Ip‖1 − ρp + ϑ < 0, (31)

where the inequality from (30) to (31) is based on the result in phase 1, where we have
already proved that supt−τ(t)≤s≤t (maxp∈n ‖ep(s)‖1) ≤ 1 holds for all t ≥ T1. As a result,
‖eq(t − τpq(t))‖1 ≤ 1 always holds in phase 2.

Hence, V(t) is a non-increasing function,

‖e(t)‖{1,∞} + ϑ t ≤ V(t) ≤ V(T1) ≤ 1 + ϑT1,

i.e.,

‖e(t)‖{1,∞} ≤ 1 − ϑ(t − T1),

It is clear that ‖e(t)‖{1,∞} converges to 0 as time t increases gradually. We denote T2 as the
first time it reaches 0, where

T2 = T1 + 1

ϑ
, (32)

so, QVNNs (4) and (5) will achieve finite time A-SYN no longer than T2. �	
Remark 6 From (12), d R

p is important for A-SYN, that is to say, if d R
p is large enough, then

λp can be chosen as zero, i.e., the term −λpep(t) can be eliminated.

Remark 7 A special case is that Assumption 1 holds with H f
1 and H g

1 being zero, and Ip = 0,
which can be happened in general SYN problem, in this case, Cp1 = ‖Ip‖1 = 0, then one
can use the following switching-type controller to realize finite time SYN/A-SYN,

u p(t) =
{−λpep(t), if supt−τ(t)≤s≤t ‖e(s)‖{1,∞} > 1,

−ρpsig(ep(t)), otherwise
(33)
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The time delay in model (9) is said to be asynchronous and time-varying, in fact, we are
able to deal with mixed delays, like distributed time delays in [16]. Consider error QVNN
described as follows:

ėp(t) = −dpep(t) +
n∑

q=1

apq f̃q(eq(t)) +
n∑

q=1

bpq g̃q(eq(t − τpq(t)))

+
n∑

q=1

ξpq

∫ t

t−τ

φ̃q(eq(s))ds + 2Ip + u p(t), p ∈ n, (34)

where ξpq ∈ H is the quaternion-valued distributed connection weight, φ̃q(eq(t)) =
φq(xq(t)) + φq(yq(t)), and φq(·) : H → H is the quaternion-valued distributed activation
function, τ is a constant delay.

Corollary 1 Suppose that Assumptions 1 and 2 holds, and there also exist nonnegative con-
stants Lφ

1 and Hφ
1 , such that ‖φp(x p) + φp(yp)‖1 ≤ Lφ

1‖x p + yp‖1 + Hφ
1 holds. QVNN

(34) with delay-free controller (10) will achieve finite time A-SYN if:

λp > ς + |d I
p| + |d J

p | + |d K
p | − d R

p + A′
p1 + (1 + η)Bp1,

ρp > Bp1 + C′
p1 + 2‖Ip‖1.

where A′
p1 = Ap1L f

1 + τ Lφ
1

∑n
q=1 ‖ξpq‖1, C′

p1 = Cp1 + τ
∑n

q=1 ‖ξpq‖1(Lφ
1 + Hφ

1 ).

Theorem 1 is presented under 1-norm, in fact, the result can also be given under 2-norm.

Theorem 2 Based on Assumption 1, 2, and controller (10), the master–slave coupled QVNNs
(4) and (5) can achieve finite time A-SYN if

λp >
ς

2
− d R

p + Ap2 + √
1 + ηBp2, (35)

ρp > Bp2 + Cp2 + 2‖Ip‖2, (36)

hold for all p ∈ n, where

Ap2 = L f
2

n∑
q=1

‖apq‖2, Bp2 = Lg
2

n∑
q=1

‖bpq‖2, Cp2 =
n∑

q=1

(H f
2 ‖apq‖2 + H g

2 ‖bpq‖2).

Proof The whole proof is similar to that in Theorem 1 except the deductions related to
properties of 1-norm, so some details may be omitted.

Phase 1: According to (35), there must exist a time point T 

0 such that

μ̇(t)

μ(t)
− 2d R

p + 2Ap2 + 2Bp2

√
μ(t)√

μ(t − τ(t))
− 2λp < 0. (37)

We define

M
(t) = sup
t−τ(t)≤s≤t

(
μ(s)max

p∈n
‖ep(s)‖22

)
, t ≥ T 


0 . (38)

If there exist an index p and a time point t such that μ(t)‖ep(t)‖22 = M
(t), then

d(μ(t)‖ep(t)‖22)
dt

= μ̇(t)‖ep(t)‖22 + μ(t)
d‖ep(t)‖22

dt
, (39)
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and

d‖ep(t)‖22
dt

= d

dt
ep(t)ep(t)

= −
(

dpep(t)ep(t) + ep(t)dpep(t)
)

+
n∑

q=1

(
apq f̃q(eq(t))ep(t) + ep(t)apq f̃q(eq(t))

)

+
n∑

q=1

(
bpq g̃q(eq(t − τpq(t)))ep(t) + ep(t)bpq g̃q(eq(t − τpq(t)))

)

+ 2
(

Ipep(t) + ep(t)Ip

)
− λp

(
ep(t)ep(t) + ep(t)ep(t)

)

− ρp

(
sig(ep(t))ep(t) + ep(t)sig(ep(t))

)
. (40)

For any p ∈ n, according to Lemma 1,

dpep(t)ep(t) + ep(t)dpep(t) = dp‖ep(t)‖22 + ep(t)ep(t)dp

= (dp + dp)‖ep(t)‖22 = 2d R
p ‖ep(t)‖22. (41)

From Assumption 1, one has

n∑
q=1

(
apq f̃q(eq(t))ep(t) + ep(t)apq f̃q(eq(t))

)

≤ 2
n∑

q=1

(
‖apq‖2L f

2 ‖eq(t)‖2‖ep(t)‖2 + ‖apq‖2H f
2 ‖ep(t)‖2

)

≤ 2
n∑

q=1

(
‖apq‖2L f

2 ‖ep(t)‖22 + ‖apq‖2H f
2 ‖ep(t)‖2

)
(42)

Similarly,

n∑
q=1

(
bpq g̃q(eq(t − τpq(t)))ep(t) + ep(t)bpq g̃q(eq(t − τpq(t)))

)

≤ 2
n∑

q=1

(
‖bpq‖2Lg

2‖eq(t − τpq(t))‖2‖ep(t)‖2 + ‖bpq‖2H g
2 ‖ep(t)‖2

)
(43)

≤ 2
n∑

q=1

(
‖bpq‖2Lg

2

√
μ(t)√

μ(t − τ(t))
‖ep(t)‖22 + ‖bpq‖2H g

2 ‖ep(t)‖2
)
. (44)

Moreover,

Ipep(t) + ep(t)Ip ≤ 2‖Ip‖2‖ep(t)‖2, (45)

and from Lemma 2,

− λp

(
ep(t)ep(t) + ep(t)ep(t)

)
− ρp

(
sig(ep(t))ep(t) + ep(t)sig(ep(t))

)

≤ −2λp‖ep(t)‖22 − 2ρp‖ep(t)‖2. (46)
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Substituting (40)–(42) and (44)–(46) into (39), we have

d(μ(t)‖ep(t)‖22)
dt

≤ μ(t)

{( μ̇(t)

μ(t)
− 2d R

p + 2Ap2 + 2Bp2

√
μ(t)√

μ(t − τ(t))
− 2λp

)
‖ep(t)‖22

+
(
2Cp2 + 4‖Ip‖2 − 2ρp

)
‖ep(t)‖2

}
< 0, (47)

which implies that M
(t) is non-increasing for all t ≥ T 

0 , and

sup
t−τ(t)≤s≤t

(max
p∈n

‖ep(s)‖2) ≤
√

M
(T 

0 )

μ(t − τ(t))
.

According to the increasing property of μ(t), there must exist a time point T 

1 ≥ T 


0 such
that supt−τ(t)≤s≤t (maxp∈n ‖ep(s)‖2) ≤ 1 holds for all t ≥ T 


1 .
Phase 2: Based on (36), we can choose a small constant ϑ
 such that

0 < ϑ
 < ρp − Bp2 − Cp2 − 2‖Ip‖2 (48)

holds for all p ∈ n. Then we define

V
(t) = sup
t−τ(t)≤s≤t

(‖e(s)‖{2,∞} + ϑ
s) = sup
t−τ(t)≤s≤t

(max
p∈n

‖ep(s)‖2 + ϑ
s). (49)

If there exist an index p and a time point t ≥ T 

1 such that ‖ep(t)‖2 + ϑ
t = V
(t), then

from inequalities (40)–(43), (45), and (46), we have

d

dt

(
‖ep(t)‖2 + ϑ
t

)
= d

dt

(
(ep(t)ep(t))

1
2

)
+ ϑ


= 1

2
(ep(t)ep(t))

− 1
2

d

dt
ep(t)ep(t) + ϑ


≤ (ep(t)ep(t))
− 1

2

{
(−d R

p + Ap2 − λp)‖ep(t)‖22

+ (

n∑
q=1

‖bpq‖2Lg
2‖eq(t − τpq(t))‖2 + Cp2 + 2‖Ip‖2 − ρp)‖ep(t)‖2

}
+ ϑ
 (50)

≤ ‖ep(t)‖−1
2

(
(Bp2 + Cp2 + 2‖Ip‖2 − ρp)‖ep(t)‖2

)
+ ϑ
 (51)

= Bp2 + Cp2 + 2‖Ip‖2 − ρp + ϑ
 < 0,

where the reasons from (50) to (51) are condition (35) and the fact proved in phase 1 that
supt−τ(t)≤s≤t (maxp∈n ‖ep(s)‖2) ≤ 1.

Hence, V
(t) is proved to be a non-increasing function, so

‖e(t)‖{2,∞} + ϑ
t ≤ V
(t) ≤ V
(T 

1 ) ≤ 1 + ϑ
T 


1 ,

i.e., ‖e(t)‖{2,∞} ≤ 1 − ϑ
(t − T 

1 ), if we denote T 


2 as

T 

2 = T 


1 + 1

ϑ

, (52)

then ‖e(t)‖{2,∞} will be 0 after T 

2 , so finite time A-SYN is finally realized. �	
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Remark 8 From above discussions, we have considered 1-norm and 2-norm, in fact, we can
also consider the∞-norm for quaternions, but this normwould need the decomposition tech-
nique used in our previous paper [43], which violates the idea that we will treat quaternions
as a whole, so we do not consider ∞-norm in this paper, interested readers can consider this
norm as [43].

In fact, we can improve our previous theoretical results by applying the adaptive technique
on the control strengths, since adaptive technique is especially powerful in circumstanceswith
unknown parameters.

At first, we consider 1-norm, then delay-free controller with adaptive control strengths
can be designed as:

u p(t) = −λp(t)ep(t) − ρp(t)sig(ep(t)), (53)

with

λ̇p(t) =
⎧⎨
⎩

ωp1μ(t)‖ep(t)‖1, if supt−τ(t)≤s≤t (maxp∈n ‖ep(s)‖1) ≥ 1
ωp1‖ep(t)‖1, if 0 < supt−τ(t)≤s≤t (maxp∈n ‖ep(s)‖1) < 1
0, if supt−τ(t)≤s≤t (maxp∈n ‖ep(s)‖1) = 0

(54)

and

ρ̇p(t) =
⎧⎨
⎩

ωp2μ(t), if supt−τ(t)≤s≤t (maxp∈n ‖ep(s)‖1) ≥ 1
ωp2, if 0 < supt−τ(t)≤s≤t (maxp∈n ‖ep(s)‖1) < 1
0, if supt−τ(t)≤s≤t (maxp∈n ‖ep(s)‖1) = 0

(55)

where ωp1, ωp2 ∈ R are positive real constants, and λp(0) = ρp(0) = 0, p ∈ n.

Theorem 3 Under Assumption 1, 2, and controller (53), QVNNs (4) and (5) can achieve
finite time A-SYN under adaptive rules (54) and (55).

Proof 2PM will also be used.
Phase 1: Define

M•(t)

= sup
t−τ(t)≤s≤t

{
μ(s)max

p∈n

(
‖ep(s)‖1 + 1

2ωp1
(λp(s) − λ•

p)
2 + 1

2ωp2
(ρp(s) − ρ•

p)
2
)}

,

where λ•
p and ρ•

p are sufficiently large enough constants satisfying

λ•
p > ς + |d I

p| + |d J
p | + |d K

p | − d R
p + Ap1 + (1 + η)Bp1, ρ•

p > Bp1 + Cp1 + 2‖Ip‖1.
(I ) If μ(t)maxp∈n(‖ep(t)‖1 + 1

2ωp1
(λp(t)−λ•

p)
2 + 1

2ωp2
(ρp(t)−ρ•

p)
2)) < M•(t), then

there must exist a constant δ3 > 0 such that M•(s) ≤ M•(t), s ∈ (t, t + δ3).
(I I ) If there exist an index p3 and a time point t3(t3 ≥ T0) such that

μ(t3)
(
‖ep3(t3)‖1 + 1

2ωp1
(λp(t3) − λ•

p)
2 + 1

2ωp2
(ρp(t) − ρ•

p)
2
)

= M•(t3).

Since λp(t) and ρp(t) are non-decreasing, (λp(t) − λ•
p)

2 and (ρp(t) − ρ•
p)

2 would be non-
increasing, thenμ(t3)‖ep3(t3)‖1 is themaximum value forμ(s)‖ep(s)‖1, s ∈ [t3−τ(t3), t3].
According to (26),

d

dt

(
μ(t)‖ep(t)‖1 + 1

2ωp1
(λp(t) − λ•

p)
2 + 1

2ωp2
(ρp(t) − ρ•

p)
2
)∣∣∣∣

p=p3,t=t3
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= μ̇(t)‖ep(t)‖1 + μ(t)
d‖ep(t)‖1

dt
+ (λp(t) − λ•

p)μ(t)‖ep(t)‖1 + (ρp(t) − ρ•
p)μ(t)

≤
( μ̇(t)

μ(t)
+ |d I

p| + |d J
p | + |d K

p | − d R
p + Ap1 + μ(t)

μ(t − τ(t))
Bp1 − λ•

p

)
μ(t)‖ep(t)‖1

+ (Cp1 + 2‖Ip‖1 − ρ•
p)μ(t) < 0.

Therefore, M•(t) is non-increasing for all t ≥ T0, there exists a time point T •
1 such that

supt−τ(t)≤s≤t (‖e(s)‖{1,∞}) ≤ 1 holds for all t ≥ T •
1 .

Phase 2: Define

V•(t)

= sup
t−τ(t)≤s≤t

(
‖e(s)‖{1,∞} + ϑ•s + 1

2ωp1
(λp(s) − λ•

p)
2 + 1

2ωp2
(ρp(s) − ρ•

p)
2
)
,

where 0 < ϑ• < ρ•
p − Bp1 − Cp1 − 2‖Ip‖1, p ∈ n.

Similarly, with the same arguments, if there exist an index p4 and a time point t4(t4 ≥ T •
1 ),

such that ‖ep4(t4)‖1 + ϑ•t4 + 1
2ωp1

(λp(t4) − λ•
p)

2 + 1
2ωp2

(ρp(t4) − ρ•
p)

2 = V•(t4), then

d

dt

(
‖ep(t)‖1 + ϑ•t + 1

2ωp1
(λp(t) − λ•

p)
2 + 1

2ωp2
(ρp(t) − ρ•

p)
2
)∣∣∣∣

p=p4,t=t4

≤ (|d I
p| + |d J

p | + |d K
p | − d R

p + Ap1 − λ•
p)‖ep(t)‖1 + (Bp1 + Cp1 + 2‖Ip‖1 − ρ•

p + ϑ•)
< 0.

Hence, V•(t) is a non-increasing function, i.e.,

‖e(t)‖{1,∞} + ϑ•t ≤ V•(t) ≤ V•(T •
1 ) ≤ 1 + ϑ•T •

1 + max
p∈n

( (λ•
p)

2

2ωp1
+ (ρ•

p)
2

2ωp2

)
,

so, if we define

T •
2 = T •

1 + 1

ϑ•
[
1 + max

p∈n

( (λ•
p)

2

2ωp1
+ (ρ•

p)
2

2ωp2

)]
,

then QVNNs (4) and (5) will achieve finite time A-SYN no longer than T •
2 . �	

Remark 9 From definitions of adaptive rules (54), (55), and the proof process, we can design
non-segment adaptive rules, like

λ̇p(t) =
{

ωp1μ(t)‖ep(t)‖1, if supt−τ(t)≤s≤t (maxp∈n ‖ep(s)‖1) > 0
0, if supt−τ(t)≤s≤t (maxp∈n ‖ep(s)‖1) = 0

(56)

and

ρ̇p(t) =
{

ωp2μ(t), if supt−τ(t)≤s≤t (maxp∈n ‖ep(s)‖1) > 0
0, if supt−τ(t)≤s≤t (maxp∈n ‖ep(s)‖1) = 0

(57)

The only requirement is thatμ(t) ≥ 1, and this condition is easy to be satisfied. For example,
if the time delay is bounded, thenμ(t) can be chosen as eαt , α > 0, obviously, for thisμ(t), it
is larger than 1. One advantage of these new adaptive rules is that there are no further judges
between supt−τ(t)≤s≤t (maxp∈n ‖ep(s)‖1) and 1. Of course, the disadvantage is to result in
larger values of λp(t) and ρp(t).

We can also present the corresponding result with adaptive rules for 2-norm.
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Theorem 4 Under Assumption 1, 2, and controller (53), QVNNs (4) and (5) can achieve
finite time A-SYN under adaptive rules

λ̇p(t) =
⎧⎨
⎩

ωp1μ(t)‖ep(t)‖22, if supt−τ(t)≤s≤t (maxp∈n ‖ep(s)‖2) ≥ 1
ωp1‖ep(t)‖2, if 0 < supt−τ(t)≤s≤t (maxp∈n ‖ep(s)‖2) < 1
0, if supt−τ(t)≤s≤t (maxp∈n ‖ep(s)‖2) = 0

(58)

and

ρ̇p(t) =
⎧⎨
⎩

ωp2μ(t)‖ep(t)‖2, if supt−τ(t)≤s≤t (maxp∈n ‖ep(s)‖2) ≥ 1
ωp2, if 0 < supt−τ(t)≤s≤t (maxp∈n ‖ep(s)‖2) < 1
0, if supt−τ(t)≤s≤t (maxp∈n ‖ep(s)‖2) = 0

(59)

where ωp1, ωp2 ∈ R are positive real constants, and λp(0) = ρp(0) = 0, p ∈ n.

Proof Phase 1: Define

M◦(t)

= sup
t−τ(t)≤s≤t

{
μ(s)max

p∈n

(
‖ep(s)‖22 + 1

ωp1
(λp(s) − λ◦

p)
2 + 1

ωp2
(ρp(s) − ρ◦

p)
2
)}

,

where λ◦
p and ρ◦

p are sufficiently large enough constants satisfying

λ◦
p >

ς

2
− d R

p + Ap2 + √
1 + ηBp2, ρ◦

p > Bp2 + Cp2 + 2‖Ip‖2.
According to (47),

d

dt

(
μ(t)‖ep(t)‖22 + 1

ωp1
(λp(t) − λ◦

p)
2 + 1

ωp2
(ρp(t) − ρ◦

p)
2
)

≤ μ(t)

{( μ̇(t)

μ(t)
− 2d R

p + 2Ap2 + 2Bp2
√

μ(t)
√

μ(t − τ(t)) − 2λ◦
p

)
‖ep(t)‖22

+
(
2Cp2 + 4‖Ip‖2 − 2ρ◦

p

)
‖ep(t)‖2

}
< 0,

Therefore, M◦(t) is non-increasing for all t ≥ T 

0 , there exists a time point T ◦

1 such that
supt−τ(t)≤s≤t (‖e(s)‖{2,∞}) ≤ 1 holds for all t ≥ T ◦

1 .
Phase 2: Define

V◦(t)

= sup
t−τ(t)≤s≤t

(
‖e(s)‖{2,∞} + ϑ◦s + 1

2ωp1
(λp(s) − λ◦

p)
2 + 1

2ωp2
(ρp(s) − ρ◦

p)
2
)
,

where 0 < ϑ◦ < ρ◦
p − Bp2 − Cp2 − 2‖Ip‖2, p ∈ n. Then, according to (50) and (51),

d

dt

(
‖ep(t)‖2 + ϑ◦t + 1

2ωp1
(λp(t) − λ◦

p)
2 + 1

2ωp2
(ρp(t) − ρ◦

p)
2
)

≤ (−d R
p + Ap2 − λ◦

p)‖ep(t)‖2 + (Bp2 + Cp2 + 2‖Ip‖2 − ρ◦
p + ϑ◦) < 0.

Hence, V◦(t) is a non-increasing function, and if we define

T ◦
2 = T ◦

1 + 1

ϑ◦
[
1 + max

p∈n

( (λ◦
p)

2

2ωp1
+ (ρ◦

p)
2

2ωp2

)]
,

then QVNNs (4) and (5) will achieve finite time A-SYN no longer than T ◦
2 . �	
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4 Numerical Example

Consider a two-neuron master-slave coupled QVNN described as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −d1x1(t) + a11 f1(x1(t)) + a12 f2(x2(t))
+b11g1(x1(t − τ11(t))) + b12g2(x2(t − τ12(t))) + I1,

ẋ2(t) = −d2x2(t) + a21 f1(x1(t)) + a22 f2(x2(t))
+b21g1(x1(t − τ21(t))) + b22g2(x2(t − τ22(t))) + I2,

ẏ1(t) = −d1y1(t) + a11 f1(y1(t)) + a12 f2(y2(t))
+b11g1(y1(t − τ11(t))) + b12g2(y2(t − τ12(t))) + I1 + u1,

ẏ2(t) = −d2y2(t) + a21 f1(y1(t)) + a22 f2(y2(t))
+b21g1(y1(t − τ21(t))) + b22g2(y2(t − τ22(t))) + I2 + u2,

(60)

where d1 = 0.0077+ 0.1120i + 0.2911 j + 0.5029k, d2 = 0.1128+ 0.5858i + 0.5528 j +
0.0276k, I1 = −0.4340− 0.5493− 0.3374− 0.0935k, I2 = 0.4748+ 0.0198i − 0.235 j +
0.811k, a11 = −0.0223 − 0.7751i + 0.2771 j − 0.0028k, a12 = −0.1470 − 0.4188i +
0.2667 j + 0.9555k, a21 = 0.9428 + 0.4864i + 0.1884 j + 0.1357k, a22 = −0.8475 +
0.1227i + 0.8616 j − 0.8128k, b11 = 0.3235 − 0.0524i − 0.0488 j + 0.9193k, b12 =
0.5955 + 0.8244i − 0.4134 j + 0.0083k, b21 = 0.2055 − 0.2875i + 0.3420 j − 0.8218k,

b22 = 0.1816 − 0.7977i − 0.8968 j + 0.5368k.
The activation functions are defined as:

f1(xq) = 0.5tanh(x R
q ) + 0.5i tanh(x I

q ) + 0.5 j tanh(x J
q ) + 0.5ktanh(x K

q ),

f2(xq) = 0.25tanh(x R
q ) + 0.25i tanh(x I

q ) + 0.25 j tanh(x J
q ) + 0.25ktanh(x K

q ),

g1(xq) = 0.4tanh(x R
q ) + 0.4i tanh(x I

q ) + 0.4 j tanh(x J
q ) + 0.4ktanh(x K

q ),

g2(xq) = 0.2tanh(x R
q ) + 0.2i tanh(x I

q ) + 0.2 j tanh(x J
q ) + 0.2ktanh(x K

q ),

According to Assumption 1, we get that L f
1 = 0.5, H f

1 = 0, Lg
1 = 0.4, H g

1 = 0.
The time delays are assumed to be unbounded, asynchronous, and time-varying,

τ11(t) = 0.4t, τ12(t) = 0.5t, τ21(t) = 0.5t, τ22(t) = 0.4t .

Define A-SYN error as ‖ep(t)‖1 = ‖x p(t) + yp(t)‖1, p = 1, 2, when there are no
controllers, i.e., u1 = u2 = 0, Fig. 1 shows that A-SYN cannot be achieved.

From Theorem 1, we can design a controller based on 1-norm, and we chooseμ(t) = t0.6,
according to conditions (11)–(13), we have

ς = 0, η = 0.5157, λ1 > 4.2623, ρ1 > 1.2742, λ2 > 5.7189, ρ2 > 1.6279.

Therefore, the controller can be designed as:
{

u1(t) = −5e1(t) − 1.5sig(e1(t)),
u2(t) = −6e2(t) − 2sig(e2(t)).

(61)

Figure 2 shows the trajectories of system (60) under controller (61), which implies that finite
time A-SYN has been achieved.

Next, we apply adaptive technique to realize finite time A-SYN, where the controller is

u p(t) = −λp(t)ep(t) − ρp(t)sig(ep(t)), p = 1, 2, (62)

where adaptive rules for λp(t) and ρp(t) are define in (54) and (55) with coefficients ω11 =
ω12 = 0.2 and ω21 = ω22 = 0.4. The dynamics of A-SYN errors can be found in Fig. 3, and
dynamics of control strengths can be found in Fig. 4.
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Fig. 1 Error trajectories of system (60) without control
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Fig. 2 Error trajectories of system (60) under controller (61)
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Fig. 3 Error trajectories of system (60) under controller (62)
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5 Conclusion

We study the finite time A-SYN problem for QVNNs with asynchronous time-varying
delays. With the help of the quaternion sign function and its special properties, we treat
the QVNN’s state as a whole instead of using decomposition method. The error is quantified
with 1-norm and 2-norm, respectively. For each norm, 2PM is used to derive the sufficient
conditions under simple delay-free controllers for ensuring finite time A-SYN. Moreover,
adaptive rules for control strengths are also designed to realize finite time A-SYN. Finally,
we present a numerical example to show the effectiveness of our obtained criteria.
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