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Abstract
Multi-label classification has aroused extensive attention in various fields. With the emer-
gence of high-dimensional label space, academia has devoted to performing label embedding
in recent years. Whereas current embedding approaches do not take feature space correla-
tion sufficiently into consideration or require an encoding function while learning embedded
space. Besides, few of them can be spread to track the missing labels. In this paper, we
propose a Label Embedding method via Dependence Maximization (LEDM), which obtains
the latent space on which the label and feature information can be embedded simultane-
ously. To end this, the low-rank factorization model on the label matrix is applied to exploit
label correlations instead of the encoding process. The dependence between feature space
and label space is increased by the Hilbert–Schmidt independence criterion to facilitate the
predictability. The proposed LEDM can be easily extended the missing labels in learning
embedded space at the same time. Comprehensive experimental results on data sets validate
the effectiveness of our approach over the state-of-art methods on both complete-label and
missing-label cases.

Keywords Multi-label learning · Label embedding · Low-rank factorization ·
Hilbert–Schmidt independence criterion · Missing labels

1 Introduction

In machine learning, multi-label classification refers to the situation where an instance is
associated with a set of labels simultaneously. It has such widespread applications, including
text classification [1], categorization of genes [2], image annotation [3] and so on. Therefore,
multi-label classification has caused more and more attention of academic circles.

Currently, there are two principal approaches with respect to multi-label learning. One is
called problem transformation,which is to switchmulti-label classification tasks intomultiple
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single label classification tasks, such as Binary Relevance (BR) [4,5], Label Power-set [6]
and Classifier Chain [7]. Another is algorithm adaptation. It extents available classification
techniques directly, for instance, Multi-label K-Nearest Neighbor [8] and Adaboost.MH [9].
Nevertheless, with the exponential increase of the number of labels, it is computationally
impractical for many conventional multi-label classification algorithms to work in the initial
label space. Under such conditions, a great number of label embedding methods are designed
to alleviate the problem, which not only improves the classification performance, but also
reduces the cost of training and predicting.

Label embedding is a popular paradigm by viewing all possible label sets as a high-
dimensional label vector, which concentrates on transforming original label space into an
lower-dimensional embedded space in differentmanners. In themeantime, it takes full advan-
tage of the correlation among all labels, identifying the hidden structure of the original space.
All kinds of methods have been proposed to study this. Compressed Sensing (CS) [10] was
the first attempt to compress label space to a low dimensional space using a random projec-
tion based on the label sparsity. As a result of huge time consumption in the prediction step,
Principle Label Space Transformation (PLST) [11] was designed, similar to PCA technique.
It mainly obtains the projection matrix and decoder by performing the SVD on the label
matrix efficiently. The Conditional Principle Label Space Transformation (CPLST) [12] was
proposed to introduce the feature space information into PLST . To optimize the different
criteria, the Cost-sensitive Label Embedding with Multidimensional Scaling (CLEMS) [13]
takes the evaluation criteria into consideration, which calculates the embedded vectors by
multidimensional scaling. More recently, the End to End Feature-aware method [14] was
presented on the basis of the canonical correlation analysis theory. The only drawback is that
the linear correlation between the instance space and label space is described.

Furthermore, it is extremely hard to get all appropriate labels. As a result, a partial set
of labels are only observed [15,16]. Therefore, a great many approaches [17–21] proposed
attempt to handle the missing labels. A Semi-supervised algorithm for Multi-label learning
by solving a Sylvester Equation (SMSE2) [19] treats the missing labels as negative labels.
This is due to the hypothesis that a great proportion of the available labels are negative for
each instance. In order to facilitate the classification performance, Multi-label Learning with
Missing Labels (MLML) [21] and MLML Using mixed dependency graphs (MLMG) [17]
are formulated to distinguish themissing and negative labels explicitly. Positive, negative and
missing labels are respectively denoted as+1,−1 and 0 or 0, 1, and 1

2 . Relatedmanymethods
[22,23] take advantage of low rank assumption of the entire label matrix to recover missing
labels. In general, minimizing the rank of a matrix is converted to a minimized nuclear norm
[20,24,25].

Label embedding containingmissing labels is a huge challenge thanmissing labels or label
embedding separately. It is worth mentioning that the missing labels have significant effects
on the performance of multi-label classification algorithms. Based on this, Zhu et al. [26]
developed a new approach GLOCAL to obtain a lower-dimensional latent space and restore
the missing labels. Besides, the Low Rank multi-label classification with Missing Labels
(LRML) [27] is also designed to deal with the missing labels by using the low-rank map-
ping. However, neither of them utilize the correlation between feature space and embedding
space. In this paper, we propose a novel method called Label Embedding via Dependence
Maximization (LEDM) making the utmost of the global and local label relationship. On the
one hand, the proposed LEDM derives the embedded space by low-rank factorization on
the label matrix. Further more, to measure the dependence between instance space and label
space, the Hilbert-Schmidt independence criterion (HSIC) is adopted to capture the nonlin-
ear correlation. On the other hand, the missing labels are also recovered through applying
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low-rank factorization model and Laplacian manifold regularization based on instance-level
and class-level. It is well known that low-rank factorization model provides a theoretical
basis for well recovering the missing labels. Therefore, the proposed method can be used for
handling with both the complete labels and missing labels . In the end, all mentioned above
are integrated into one optimization model and an effective alternating algorithm is presented
to solve it.

The rest of the paper is organized as follows. Section2 introduces the related works of
multi-label classification, especially focusing on the low rank factorization model and HSIC.
In Sect. 3, the proposedLEDMis described in detail. Section4 gives the optimizationmethods
to deal with complete labels and missing labels. Then we present the experimental results
and analyses in Sect. 5. Finally, Sect. 6 gives several concluding remarks and issues for future
work.

2 RelatedWork

Let X = [x1, . . . , xn]T ∈ Rn×m denote a data matrix consisting of n training examples, and
Y = [y1, . . . , yn]T ∈ Rn×c be a label matrix, where yi ∈ {0, 1

2 , 1}c is the corresponding
label vector of xi . That is, each example xi can take one or more labels from the c different
classes. If Yi, j = 1, the instance xi is associated with the j-th label, and if Yi, j = 0, xi does
not have the j-th label. Yi, j = 1

2 indicates that the j-th label is considered unknown for the
data point xi .

2.1 Low-Rank FactorizationModel in Multi-Label Learning

Given the presence of correlations among different labels, the whole label matrix is viewed as
row-rank. Therefore its rank is smaller than its size [28,29]. For instance, when labels “white
cloud” and “blue sky” are present simultaneously, it is completely possible to appear label
“sunny”. There are a great number of ways to utilize the low-rank structure of labels [30–32].
In general, these algorithms for minimizing the rank of a matrix are based on nuclear norm
and learn a regression model W from feature space X to label space Y directly. Therefore,
we obtain the following common optimization problem:

min
W

‖XW − Y‖2F + ‖W‖∗ (1)

where ‖ · ‖∗ is the nuclear normof amatrix.However,with the increasing of label dimensions,
they are also faced with the expensive computational cost. To track this issue, the matrix
factorization [33,34] is adopted to recover the low-rank structure, which represents the hidden
structure of the labels. Meanwhile, it also captures the complex correlations among multiple
labels.

Specifically, inspired by [33], label matrix Y ∈ Rn×c can be written as the product of two
low-rank matrices.

Y = Z × D (2)

where Z ∈ Rn×d represents the lower-dimensional embedded space that jointly extracts the
information pertaining to entire labels, while D ∈ Rd×c reflects how the initial label matrix
is related to the embedded vectors.

In fact,multi-label classification usually encounters the problemofmissing labels, because
it is very likely for labelers to ignore the unknown labels. To end this, low-rank factorization

123



1654 Y. Li, Y. Yang

of matrix [34] can also provide a theoretical basis for the recovery of missing labels. At the
same time, it also makes use of the global label correlations implicitly.

2.2 Hilbert–Schmidt Independence Criterion

Previous work is based on canonical correlation analysis (CCA) to describe the linear pro-
jection between feature space and label space. The kernel-based approaches consider the
nonlinear correlation between two variables, which have found abroad applications, includ-
ing feature selection [35], dimension reduction [36], gene selection [37] and independent
component analysis [38,39]. The key to their success is that covariance and cross-covariance
operators can be defined in Reproducing Kernel Hilbert Spaces (RKHS). And we may obtain
an approximate statistics suitable for measuring the dependence between variables.

Specially, let F be an RKHS of functions from X to R. To each point x ∈ X , there
corresponds a mapping φ(x) ∈ F , such that 〈φ(x), φ(x ′) = k(x, x ′), where k : X ×X → R
is a unique positive definite kernel. Likewise, let G be a second RKHS on Y with kernel l(·, ·)
and map ϕ(y). Following [40], the cross-covariance operator Cxy : G → F is defined as

Cxy = Exy[(φ(x) − μx ) ⊗ (ϕ(y) − μy)] (3)

whereμx = Exφ(x), μy = Eyϕ(y), and⊗ is the tensor product. The Hilbert–Schmidt inde-
pendence criterion (HSIC) [40,41] is proposed to test independence. The detailed description
is shown below.

Definition 1 (HSIC) Given separable RKHSs F G and a joint measure Pxy over X × Y , we
define the Hilbert–Schmidt Independence Criterion (HSIC) as the squared HS-norm of the
associated cross-covariance operator Cxy :

HSIC(Pxy,F,G) = ∥
∥Cxy

∥
∥2
HS

= Exx ′yy′ [k(x, x ′)l(y, y′)] + Exx ′ [k(x, x ′)]Eyy′ [l(y, y′)]
− 2Exy

[

Ex ′ [k(x, x ′)]Ey′ [l(y, y′)]] (4)

Here Exx ′yy′ denotes the expectation over independent pairs(x, y) and (x ′, y′) drawn from
Pxy .

More importantly, it is sufficient evident to suggest that HSIC is indeed a dependence
criterion under all circumstances. HSIC is zero if and only if the random variables are inde-
pendent. For convenience, we often utilize an empirical estimate of HSIC. The definition is
as follows [40,42]:

Definition 2 (Empirical HSIC) Let Z = {(x1, y1), . . . , (xn, yn)} ⊆ X × Y be a series of n
independent observations drawn from Pxy . The specific form is given:

HSIC(Z ,F,G) = (n − 1)−2tr(K HLH) (5)

where H , K , L ∈ Rn×n , Ki, j = k(xi , x j ), Li, j = l(xi , x j ), and Hi, j = δi, j − n−1 is the
centering matrix.

Obviously, the larger the value, the greater the dependence of the two variables. Empirical
HSIC has advantages over existing kernel independence measurement. Unlike kernel gener-
alised variance [38] or the canonical correlation, it only uses the trace of the product of Gram
matrices without additional regularization terms for simple and good properties. In addition,
HSIC has the characteristics of high speed of convergence [43].
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3 The ProposedMethod

In this section, we propose a feature-aware label embedding model for multi-label classifi-
cation which learns a lower-dimensional embedded space connecting the feature space with
the label space in Sect. 3.1. It can be easily extended to missing labels in Sect. 3.2.

3.1 Learning Embedded Space for Joint Feature and Label Embedding

Label embedding aims to seek a predictive lower-dimensional embedded space. Learning
the mapping from feature space to embedded space is also much easier than learning the
one to the original label space. The model applying low-rank decomposition on the label
matrix can identify the hidden structure behind the labels by exploiting label correlations.
Furthermore, to improve the prediction ability of embedded space, we utilize the HSIC to
increase the dependence between feature space and label space. With the aid of HSIC, we
can take full advantage of the information of instance features to support the label space
embedding process.

Label space embedding To capture the label correlations and deal with the high dimensional
labels, we employ the low-rank structure of label matrix to find a more compact and abstract
latent vectors representation. Specifically, we use Eq. (2) to decompose the label matrix Y to
two low-rank matrices Z and D, following PLST [11], CPLST [12] and MLC-BMaD [44].
Then the sub-objective is given via minimizing the reconstruction error of the embedded
space returned from original space:

ϕ(Z , D) = min
Z ,D

‖Y − ZD‖2F (6)

where ‖ · ‖F is the Frobenius norm of a matrix, Z represents embedded space, also known as
code matrix and D is the decoding matrix reflecting the correlation between original labels
and embedded vectors.

Feature space embedding A number of label embedding methods choose to learn a linear
mapping function from the instance matrix X to the code matrix Z . Intuitively, this seems
reasonable since we really need to train a regression model. However, this may over-fit the
training data set, thus degrading the performance of classification.

In order to exploit instance information efficiently, and improve the prediction ability of
the embedded space, it is necessary to retain the dependence between the instance matrix
X and the code matrix Z rather than simply learning a linear model between them. There
are many criteria to measure their relationship. Due to its simplicity and neat theoretical
properties, the HSIC is adopted. The expression is formulated as follows:

φ(Z , X) = max
Z

(n − 1)−2Tr(K HLH) (7)

where H , K , L ∈ Rn×n , K and L are kernel matrices with the instance kernel Ki, j =
k(xi , x j ) and the label kernel Li, j = l(xi , x j ), and Hi, j = δi, j − 1

n is the centering matrix.
For the sake of convenience, we utilize the linear kernels for L : L = Z ZT . With (n−1)−2

a constant, thus Eq. (7) is equivalent to :

φ(Z , X) = max
Z

Tr(K HZ ZT H) (8)

Obviously, it can be observed that the HSIC criteria makes full use of instances information
through the instance kernel K . In general, the most efficient way to set K chooses the RBF
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kernel, which is widely used and of great competence [45]. A RBF kernel is denoted by
K (x, x ′) on instances.

K (x, x ′) = exp(−γ ‖x − x ′‖2) (9)

where γ > 0 is a kernel parameter.
The model on embedded space is built by minimizing the reconstruction error and maxi-

mizing the dependence between feature space and embedded space. Combining Eqs. (6) and
(8), we gain the following optimization problem:

L(Z , D) = min
Z ,D

‖Y − ZD‖2F − αTr(K HZ ZTH) (10)

where α is a trade-off parameter for controlling the impact between feature embedding and
label embedding. The Z obtained not only has strong recovery ability, but also has good
prediction ability.

3.2 Learning Embedded Space with Missing Labels

The label matrix is generally incomplete in the real word applications. It is unreliable to
learn the classifier directly using the missing label matrix. What’s more, different labels are
typically not independent but inherently correlated. Hence, it is difficult to exploit the label
correlations with the missing labels. In this section, the proposed method is extended to deal
with missing labels.

Recovering the missing labels As is mentioned in Sect. 2.1, the low-rank decomposition
on the label matrix plays a significant role in recovering missing labels. Specifically, we
denote the original labels matrix by Y = {y1, . . . , yn}T ∈ {0, 1

2 , 1}n×c, where yi j = 1
or 0 indicates the j-th label is observed for the data point xi while yi j = 1

2 indicates the
label is missing. The ground-truth label matrix is denoted by Ỹ = {ỹ1, . . . , ỹn}T . Assume
that Ω ⊂ {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ c} is the set of observed label indicators, excluding
missing labels. Ωc is the set of missing labels. We propose to solve the following low-rank
factorization model based on Eq. (6).

min
Ỹ ,Z ,D

∥
∥
∥Ỹ − ZD

∥
∥
∥

2

F

s.t . Ỹi, j = Yi, j , (i, j) ∈ Ω

(11)

This formula can guarantee that the observed labels remain unchanged except for the
missing labels, which is obvious difference from the previous method. Building off the label
correlation fromglobal aspect,we can go one step further and preserve the label structure from
local way. A smoothness assumption is usually adopted that the distance of two instances in
their feature space can measure the similarities of their corresponding labels. In other words,
if two samples xi and x j are more closer in the intrinsic geometry of the feature distribution,
the recovered labels of them are also more closer to each other in the label space, and vise
versa. The manifold regularizer can be defined as

n
∑

i, j

1

2
ωi, j

∥
∥ỹi − ỹ j

∥
∥
2 = tr(Ỹ T L0Ỹ ) (12)

where L0 = D − W is the Laplacian matrix, and D is a diagonal matrix with Dii =
∑n

j=1 ωi, j . W denotes the sample similarity matrix by the heat kernel function, which is
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given:

ωi, j =
⎧

⎨

⎩

exp

(

−‖xi−x j‖2

σ 2

)

, xi ∈ Nk(x j ) or x j ∈ Nk(xi )

0, otherwise
(13)

where σ is the Gaussian function variance, Nk(xi ) is the k nearest neighbors set of xi .
Assume that the label correlation is available, we can also incorporate the information by

adding another Laplacian regularizer. Here, cosine similarity is used for defining the weight
matrix V among class, as follows:

υi, j = 〈yi , y j 〉
‖yi‖

∥
∥y j

∥
∥

(14)

Similar to the Eq. (12), the label mainfold regularizer is formulated as:

n
∑

i, j

1

2
υi, j

∥
∥
∥ỹTi − ỹTj

∥
∥
∥

2 = tr(Ỹ L1Ỹ
T ) (15)

where L1 = G−V is the Laplacianmatrix, andG is a diagonalmatrixwithGii = ∑n
j=1 υi, j .

Considering all the above discussions, the optimization objective function to recover
missing labels becomes:

min
Ỹ ,Z ,D

∥
∥
∥Ỹ − ZD

∥
∥
∥

2

F
+ βTr(Ỹ T L0Ỹ ) + ηTr(Ỹ L1Ỹ T )

s.t . Ỹi, j = Yi, j , (i, j) ∈ Ω

(16)

where β, η are regularization parameters, which control the influence between the sample-
level correlation and class-level correlation.

Label embedding with missing labelsOur goal is to find the low dimensional embedded space

and recover themissing labels at the same time. It can be seen that
∥
∥
∥Ỹ − ZD

∥
∥
∥

2

F
represents the

label space embedding from Sect. 3.1. Therefore, we should take feature space embedding
into consideration in obtaining embedded space with the missing labels. Combining the
Eqs. (16) and (8), we obtain the optimization problem:

min
Ỹ ,Z ,D

∥
∥
∥Ỹ − ZD

∥
∥
∥

2

F
+ βTr(Ỹ T L0Ỹ ) + ηTr(Ỹ L1Ỹ T ) − αTr(K HZ ZT H)

s.t . Ỹi, j = Yi, j , (i, j) ∈ Ω

(17)

For the sake of calculation, we define PΩ(X) as the orthogonal projection operator on set
Ω of the matrix X :

(PΩ(X))i, j =
{

Xi, j (i, j) ∈ Ω

0 (i, j) ∈ Ωc (18)

The objective function can be rewritten:

min
Ỹ ,Z ,D

∥
∥
∥Ỹ − ZD

∥
∥
∥

2

F
+ βTr(Ỹ T L0Ỹ ) + ηTr(Ỹ L1Ỹ T ) − αTr(K HZ ZT H)

s.t . PΩ(Ỹ ) = PΩ(Y )

(19)

The objective function has two main clear interpretations as follows:

(1) The first three terms are used to recover the missing labels.
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(2) The first term and the fourth term aim at learning the embedded space, which can effi-
ciently deal with the curse of dimensionality problems.

In conclusion, our proposed method joints the embedded space learning and the missing
matrix recovery. To recover the missing labels, we propagates the semantic information
from feature space to label space via Laplace mainfold regularization. By utilizing low-rank
decomposition, the label correlations can be efficiently captured.

4 Optimization

4.1 Optimization Algorithm for Complete Labels

An efficient alternating algorithm is proposed to optimize the objective function (10). To
calculate D first, problem reduces to:

L(D) = min
D

‖Y − ZD‖2F (20)

The optimal D can be obtained by taking the derivative of L(D)with respect to D and setting
it to 0:

∂L(D)

∂D
= ZT (ZD − Y ) = 0 (21)

We obtain the closed-form expression:

D = (ZT Z)−1ZT Y (22)

To eliminate redundant information in the embedded space and thenmake the decode process
more compactly, we assume that dimensions of Z are uncorrelated and thus orthonormal.
That is, ZT Z = I . Thus Eq. (22) can be reformulated as:

D = ZT Y (23)

With D derived, the final optimization objective function is transformed as:

L(Z) = max
Z

Tr(ZTYY TZ) + αTr(ZTHK HZ)

= max
Z

Tr(ZT(YY T + αHK H)Z)

s.t . Z ZT = I (24)

The optimization problem (24) can be easily solved by eigenvalue decomposition. In the
end, Z is obtained by concatenating the normalized eigenvectors corresponding to the top k
largest eigenvalues λi (i = 1, . . . , k) of A = YY T + α(HK H). The optimal value of (24) is
∑k

i=1 λi .

4.2 Optimization Algorithm for Missing Labels

The whole optimization problem (19) is reduced to several simpler subproblems that are
easier to solve.

• Updating D with others fixed
By ignoring the irrelevant terms with respect to D, the problem turns into:

min
D

∥
∥
∥Ỹ − ZD

∥
∥
∥

2

F
(25)
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It is obvious to see that the form is the same as Eq. (20). Therefore the solution to D is
D = ZT Ỹ .

• Updating Z with others fixed
Similarly, Z is the only variable and the problem can then be rewritten as:

min
Z

∥
∥
∥Ỹ − ZD

∥
∥
∥

2

F
− αTr(K HZ ZT H) (26)

As analysed in Sect. 4.1, Z can be obtained by Eq. (24).
• Updating Ỹ with others fixed

Given D and Z , the problem reduces to:

min
Ỹ ,Z ,D

∥
∥
∥Ỹ − ZD

∥
∥
∥

2

F
+ βTr(Ỹ T L0Ỹ ) + ηTr(Ỹ L1Ỹ T )

s.t . PΩ(Ỹ ) = PΩ(Y )

(27)

To track the problem, a Lagrangian multiplier Λ ∈ Rn×c is introduced. The Lagrangian
function of Eq. (27) is defined as

∥
∥
∥Ỹ − ZD

∥
∥
∥

2

F
+ βTr(Ỹ T L0Y ) + ηTr(Ỹ L1Ỹ

T ) + Λ · PΩ(Ỹ − Y ) (28)

In order to get the optimal solution to Ỹ , the corresponding subproblems of PΩ (Ỹ ) and
PΩc (Ỹ ) need to be determined respectively. The equation with respect to PΩ (Ỹ ) is as
follows:

∥
∥
∥PΩ(Ỹ − ZD)

∥
∥
∥

2

F
+ βTr(PΩ(Ỹ T L0Y )) + ηTr(PΩ(Ỹ L1Ỹ

T )) + Λ · PΩ(Ỹ − Y ) (29)

Taking the derivative with respect to Λ and Ỹ , and setting those to zero, we obtain:

PΩ(Ỹ − Y ) = 0 (30)

PΩ((Ỹ − ZD) + βL0Ỹ + ηỸ L1) = Λ (31)

The subproblem with respect to PΩc (Ỹ ) is formulated as follows:
∥
∥
∥PΩc (Ỹ − ZD)

∥
∥
∥

2

F
+ βTr(PΩc (Ỹ T L0Y )) + ηTr(PΩc (Ỹ L1Ỹ

T )) (32)

Similarly, we obtain:
PΩc ((Ỹ − ZD) + βL0Ỹ + ηỸ L1) = 0 (33)

Thus, according to the Eqs. (30) and (33), we gain the solution to Ỹ :

PΩ(Ỹ ) = PΩ(Y ) (34)

PΩc (Ỹ ) = PΩc ((I + βL0)
−1ZD(I + ηL1)

−1) (35)

Please refer to the method [46] to solve Eq. (33). With the updates about D, Z and Ỹ being
in closed form, the proposed LEDM is given in Algorithm 1, which contains the full labels
and missing labels situations. Learning the mapping for the classifiers from feature space X
to lower-dimensional embedded space Z is much easier than learning the one to the original
high-dimensional label space. In the end, the forecasting results are decoded to the initial
label space. When we reconstruct the predicted label vectors through step 17, the results may
contain non-binary values. As a consequence, a threshold requires to be selected to determine
whether the values belong to the class. The fixed value of 0.5 is a simple and direct approach
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Algorithm 1 Label Embedding via Dependence Maximization.
Input:

Data matrix X , Label matrix Y , Embedded dimensions K .
Parameters α, β, η.

Output:
The ground-truth label matrix Ỹ , Predicted label of test data xt .

1: if Y does not contain missing labels then
2: calculate embedded matrix Z according to Eq. (24);
3: calculate decoding matrix D according to Eq. (23);
4: else
5: Initialize: Ỹ = Y ;
6: repeat
7: fix Ỹ , D and update Z by step 2;
8: fix Ỹ , Z and update D by step 3;
9: fix Z , D and update Ỹ according to Eqs. (34) and (35);
10: until converage;
11: end if
12: Train:
13: Learning a multi-dimension regression model f (x) from {(xi , zi )}ni=1: f (xi ) → zi ;
14: Prediction:
15: Given a test data xt
16: Obtain the embedded vector zt of test data xt : zt = f (xt )
17: Predict the label of test data xt : h(xt ) = round( f (xt )D).

[11]. To boost the classification performance, an adaptive threshold is adopted viamaximizing
evaluation criteria from training data in this paper, similar to [47,48]. Specifically, sort the
prediction values in a descending manner and find the best split point (threshold) to achieve
high performance. If more than the threshold, the value is assigned with 1, otherwise 0.

4.3 Computational Complexity Analysis

In this subsection, we make a computational complexity analysis of optimization given in
Eq. (19). For each iteration in Algorithm 1, when updating Z in the step 7, we define A =
Ỹ Ỹ T + α(HK H). The optimal solution to Eq. (24) is the eigenvectors of A corresponding
to the top k largest eigenvalues. We just need to directly calculate A and then perform an
eigenvalue decomposition on it. The computational complexity of deriving A is O(cn2).
Considering that d < n, and A is a real symmetric matrix, the eigenvalue problem w.r .t
A can also be solved efficiently using iterative methods like Arnoldi iteration [49], which
can achieve an optimal computational complexity of O(nd2). Thus updating Z requires
O(cn2+nd2). According to Eq. (23), the update of D takes O(ndc). To calculate Ỹ , we need
to solve the matrix equation Eq. (33). A efficient algorithm is proposed to solve the pairwise
constraint propagation problem [46]. The computation of updating Ỹ requires O(n2). Finally,
the overall computational complexity required by LEDM is O(cn2 + nd2 + ndc).

5 Experiments

To validate the proposed method, a large number of experiments have been conducted on
datasets. Performance on both the complete-label case and the missing-label case are dis-
cussed in this section.
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Table 1 The basic characteristics of the data sets

Data set #Instances n #Features m #Labels c Type LC

Emotions 593 72 6 Music 1.869

Yeast 2417 103 14 Biology 4.237

Medical 978 1449 45 Text 1.245

Scene 2407 294 6 Images 1.074

Enron 1702 1001 53 Text 3.378

CAL500 502 68 174 Music 26.044

Langlog 1460 1004 75 Images 1.18

Corel5k 5000 499 374 Images 3.522

5.1 Learning with Complete Labels

In the first experiment, we focus on the situation that there are no missing elements in the
label matrix.

5.1.1 Datasets

Wechoose eight public-availablemulti-label datasets to assess the effectiveness of ourmethod
from diverse fields. The characteristics of the datasets are shown in detail by Table1. For each
dataset, let #Instances n, #Featuresm, and #Labels c denote the number of instances, features
and possible labels respectively. LC represents label cardinality reflecting the average number
of label per instance.

5.1.2 Evaluation Metrics

The performance evaluation is a pivotal factor in comparison of various models. Given a
test dataset D = {(xi , yi )|1 ≤ i ≤ n}, where yi ∈ {0, 1}c denotes the ground truth labels
with the i-th test sample, and ŷi represents its predicted set of labels. We have adopted three
evaluation criteria extensively used in multi-label classification, namely Rank Loss, Average
Precision andMacro F1 [50,51].

• Rank Loss:

Rloss = 1

n

n
∑

i=1

|Qi |
∣
∣y+

i

∣
∣
∣
∣y−

i

∣
∣

(36)

where Qi = ∣
∣{(y′, y′′) | f (xi , y′) ≤ f (xi , y′′), (y′, y′′) ∈ y+

i × y−
i }∣∣. Let y+

i and y−
i be

respectively the sets of positive and negative labels associated with the i-th instances.
Rank Loss evaluates the proportion of misordered label pairs.

• Average Precision:

Ap = 1

n

n
∑

i=1

1
∣
∣y+

i

∣
∣

∑

y∈y+
i

∣
∣{y′ ∣∣rank f (xi , y′) ≤ rank f (xi , y′′), y′ ∈ y+

i

∣
∣

rank f (xi , y)
(37)

where rank f (xi , y′) stands for the ranking of label y
′
in the label set of x

′
predicted

by the multi-label classifier f . This criteria evaluates the average proportion of relevant
labels ranked higher than a particular label y ∈ y+

i .
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• Macro F1:

Macro F1 = 1
c

c∑

i=1

2pi ri
pi+ri

s.t . = T P
T P+FP , ri = T P

T P+FN

(38)

where T P , FP and FN represent respectively the number of true positive, false positive
and false negative with respect to a specific label. For label-based criteria, Macro F1 is
the harmonic mean of recall r and precision p.

It is evident that their values vary from 0 to 1. For rank loss, the smaller the value, the better
the generalization performance. Whereas for average precision and macro F1, the larger the
value, the better the performance.

5.1.3 Baselines

In this experiment, the proposed method is compared with five representative label reduc-
tion algorithms, including Principle Label Space Transformation (PLST) [11], Conditional
Principal Label Space Transformation (CPLST) [12], Label Compression Coding through
MaximizingDependence (LCCMD) [52], Cost-sensitiveLabel EmbeddingwithMultidimen-
sional Scaling (CLEMS) [13] and End-to-End Feature-aware label space Encoding (E2FE)
[14].

For all the algorithms, the Random Forest is used to learn the predictive model between
feature space and embedded space. The model parameters such as the maximum depth
of the trees and the number of the estimators are selected respectively from 5, 10, . . . , 35
to 2, 4, . . . , 40 via grid search. In our experiment, each dataset is conducted 5-fold cross
validation, taking four part for train and the rest for test. Following the preprocessing steps
of baselines, we convert the mean value of feature vectors to be zero and the variance to be
one. In general, α in the proposed method, as well as α in E2FE require to be determined
in advance. We adjust these parameters via cross-validation to achieve the best results. The
remaining parameters in other methods are set to the values suggested in the original papers.

5.1.4 Results

All comparable algorithms are performed with respect to the evaluation metrics versus the
different values of K/M on eight datasets, where K and M are the dimensions of the embed-
ded space and initial label space respectively. The specific experimental results are shown in
Figs. 1, 2 and 3 in which the abscissa axis represents the ratio of the embedded space dimen-
sions (K/M). The parameters in the following algorithms are set to the values suggested in
the original papers. As the ratio increases, all label embedding methods achieve better per-
formance on account of the better preservation of label information. As can be seen, LEDM
consistently and remarkably outperforms the existing approaches in most cases, which con-
firms its effectiveness.

There are some interesting phenomenon observed from the Figs. 1, 2 and 3 as follows.
(1) To reflect the importance of label space embedding in the first component, our model
degenerates into LCCMD. LCCMD is similar to the second part of our method, which only
considers the dependence maximization. We can clearly observe that the curves of LEDM
are higher than that of LCCMD in terms of three criteria in almost all cases. (2) Compared
to the E2FE method based on CCA, which measures the linear relationship between feature
space and latent space, HSIC adopted to capture the nonlinear correlations in our method
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Fig. 1 Average precision with different embedded space dimension ratios (K/M)

Fig. 2 Macro F1 with different embedded space dimension ratios (K/M)

is significantly better. This also verifies the benefits of choosing HSIC. (3) CLEMS does
not take into account the feature space when learning latent space, which may result in
poor predictive ability. (4) In spite of introducing feature information for CPLST, PLST
seems to be slightly superior on dataset Yeast. The reason might be that the linear mapping
from feature space to latent space overfit the training data. (5) We can utilize the much
lower dimensional embedded space to preserve the structure information of the original label
space by applying low-rank decomposition on the label matrix. Similar to E2FE, as a result
of the orthonormality constraint on embedded space, the performance varies a little with
increasing K. However, CLEMS may decrease dramatically sometimes. For instance, the
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Fig. 3 Rank loss with different embedded space dimension ratios (K/M)

average precision of CLEMS drops from 0.6387 to 0.4217 when the ratio of the embedded
space dimensions varies from 1 to 0.2 on Scene dataset in Fig. 1.

The experimental results confirm that utilizing the low-rank decomposition on the label
matrix for reconstruction error of labels and usingHSIC tomaximize the dependence between
feature space and embedded space are an effective paradigm. Furthermore, themodel employs
the implicit encoding in learning embedded space representation, instead of requiring an
explicit encoding function like PLST, CPLST and LCCMD.

To study the influence of α, the experiments on Enron and Langlog datasets in terms of
three different criteria are conducted. The trade-off parameter α controls the impact between
feature embedding and label embedding. The variation of LEDM with the parameter α is
showed in Fig. 4. On the whole, the α is not very sensitive to the proposed approach within
limits.

5.2 Learning with Missing Labels

In this section, the experiment with full labels will be extended to deal with missing labels.
The datasets and evaluation metrics are identical with those described in Sect. 5.1. The
recovery of missing labels and the prediction of unknown data have been discussed in detail.

5.2.1 Experiments Setting

To demonstrate the effectiveness of our method in handling withmissing labels, we randomly
select a certain proportion of elements as missing labels removed from the original label
matrix. Several existing multi-label classification algorithms which can address the missing
labels problems will be contrasted with proposed method, including Binary Relevance (BR)
[5], Multi-label Learning with Missing Labels (MLML) [21] and Low Rank multi-label
classification with Missing Labels (LRML) [27]. Due to the presence of the missing labels,
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Fig. 4 Varying α on Enron and Langlog datasets respectively

BR can not directly learn the classifier. We regard missing labels as negative labels to train
in BR.

For BR, MLML and proposed LEDM, the Random Forest is used for training model. In
general, the trade-off parameters β and η in the proposed method, the parameters λx and λc
for MLML, as well as α, β and γ in LRML are tuned by cross-validation to obtain the better
results as much as possible.

5.2.2 Results

The results on both missing label recovery and test data prediction with respect to different
evaluation criteria are respectively shown in Tables2, 3, 4, 5, 6 and 7, in which ρ denotes
missing label ratio. The best performance among all the algorithms being compared is high-
lighted in boldface. On thewhole, themore the labels are observed, the better the performance
is. This is in accordance with the fact that more label information is utilized sufficiently in
the process of classification.

Whether to recover missing labels of training data or to predict unknown data, it is quite
obvious that LEDM yields the best performance in most cases in terms of three criteria. The
reason for its success is the simultaneous optimization of the low-rank decomposition on
the label matrix,manifold regularization based on instance-level and class-level and feature
embedding via HSIC. The proposed LEDM not only recovers the missing labels, but also
learns the embedded space by utilizing label correlation and feature space correlation. How-
ever, it is slightly worse on the datasets Enron and Scene. It is possible that the non-convex
optimization in the low-rank decomposition model may get stuck in local minimum.

As is shown in Tables2, 3 and 4, LEDM, MLML and LRML that are used for dealing
with missing labels in different manners outperform BR in most cases, which demonstrates
the necessity to handle missing labels. Moreover, BR treats missing labels as negative labels
in multi-label classification. This is mainly due to the presence of a large enough number of
negative labels for each sample. The low rank decomposition model adopted can make sure
that except for the missing labels, the observed labels keep invariability in true label matrix
Ỹ , leading to significant performance improvements.
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Table 2 Recovery results for
missing label on average
precision

Data set ρ LEDM MLML LRML BR

Average precision

Emotion 0.3 0.921 0.920 0.843 0.886

0.7 0.838 0.846 0.772 0.781

Yeast 0.3 0.893 0.891 0.792 0.869

0.7 0.811 0.805 0.716 0.738

CAL500 0.3 0.829 0.791 0.784 0.816

0.7 0.653 0.633 0.652 0.623

Scene 0.3 0.883 0.926 0.884 0.853

0.7 0.764 0.845 0.785 0.711

Medical 0.3 0.788 0.776 0.772 0.766

0.7 0.601 0.588 0.531 0.542

Langlog 0.3 0.855 0.811 0.852 0.827

0.7 0.707 0.667 0.704 0.643

Enron 0.3 0.777 0.823 0.764 0.795

0.7 0.613 0.667 0.543 0.585

Corel5k 0.3 0.750 0.735 0.742 0.733

0.7 0.515 0.510 0.513 0.511

Table 3 Recovery results for
missing label on Macro F1

Data set ρ LEDM MLML LRML BR

Macro F1

Emotion 0.3 0.881 0.905 0.857 0.847

0.7 0.781 0.801 0.814 0.666

Yeast 0.3 0.885 0.874 0.805 0.85

0.7 0.746 0.738 0.717 0.66

CAL500 0.3 0.845 0.776 0.755 0.849

0.7 0.663 0.633 0.643 0.657

Scene 0.3 0.882 0.898 0.825 0.852

0.7 0.737 0.778 0.756 0.663

Medical 0.3 0.803 0.783 0.755 0.796

0.7 0.612 0.593 0.565 0.557

Langlog 0.3 0.858 0.856 0.855 0.85

0.7 0.685 0.683 0.682 0.663

Enron 0.3 0.825 0.822 0.754 0.822

0.7 0.643 0.648 0.63 0.651

Corel5k 0.3 0.818 0.785 0.801 0.813

0.7 0.632 0.605 0.614 0.612

Our method has advantages over MLML, LRML and BR remarkably in test data pre-
diction according to the experimental results shown in Tables5, 6 and 7. This is due to the
fact that LEDM learns the embedded space via dependence maximization at the same time
while recovering the missing labels. More importantly, it is much easier and faster for a base
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Table 4 Recovery results for
missing label on rank loss

Data set ρ LEDM MLML LRML BR

Rank loss

Emotion 0.3 0.131 0.133 0.229 0.262

0.7 0.268 0.271 0.324 0.498

Yeast 0.3 0.115 0.138 0.209 0.262

0.7 0.224 0.258 0.288 0.502

CAL500 0.3 0.128 0.239 0.249 0.259

0.7 0.251 0.394 0.339 0.503

Scene 0.3 0.137 0.132 0.18 0.258

0.7 0.262 0.272 0.245 0.507

Medical 0.3 0.107 0.254 0.155 0.257

0.7 0.208 0.444 0.205 0.505

Langlog 0.3 0.199 0.233 0.204 0.251

0.7 0.334 0.339 0.342 0.493

Enron 0.3 0.116 0.191 0.213 0.257

0.7 0.22 0.363 0.291 0.513

Corel5k 0.3 0.103 0.271 0.178 0.257

0.7 0.233 0.496 0.356 0.503

Table 5 Performance of
algorithms on average precision

Data set ρ LEDM MLML LRML BR

Average precision

Emotion 0.3 0.731 0.716 0.729 0.645

0.7 0.708 0.687 0.682 0.568

Yeast 0.3 0.71 0.654 0.441 0.573

0.7 0.704 0.648 0.44 0.45

CAL500 0.3 0.358 0.31 0.202 0.248

0.7 0.344 0.307 0.197 0.175

Scene 0.3 0.48 0.542 0.539 0.499

0.7 0.467 0.537 0.528 0.451

Medical 0.3 0.809 0.734 0.775 0.289

0.7 0.733 0.685 0.721 0.112

Langlog 0.3 0.53 0.419 0.41 0.469

0.7 0.51 0.53 0.399 0.309

Enron 0.3 0.441 0.395 0.348 0.296

0.7 0.442 0.346 0.252 0.197

Corel5k 0.3 0.057 0.027 0.027 0.027

0.7 0.055 0.025 0.026 0.023
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Table 6 Performance of
algorithms on Macro F1

Data set ρ LEDM MLML LRML BR

Macro F1

Emotion 0.3 0.614 0.576 0.616 0.389

0.7 0.585 0.523 0.61 0.16

Yeast 0.3 0.462 0.334 0.367 0.234

0.7 0.456 0.313 0.366 0.062

CAL500 0.3 0.232 0.073 0.212 0.046

0.7 0.231 0.066 0.205 0.015

Scene 0.3 0.292 0.213 0.355 0.149

0.7 0.299 0.198 0.346 0.052

Medical 0.3 0.357 0.311 0.325 0.098

0.7 0.303 0.258 0.287 0.01

Langlog 0.3 0.422 0.164 0.389 0.185

0.7 0.421 0.232 0.374 0.059

Enron 0.3 0.126 0.065 0.12 0.042

0.7 0.122 0.051 0.18 0.013

Corel5k 0.3 0.025 0.018 0.020 0.009

0.7 0.02 0.015 0.016 0.006

classifier to yield a high performance from feature space to the dense, real-valued, lower-
dimensional embedded space than that to the sparse, binary-valued, higher-dimensional
original label space. There is a great deal of imbalanced data with a disproportionate number
of instances in the classes. For example, there is over 300 labels with less than 10 positive
labels for each sample on dataset Corel5k. As a result, it is difficult for BR to obtain a better
classification performances without utilizing the label relationship.MLML focuses on recov-
ering the missing labels rather than classification. Consequently, the prediction results are
not competitive with LRML and LEDM. LRML directly learns the latent semantics of the
label space by taking advantage of low-rank mapping. However, it’s worth noting that feature
space correlation is incorporated via HSIC to obtain embedded space in proposed LEDM,
which further improve the predictive ability.

5.3 Impact of Missing Labels

Toexplore the impact ofmissing label ratio onproposedmethod, the experiments onEmotions
and Medical datasets in terms of AP and Macro F1 are conducted. The missing label ratio ρ

varies from0.3 to 0.7. The results under differentmissing label ratioρ and different embedded
dimensions d are showed in Figs. 5 and 6, where axis ρ and d denote missing label ratio and
the dimensions of the embedded space, respectively.

From the Figs. 5 and 6, it can be clearly seen that the classification performance ofLEDMis
relatively stable for different ρ on Emotions andMedical. This also indicate that the proposed
model is robust to the multi-label data. Whereas, with the reduction of embedded dimensions
d , the performance gets worse. This is possibly due to the fact that the embedded space can
not capture enough label information using lower dimensions to some extent. Hence, it is
necessary for each dataset to choose appropriate embedded dimensions.
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Table 7 Performance of
algorithms on rank loss

Data set ρ LEDM MLML LRML BR

Rank loss

Emotion 0.3 0.445 0.509 0.441 0.731

0.7 0.463 0.561 0.453 0.915

Yeast 0.3 0.382 0.484 0.709 0.679

0.7 0.391 0.496 0.722 0.933

CAL500 0.3 0.471 0.577 0.518 0.885

0.7 0.484 0.584 0.528 0.969

Scene 0.3 0.735 0.792 0.514 0.885

0.7 0.716 0.812 0.531 0.965

Medical 0.3 0.257 0.476 0.302 0.785

0.7 0.303 0.529 0.347 0.977

Langlog 0.3 0.497 0.716 0.629 0.689

0.7 0.518 0.561 0.625 0.887

Enron 0.3 0.357 0.5 0.548 0.835

0.7 0.382 0.569 0.771 0.967

Corel5k 0.3 0.537 0.745 0.697 0.889

0.7 0.544 0.783 0.721 0.903
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Fig. 5 Performance on emotions with different missing label ratio ρ

5.4 Sensitivity to Parameters

To study the influence of manifold regularization parameters β and η , the experiments
on Yeast dataset in terms of AP and Macro F1 are conducted. The trade-off parameters β

and η control the impact between the sample-level correlation and class-level correlation.
The larger β is, the more important the sample-level correlation is. It is also similar to η.
Figures7 and 8 report respectively the sensitivity analysis of LEDM with respect to β and
η. When β = 0, class-level correlation is only considered on recovering missing labels.
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Fig. 6 Performance on medical with different missing label ratio ρ

Fig. 7 Effects of parameter β on yeast dataset

Consequently, the performance becomes worse. However, larger values such as β ≥ 10 can
also result in performance degradation. The similar circumstance is also observed for η. This
further demonstrates that keeping a optimal trade-off between both obtains better results.

5.5 Convergence Analysis

Convergence analysis of proposedmethod is given in this section. In each iteration, we update
the variables with gradient descent. As seen in Algorithm 1, in the t iteration, we should solve
the following problem:

Ỹt+1, Zt+1, Dt+1 = arg min
Ỹ ,Z ,D

∥
∥
∥Ỹ − ZD

∥
∥
∥

2

F
+ β Tr(Ỹ T L0Ỹ )

+ η Tr(Ỹ L1Ỹ
T ) − α Tr(K HZ ZT H) (39)
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Fig. 8 Effects of parameter η on Yeast dataset

Then we get

∥
∥
∥Ỹt+1 − Zt+1Dt+1

∥
∥
∥

2

F
+ βTr(Ỹ T

t+1L0Ỹt+1) + ηTr(Ỹt+1L1Ỹ T
t+1)

−αTr(K HZt+1Zt+1
T H) ≤

∥
∥
∥Ỹt − Zt Dt

∥
∥
∥

2

F
+ βTr(Ỹ T

t L0Ỹt )

+ ηTr(Ỹt L1Ỹ T
t ) − αTr(K HZt Zt

T H)

(40)

This inequality indicates the algorithmwill monotonically decrease the value of the objective
function Eq. (19) in each iteration. Besides, the objective function has lower bounds.

Since

βTr(Ỹ T
t L0Ỹt ) + ηTr(Ỹt L1Ỹ

T
t )

= β

n
∑

i, j

1

2
ωi, j

∥
∥ỹi − ỹ j

∥
∥
2 + η

n
∑

i, j

1

2
vi, j

∥
∥
∥ỹTi − ỹTj

∥
∥
∥

2 ≥ 0 (41)

As analyzed in Eq. (24), the optimal value of Eq. (24) is
∑k

i=1 λi , where λi (i = 1, . . . , k) is
the top k largest eigenvalues of A = YY T + α(HK H). Thus we can get

∥
∥
∥Ỹ − ZD

∥
∥
∥

2

F
− αTr(K HZ ZT H) ≥ −

k
∑

i=1

λi (42)

Finally we obtain

∥
∥
∥Ỹ − ZD

∥
∥
∥

2

F
− αTr(K HZ ZT H) + βTr(Ỹ T

t L0Ỹt ) + ηTr(Ỹt L1Ỹ
T
t ) ≥ −

k
∑

i=1

λi (43)

Based on the above analysis, the algorithm will converge to the global or local optimal
solution. Then the curves of the objective value with the increasing of iterations on Emotions
andYeast are drawn inFig. 9.As can be seen, the algorithm features high speed of convergence
in a few iterations. The similar circumstance is also presented on other datasets.
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Fig. 9 Convergence of LEDM on Emotions and Yeast datasets

6 Conclusion

In this paper, we present a novel algorithm for label embedding, called LEDM,which embeds
the initial label space to a low dimensional latent space by applying low-rank factorization
on the label matrix. To achieve the embedding of feature space, the Hilbert-Schmidt inde-
pendence criterion (HSIC) is utilized to increase the dependence between feature space and
label space. Furthermore, low-rank factorization model plays an important role in recovering
missing labels. Therefore, the missing labels are also restored through low-rank factorization
model and Laplacian manifold regularization based on instance-level and class-level. We
integrate above mentioned into an optimization model, which is the first to recover missing
labels at the same time while learning embedded space by considering side information from
feature space. Extensive experimental results validate the effectiveness of our approach over
the state-of-art methods on both full-label and missing-label cases.

In our work, when the number ofmissing labels is large, the label correlations are not com-
pletely and accurately captured. Hence, it is desirable to research label correlation with weak
labels and extend our work to semi-supervised multi-label setting in our future endeavors.
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