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Abstract
Subspace clustering aims to group high-dimensional data samples into several subspaces 
which they were generated. Among the existing subspace clustering methods, spectral 
clustering-based algorithms have attracted considerable attentions because of their pre-
dominant performances shown in many subspace clustering applications. In this paper, we 
proposed to apply smooth representation clustering (SMR) to the reconstruction coefficient 
vectors which were obtained by sparse subspace clustering (SSC). Because the reconstruc-
tion coefficient vectors could be regarded as a kind of good representations of original data 
samples, the proposed method could be considered as a SMR performed in a latent sub-
space found by SSC and hoped to achieve better performances. For solving the proposed 
latent smooth representation algorithm (LSMR), we presented an optimization method 
and also discussed the relationships between LSMR with some related algorithms. Finally, 
experiments conducted on several famous databases demonstrate that the proposed algo-
rithm dominates the related algorithms.

Keywords Subspace clustering · Smooth representation · Sparse representation · Latent 
subspace

1 Introduction

The high-dimensional data samples in computer vision and pattern recognition applica-
tions are usually viewed as lying in/near several low-dimensional subspaces [1, 2]. Sub-
space clustering algorithms attempt to partition the high-dimensional data samples into the 
corresponding subspaces where they are drawn from [3–8]. Among the existing subspace 
clustering methods, methods based on spectral clustering [3, 5, 9, 10] have attracted lots of 
interests due to their prominent performances in many machine learning and patter recog-
nition tasks.
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Typically, spectral clustering-based algorithms divide the subspace clustering processes 
into three steps: (1) using the given data samples to compute a reconstructive coefficient 
matrix � , (2) applying the obtained coefficient matrix � to construct an affinity graph � , 
(3) adopting a kind of spectral clustering (e.g. Normalize cuts (N-cut) [11] to produce the 
clustering results. It is known that the performance of a spectral clustering-based method 
greatly depends on whether the computed reconstructive coefficient matrix � could reveal 
the intrinsic structure of a data set.

1.1  Related Work

As a result, the main efforts of spectral clustering-based methods concentrate on the con-
struction of coefficient matrices [5, 6, 12, 13]. The two most representative algorithms of 
spectral clustering-based algorithms are sparse subspace clustering (SSC) [3, 4] and low-
rank representation (LRR) [5, 6]. A large amount of subsequent researches have been put 
forward [14–23] as a consequence of the excellent performances showed by SSC and LRR.

For instance, Li et al. presented a structured SSC method (SSSC) [14, 15] in which they 
designed an adaptive weighted sparse constraint for the reconstructive coefficient matrix 
obtained by SSC. Chen et  al. introduced a new within-class grouping constraint of the 
reconstructive coefficient matrix into SSSC [16]. Zhuang et al. presented a non-negative 
low rank and sparse representation (NNLRSR) method [17] in which they added sparse 
and non-negative constraints into LRR. Tang et al. analyzed NNLRSR method and devised 
a structure-constrained LRR algorithm (SCLRR) which they declared to be an extension 
of NNLRSR [18]. Wei et al. proposed a spectral clustering steered low-rank representation 
method (SCSLRR) [19] by summarizing the subspace clustering procedures of LRR-based 
algorithms. They showed that SCSLRR could be considered as a generalization of SCLRR. 
Lu et al. suggested a graph-regularized LRR model (GLRR) [20] which added Laplacian 
regularization to LRR in that they argued that adjacent samples should have similar coef-
ficient vectors. Yin et al. designed a non-negative sparse Laplacian regularized LRR model 
(NSLLRR) [21] which combined GLRR and NNLRSR. What’s more, NSLLRR could be 
treated as an extension of GLRR.

Additionally, we find that some algorithms obtained compelling results by minimizing 
different norms of the coefficient matrix as well. For example, Lu et al. intended to mini-
mize the Frobenius norms of a coefficient matrix and proposed a least square regression 
(LSR) [22]. Hu et  al. presented a kind of smooth representation clustering (SMR) algo-
rithm [23] which expected coefficient matrices to retain the locality structures of an origi-
nal data set. We could see the above mentioned algorithms followed the same methodology 
as we mentioned in the second paragraph for handling subspace clustering problems.

What’s more, Yu et al. proposed a novel ranking model based on the learning-to-rank 
framework where visual features and click features were simultaneously utilized to obtain 
the ranking model [24]. Hong et  al. presented a novel approach which could recover 
3-D human poses from silhouettes [25]. This approach improved traditional methods by 
adopting multi-view locality-sensitive sparse coding in the retrieving process. Hong et al. 
used multimodal data and devised a novel face-pose estimation framework named multi-
task manifold deep learning (M2DL) [26]. Zhang et al. presented an unsupervised deep-
learning framework named local deep-feature alignment (LDFA) for dimension reduction 
which could learn both local and global characteristics of the data sample set [27]. Yu et al. 
devised a Hierarchical Deep Word Embedding (HDWE) model by integrating sparse con-
straints and an improved RELU operator to address click feature prediction from visual 
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features [28]. Yu et al. proposed an end-to-end place recognition model based on a novel 
deep neural network [29]. Yu et al. designed a one-stage framework, SPRNet, which per-
formed efficient instance segmentation by introducing a single pixel reconstruction (SPR) 
branch to off-the-shelf one-stage detectors [30].

1.2  Contributions

In this paper, we proposed a new subspace clustering algorithm, termed latent smooth rep-
resentation clustering (LSMR). In LSMR, for a data set � , we firstly obtained the coeffi-
cient matrix � by using SSC, then � could be viewed as the representations of the original 
data set � in a latent subspace. Secondly, in this latent space, SMR was performed on � 
to obtain a new reconstruction coefficient matrix � . Finally, � would be used to construct 
the affinity graph � and the subspace clustering result could be produced. Compared with 
the existing spectral clustering-based algorithms, LSMR uses a totally different method 
to obtain the affinity graph and our experiment results show that LSMR outperforms the 
existing related algorithms. Figure 1 shows the clustering procedure of LSMR.

The rest of this paper is organized as follows: Sect. 2 briefly reviews SSC algorithms. 
Section 3 introduces the idea of LSMR method. And the optimization method for solving 
LSMR is presented in this section as well. We further discuss the complexity of LSMR 
and its relationships with some related algorithms in Sect. 4. The extensive experiments 
performed to    illuminate the effectiveness of LSMR are showed in Sect. 5. Section 6 gives 
the conclusions.

Fig. 1  The clustering procedure 
of LSMR start

a coefficient matrix Z
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2  Sparse Subspace Clustering (SSC)

In this section, we briefly recap the sparse subspace clustering (SSC) algorithm.
For a data matrix � =

[
�1, �2,… , �n

]
∈ Rd×n with n data samples, sparse subspace clus-

tering (SSC) expects to find a reconstruction coefficient matrix � =
[
�1, �2,… , �n

]
∈ Rn×n . 

� satisfies � = �� + � where � =
[
�1, �2,… , �n

]
∈ Rd×n indicates the reconstruction 

residual matrix. SSC hopes to minimize the l1-norms of � and � . Hence the objective func-
tion of SSC could be precisely expressed as the following Problem (1):

where 𝜆 > 0 is a parameter which is used to balance the effects of the two terms and [�]i̇i 
represents the (i, i)-th element of � . SSC uses the alternating direction method (ADM) [31] 
to address Problem (1). Then the solution � is used to construct an affinity graph � which 
satisfies [�]ij = (

|||[�]i̇j
||| +

|||[�]j̇i
|||)∕2 . Finally, the final clustering result could be obtained 

by using N-cut.

3  Latent Smooth Representation Clustering

3.1  Motivation

In fact, SSC considers each sample �i ∈ � can be linearly reconstructed by using the rest 
samples as few as possible in � [32]. Precisely, �i = ��i + �

i
 , where �i ∈ � is a sparse 

reconstruction coefficient vector corresponding to �i and �
i
 is the corresponding reconstruc-

tion error. According to the descriptions, �i could be regarded as a representation of �i . 
In real applications, the dimensionality of data is usually very high, i.e., d ≫ n . Then the 
found representation � ∈ Rn×n could be actually regarded as the low-dimensional embed-
ding of the original data matrix � in a latent subspace found by SSC.

In the classical SSC, � will be used to construct the affinity graph directly. However, 
from the viewpoint described above, we could perform subspace clustering in the latent 
subspace obtained by SSC. Here many existing subspace clustering algorithms could be 
applied, we choose smooth representation clustering (SMR) method to get the final cluster-
ing results for its efficiency and effectiveness.

The objective function of classical SMR in original observed space could be expressed 
as follows:

where � = [�1, �2,… , �n] ∈ Rn×n is the reconstruction coefficient matrix corresponding to 
data matrix � , �t denotes the transpose of � , ‖ ∙ ‖F denotes the Frobenius norm and 𝛽 > 0 
is a parameter. tr

�
����

t
�
=
∑n

i=1

∑n

j=1
[��]i̇j‖�i − �j‖22 is a Laplacian regularization term 

which is adopted to enforce the grouping effect1 of � . �� is the Laplacian matrix defined 

(1)

min
�

‖�‖1 + 𝜆‖�‖1
s.t. � = �� + �

[�]i̇i = 0, i = 1,2,… , n,

(2)min
�

�‖� − ��‖2
F
+ tr

�
����

t
�
,

1 Namely, if ‖�i − �j‖22 → 0 , we have ‖�i − �j‖22 → 0.
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by �� = �� −�� , in which �� is the diagonal matrix with [��]i̇i =
∑n

j=1
[��]i̇j . �� is 

the similarity matrix measuring the spatial closeness of samples and constructed by using 
the k nearest neighbors ( knn ) [33] graph. Namely, if �j is one of the k nearest neighbors of 
�i , [��]i̇j = 1 . [��]i̇j = 0 , otherwise.

Based on our interpretation previously, SMR could be easily transferred into the latent 
subspace found by SSC for a given data set � . And in the latent subspace, � is the repre-
sentation of � . Consequently, the objective function of SMR could be transferred to be:

where tr
�
����

t
�
=
∑n

i=1

∑n

j=1
[��]i̇j‖�i − �j‖22 and �� = �� +�� , in which �� is a 

diagonal matrix with [��]i̇i =
∑n

j=1
[��]i̇j . Because � is a reconstruction coefficient matrix 

with [�]i̇j measuring the similarity between original data points �i and �j , we could define 
�� as 

[
��

]
ij
= (

|||[�]i̇j
||| + |[�]ji|)∕2.

Here, researchers may argue that 
[
��

]
ij
 does not indicate the similarity between �i and 

�j . However, as described above, � is the representation of � , so the similarity between 
original data points �i and �j should be close to the similarity between �i and �j , thus the 
definition of �� is reasonable. Moreover, in SMR, the neighborhood scale k is usually dif-
ficult to choose for different data sets and the similarities between pairwise data samples 
are manually set. This would make the performance of SMR unstable. In our method, we 
could bypass these disadvantages.

Finally, we combine Problem (1) and Problem (3) together and let �1 = � − �� , 
�2 = � − �� , then the following problem could be have, i.e.:

where � , � are two positive parameters. In real applications, �̃� = �� + 𝜀�n is often used 
instead of �� , where �n is an n × n identity matrix and � is a small positive parameter.2 
Then �̃� is enforced to be strictly positive defined. We call Problem (4) latent smooth rep-
resentation clustering (LSMR). Problem (4) could be solved by using the alternating direc-
tion method (ADM) [31].

3.2  Optimization

For addressing Problem (4), first of all, we covert it into the following equivalent 
formulation:

(3)min
�

�‖� − ��‖2
F
+ tr

�
����

t
�
,

(4)

min
�,C,�1�2

‖�‖1 + 𝛼‖�1‖1 + tr
�
����

t
�
+ 𝛽‖�2‖2F ,

s.t. �1 = � − ��,

�2 = � − ��,

[�]i̇i = 0, i = 1,2,… , n,

2 In our experiments, � = 0.01.
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Then the augmented Lagrangian function of Problem (5) can be defined as follows:

where 𝜇 > 0 is a parameter, �1 , �2 , �3 and �4 are four Lagrange multipliers. After that, the 
variables � , � , � , � , �1 and �2 could be optimized alternately with minimizing L . The 
detailed updating procedure for each variable is showed in the following sections:

1. Update � with fixed other variables. By picking the relevant terms of � in Eq. (6), 
we have:

then the solution to Eq. (7) could be obtained as

�opt denotes the optimal value of �.

2. Update � with fixed other variables. By abandoning the irrelevant terms of � in 
Eq. (6), we have:

  We take the derivation of Eq. (9) w.r.t. � and set it to 0 , the following equation holds:

(5)

min
�,C,�,�,�1�2

‖�‖1 + 𝛼‖�1‖1 + tr
�
��̃��

t
�
+ 𝛽‖�2‖2F

s.t. �1 = � − ��,

� = �

[�]i̇i = 0, i = 1,2,… , n,

�2 = � − ��,

� = �.

(6)

L = ‖�‖1 + 𝛼‖�1‖1 + tr
�
��̃��

t
�
+ 𝛽‖�2‖2F + ⟨�1,� − �� − �1⟩

+ ⟨�2,� −�⟩ + ⟨�3,� − �� − �2⟩ + ⟨�4,� −�⟩
+ 𝜇∕2(‖� − �� − �1‖2F + ‖� −�‖2

F

+ ‖� − �� − �2‖2F + ‖� −�‖2
F
)

(7)

min
�

‖�‖1 + ⟨�2,� −�⟩ + �∕2‖� −�‖2
F

= min
�

‖�‖1 + �∕2‖� −� +
�2

�
‖
2

F

,

(8)
[
�opt

]
i̇j
=

{
max

(
0,
[
� + �2∕𝜇

]
i̇j
− 1∕𝜇

)
+min

(
0,
[
� + �2∕𝜇

]
i̇j
+ 1∕𝜇

)
, i ≠ j;

0

(9)

min
�

⟨�1,� − �� − �1⟩ + ⟨�2,� −�⟩ + ⟨�3,� − �� − �2⟩

+ �∕2(‖� − �� − �1‖2F + ‖� −�‖2
F
+ ‖� − �� − �2‖2F)

= min
�

‖� − �� − �1 + �1∕�‖2F + ‖� −� + �2∕�‖
2

F

+ ‖� − �� − �2 + �3∕�‖2F .
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  Equation (10) is a Sylvester equation [34] w.r.t. �opt , so it can be solved by the Matlab 
function lyap(). It should be pointed out that though �̃� is designed by � , we treat �̃� as 
a fixed value when � is updating. After � is updated, then �̃� would be computed.

3. Update � with fixed other variables. By collecting the relevant terms of � , we have:

  By taking the derivation of Eq. (11) w.r.t. � and setting it to 0 , then the following 
equation holds:

4. Update � with fixed other variables. By collecting the relevant terms w.r.t � , minimiz-
ing Eq. (6) becomes to the following problem:

  By applying the same methods used for updating � , the following equation holds:

5. Update �1 with fixed other variables. By dropping the irrelevant terms of �1 , afterward 
minimizing Eq. (6) equals addressing the following problem:

  Similar to computing the optimal value of � , we could obtain:

6. Update �2 with fixed other variables. By gathering the relevant terms of �2 in Eq. (6), 
we have:

  We also take the derivation of Eq. (17) w.r.t. �2 and set it to 0 , subsequently the fol-
lowing equation holds:

(10)

(
�t� + �n

)
�opt + �opt

(
�n − �

)(
�n − �t

)
− �t(� − �1 + �1∕�)

−� + �2∕� −

(
�2 −

�3

�

)(
�n − �t

)
= 0.

(11)

min
�

tr
�
��̃��

t
�
+ ⟨�4,� −�⟩ + 𝜇∕2‖� −�‖2

F

= min
�

tr
�
��̃��

t
�
+ 𝜇∕2‖� −� +

�4

𝜇
‖
2

F

.

(12)�opt =
(
𝜇� + �4

)(
2�̃� + 𝜇�n

)−1
.

(13)
min
�

⟨�3,� − �� − �2⟩ + ⟨�4,� −�⟩ + �∕2
�
‖� − �� − �2‖2F + ‖� −�‖2

F

�

= min
�

‖� − �� − �2 + �3∕�‖2F + ‖� −� + �4∕�‖2F

(14)�opt =
(
�t� + �n

)−1
[�t

(
� − �2 + �3∕�

)
+� − �4∕�]

(15)
min
�1

�‖�1‖1 + ⟨�1,� − �� − �1⟩ + �∕2‖� − �� − �1‖2F

= min
�1

�‖�1‖1 + �∕2‖� − �� − �1 + �1∕�‖2F

(16)
[
�1

opt
]
i̇j
= max

(
0,
[
� − �� + �1∕𝜇

]
i̇j
− 𝛼∕𝜇

)
+min

(
0,
[
� − �� + �1∕𝜇

]
i̇j
+ 𝛼∕𝜇

)

(17)

min
�2

�‖�2‖2F + ⟨�3,� − �� − �2⟩ + �∕2‖� − �� − �2‖2F

= min
�2

�‖�2‖2F + �∕2‖� − �� − �2 +
�3

�
‖
2

F

.
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7. Update parameters with fixed other variables. The precise updating schemes for the 
parameters existed in Eq. (6) are summarized as follows:

where �max and � are two given positive parameters.

3.3  Algorithm

The algorithmic procedure of LSMR is summarized in Algorithm 1. Once the solutions to 
LSMR are gotten, LSMR defines an affinity graph � satisfying [�]ij = (

|||[�]i̇j
||| +

|||[�]j̇i
|||)∕2 . 

Finally, we could obtain clustering results by N-cut performed on the graph.

4  Further Discussions

4.1  Complexity Analysis

We will discuss the computational complexity of Algorithm 1 in this subsection. The run-
ning time of Algorithm 1 is mainly composed by the updating of six variables: � ∈ Rn×n , 
� ∈ Rn×n , � ∈ Rn×n , � ∈ Rn×n , �1 ∈ Rd×n , �2 ∈ Rd×n . Then we will analyze the computa-
tional burden of updating � , � , � , � , �1 , �2 in each step.

(18)
�2

opt =
�

(2� + �)
(
� − �� +

�3

�

) .

(19)

�1
opt = �1 + �

(
� − �� − �1

)
,

�2
opt = �2 + �(� −�),

�3
opt = �3 + �

(
� − �� − �2

)
,

�4
opt = �4 + �(� −�),

�opt = min
(
�max, ��

)
,
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Firstly, updating � and �1 both need to compute each element of two n × n matrices, 
therefore their time complexities are O

(
n2
)
 . Secondly, updating � needs to solve a Sylvester 

equation, which takes O
(
n3
)
 time. Thirdly, it takes O

(
n3
)
 time to update � and � because 

of computing the pseudo-inverse of an n × n matrix respectively. Fourthly, it knows easily 
that the time complexity for updating �2 is O

(
n2
)
 . Thus we can know that the computa-

tional burden of Algorithm 1 takes O
(
n3
)
 totally in each iteration. Suppose the number of 

iterations is N , the total complexity of Algorithm 1 should be N × O
(
n3
)
.

4.2  Relationships Among LSMR and Some Related Algorithms

4.2.1  Is LSMR a Two‑Step SMR?

Based on the deduction process presented in Sect. 3.1, researchers may consider that the 
results of LSMR could be easily achieved from the two steps: firstly, using SSC on the 
original data set � to get � ; secondly, performing SMR on � to obtain � . For alleviating 
this concern, we rewrite the objective function of LSMR (namely, Problem (4)) as follows:

where �� =
(
�n − �

)(
�n − �

)t . Then it can be seen that when � is fixed, the above prob-
lem is actually a graph regularized SSC problem and tr

(
����

t
)
 is the graph regularizer. 

This kind of graph regularizer is devised in the similar way used in [35] and has many 
excellent characters. Hence, LSMR could be regarded as an adaptive graph-regularized 
SSC.

4.2.2  The Relationship Between LSMR and GLRR

The objective function of graph-regularized low-rank representation (GLRR) [20] can be 
expressed as follows:

where ��= �� −�� is the Laplacian matrix which is designed in a similar way applied in 
SMR.

Compared the variant objective function of LSMR [namely, Eq. (20)] with GLRR, we 
can see: (1) similar to the existing spectral clustering methods, GLRR is performed in the 
original observed space; (2) the definitions of the Laplacian regularizer of LSMR and 
GLRR are different. Because of the Laplacian matrix in GLRR defined as same as that in 
SMR, it also has the same disadvantage, i.e. sensitive to the neighborhood size k ; (3) There 
are three parameters including the neighborhood size k and � , � needed to be adjusted in 
GLRR, which will make GLRR more difficult to get satisfied results. However, there are 

(20)

min
�,C,�1�2

‖�‖1 + �‖�1‖1 + tr
�
����

t
�
+ �‖� − ��‖2

F

= min
�,C,�1�2

‖�‖1 + �‖�1‖1 + tr
�
����

t
�
+ �tr

�
�
�
�n − �

��
�n − �

�t
�t
�

= min
�,�,�1�2

‖�‖1 + �‖�1‖1 + �tr
�
����

t
�
+ tr

�
����

t
�
,

(21)
min
�,�

‖�‖∗ + �tr
�
����

t
�
+ �‖�‖2,1,

s.t. � = �� + �,
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only two parameters including � and � in LSMR. Therefore, we can see that the perfor-
mance of LSMR is superior to GLRR in our following experiments.

5  Experiments

In this section, plenty of subspace clustering experiments will be performed to verify the 
effectiveness of LSMR. For comparisons, some related algorithms including SSC [4], 
LRR [5], SMR [23], GLRR [20] will be also evaluated. Two types of databases will be 
adopted including Hopkins 155 motion segmentation database [36] and image databases 
(such as ORL database [37], the extended Yale B database [38], COIL-20 database [39] 
and MNIST (https ://yann.lecun .com/exdb/mnist /)).

5.1  Experiments on Hopkins 155 Database

Hopkins 155 database [36] is a famous motion segmentation database which consists of 
35 sequences of three motions3 and 120 sequences of two motions. The features of each 
sequence are extracted and tracked across all frames, furthermore errors were manually 
removed for each sequence. Subsequently each sequence could be taken as a single cluster-
ing task, consequently there are totally 155 clustering tasks. we use principal component 
analysis (PCA) [33] to project the data to be a 12-dimensional4 subspace. Figure 2 shows 
two sample images of Hopkins 155 database.

5.1.1  Sensitivity Analysis

We firstly tested the sensitivity of LSMR with different values of parameters � and � on 
the sub-database: “arm”. We let parameters � and � both vary in the interval [0.1,10]. The 

Fig. 2  Sample images of Hopkins 155 motion segmentation database

3 It also contains a sequence of 5 motions which is called “dancing”. We neglect this sub-database in our 
experiments.
4 The choices of PCA dimension is followed the suggestion in [5].

https://yann.lecun.com/exdb/mnist/
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segmentation errors5 obtained by LSMR with corresponding parameters are displayed in 
Fig. 3. Obviously, it could be discovered that the performance of LSMR is stable when � 
and � vary over relative large ranges.

5.1.2  Comparison with Related Algorithms

Moreover, for each evaluated algorithm, we also reported the detailed statistics of the seg-
mentation errors including Mean, standard deviation (Std.) and maximal error (Max.) in 
Table 1. According to our previous sensitivity experiments, we set the two parameters in 
LSMR as � = 10 , � = 1 . The parameters in other related algorithms were set to their best 
values by following the disciplines described in the corresponding related references. From 
Table 1, we can know that (1) the mean and maximal error of segmentation errors gotten 
by LSMR are all superior to other related algorithms; (2) the standard deviations gotten by 
LSMR on 2 motions and all data sets are all better than other related algorithms; (3) all the 
best values are obtained by LSMR or GLRR. The segmentation errors obtained by LSMR 
on some sequences of 3 motions are very small or zero. However, some results on the other 
sequences of 3 motions are a little bigger than those of GLRR. In other words, the segmen-
tation errors obtained by LSMR on 3 motions fluctuate more widely than those of GLRR. 
Therefore, the standard deviation of our proposed method is not the best on 3 motions.

Fig. 3  The segmentation errors obtained by LSMR with different values of � and � on arm

5 Segmentation error = 1 − segmentation accuracy.
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5.2  Experiments on Face Image Databases

Two famous face image databases including ORL [37] and the extended Yale B [38] data-
bases will be used in this subsection. The brief introductions of the two databases are as 
follows:

ORL database consists of 400 face images (without noise) of 40 persons that each 
individual has 10 different images. These images were taken at different times, varying 
the lighting, facial expressions (open/closed eyes, smiling/not smiling) and facial details 
(glasses/no glasses).

The extended Yale B face database consists of 38 human faces and around 64 near fron-
tal images under different illuminations per person. Some images in this database were 
corrupted by shadow. We only chose face images from first 10 classes of the extended Yale 
B database to constitute a set of heavily corrupted data samples which contained totally 
640 face images. In our experiments, all the images from ORL and the extended Yale B 
databases were resized to 32 × 32 pixels. What’s more, the element value of each image 
vector was normalized into the interval [0,1] by being divided 255 for effective computa-
tion. Some sample images from the two databases are respectively presented in Fig. 4a, b.

Table 1  The segmentation errors (%) of different algorithms on Hopkins 155 database

The optimal values of different criterion are emphasized in bold style
 In SSC, � = 3 .  In LRR, � = 2.4 .  In SMR, � = 0.8, k = 4 . In GLRR, � = 0.6, � = 0.05, k = 4

Method 2 motions 3 motions ALL

Mean Std Max Mean Std Max Mean Std Max

SSC 4.87 8.94 33.09 11.24 9.54 27.62 6.31 9.44 33.09
LRR 4.33 9.82 48.61 8.15 10.23 38.30 5.20 10.01 48.61
SMR 2.41 5.76 30.41 8.40 8.44 31.70 3.76 6.90 31.70
GLRR 2.36 5.45 33.09 7.93 8.22 31.70 3.62 6.58 33.09
LSMR 2.09 5.08 24.44 7.87 8.46 26.03 3.39 6.45 26.03

Fig. 4  Sample images from ORL and the extended Yale B databases
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Fig. 5  The segmentation accuracies obtained by LSMR with different values of parameters on two face 
image databases
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5.2.1  Sensitivity Analysis

We used the two databases to test the sensitivity of LSMR with its two parameters as well. 
We chose face images from all 40 persons of ORL database and the first 10 persons of the 
extended Yale B database in this experiment. The parameters � and � were varied in rela-
tive large set {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 10, 20}. Figure 5 presents the 
segmentation accuracies obtained by LSMR with different values of two parameters, which 
demonstrates that LSMR is stable on a large range of � and �.

5.2.2  Comparison with Related Algorithms

We also ran the other evaluated algorithms on the two databases. The best segmenta-
tion accuracies achieved by the five algorithms with their corresponding parameters are 
recorded in Table 2. From Table 2, we can know that (1) the highest segmentation accura-
cies on the two databases are all obtained by LSMR; (2) especially, the experimental result 
of LSMR is much better than that of the other evaluated algorithms on the extend Yale B 
database.

For further comparison, we carried out the subspace clustering experiments on some 
sub-databases chose from ORL and the extended Yale B databases. Each sub-database con-
sisted of face images from q persons, where q changed from 4 to 40 in ORL database and 
2 to 10 in the extended Yale B database respectively. After that, we performed the five 
evaluated algorithms to compute the subspace segmentation accuracies. In these experi-
ments, we made the corresponding parameters in all evaluated algorithms vary in the inter-
val [0.0001,20]. Then we selected the best ones corresponding to the highest accuracies 
achieved by each evaluated algorithm. At last, the segmentation accuracy of each algo-
rithm versus the number of class q are plotted in Fig. 6 on the two face image databases.

Obviously, from Fig. 6, we know that: (1) the best results are all obtained by LSMR in 
these experiments; (2) the performance of LSMR is much better than those of the other 
evaluated algorithms.

Table 2  The highest segmentation accuracies (%) obtained by different algorithms with their corresponding 
parameters on ORL and the extended Yale B databases

 The optimal values of different criteria are emphasized in bold

Database Algorithm

SSC LRR SMR GLRR LSMR

ORL parameters 0.7675
� = 3

0.7475
� = 3

0.7750
� = 4

k = 4

0.7925
� = 0.5

� = 2

k = 4

0.8250
� = 2

� = 0.05

Yale B parameters 0.8750
� = 0.5

0.7016
� = 1

0.6719
� = 8

k = 4

0.6969
� = 0.05

� = 0.005

k = 4

0.9547
� = 1

� = 0.005
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5.3  Experiments on Other Image Databases

In addition, we expect to further verify high-performance of LSMR on different kinds of 
databases. Consequently, we adopted COIL-20 [39] and MNIST (https ://yann.lecun .com/
exdb/mnist /) in this subsection. The brief information of the two databases are introduced 
as the following:

Fig. 6  The segmentation accuracies obtained by the evaluated algorithms versus the number of persons on 
ORL and the extended Yale B databases

https://yann.lecun.com/exdb/mnist/
https://yann.lecun.com/exdb/mnist/


1332 X. Xiao, L. Wei 

1 3

COIL-20 database consists of 1440 images from 20 different subjects that each subject 
has 72 images. We formed a subset which consisted of first 36 images of each subject and 
images from the first 15 subjects were used. In our experiments, each image was resized to 
32 × 32 pixels.

The MNIST database of handwritten digits has a training set of 60,000 examples and 
a test set of 10,000 examples. It has 10 subjects, corresponding to 10 handwritten digits, 
namely 0–9. In our experiments, we constructed a subset which consisted of the first 50 
samples of each digit’s training data set and resized each image to 28 × 28 pixels. Further-
more, the element value of each image vector was normalized into the interval [0,1] by 

Fig. 7  Sample images from COIL-20 and MNIST database
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Fig. 8  The segmentation accuracies obtained by LSMR with different values of parameters on COIL-20 
and MNIST databases
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being divided 255 for effective computation. Figure 7a, b respectively show some sample 
images of the two databases.

5.3.1  Sensitivity Analysis

We used the methodology same as the previous experiments. Namely, we firstly tested the 
sensitivity of LSMR with different values of two parameters on COIL-20 and MNIST data-
base. We selected images from the first 15 subjects of COIL-20 database and all 10 handwrit-
ten digits of MNIST database in this experiment. We made � and � both vary in the relative 
large set {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 10, 20}. The segmentation accuracy 
achieved by LSMR with corresponding parameters are illustrated in Fig. 8. Figure 8 clearly 
presents that LSMR isn’t sensitive to the two parameters on the two databases.

5.3.2  Comparison with Related Algorithms

After all, each of the evaluated algorithms was conducted on chosen image samples 
from COIL-20 and MNIST databases. Table 3 also records the high segmentation accu-
racies achieved by all of the evaluated algorithms with their corresponding parameters. 
From Table 3, it could be seen that the highest segmentation accuracies on COIL-20 and 
MNIST databases are all obtained by LSMR. Hence, LSMR outperforms other evaluated 
algorithms.

Then subspace clustering experiments were also conducted on some sub-databases 
constructed from COIL-20 and MNIST databases. Each sub-database consisted of image 
samples from q subjects, where q changed from 3 to 15 in COIL-20 database and 2 to 10 
in MNIST database. Subsequently the five evaluated algorithms were performed to obtain 
subspace segmentation accuracies. The corresponding parameters in all of evaluated algo-
rithms were varied in the interval [0.0001,20]. We selected the best values corresponding 
to the highest accuracies of all of evaluated algorithms. Figure 9 plotted the segmentation 
accuracy curve of each algorithm vs. the number of class q.

Obviously, from Fig. 9, we could find that: (1) the best results are all achieved by LSMR 
in these experiments; (2) the results of LSMR are much better than those of the other 
related algorithms in the two experiments. According to all the experiments, we can con-
clude that LSMR is an efficient algorithm for subspace clustering.

Table 3  The highest segmentation accuracies (%) obtained by different algorithms with their corresponding 
parameters on COIL-20 and MNIST databases

 The optimal values of different criteria are emphasized in bold

Database Algorithm

SSC LRR SMR GLRR LSMR

COIL-20 parameters 0.7037
� = 0.05

0.7333
� = 0.01

0.7889
� = 0.005

k = 4

0.8056
� = 0.001

� = 20

k = 4

0.8667
� = 0.1

� = 20

MNIST parameters 0.6200
� = 0.5

0.5733
� = 1

0.6422
� = 0.5

k = 4

0.6467
� = 1

� = 20

k = 4

0.6867
� = 0.3

� = 9.5
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6  Conclusion

In this paper, we devised a new subspace clustering algorithm, called latent smooth repre-
sentation clustering (LSMR), in which we regarded sparse subspace clustering (SSC) found 
a latent subspace for the original data set and smooth representation clustering (SMR) was 
consequently applied in the latent space to handle subspace clustering tasks. We discussed 
the relationships between LSMR and some existing related algorithms. Finally, subspace 

Fig. 9  The segmentation accuracies obtained by the evaluated algorithms versus the number of subjects on 
COIL-20 and MNIST databases
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clustering experiments conducted on Hopkins 155 database and four image databases 
proved LSMR was superior to some existing related algorithms.
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