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Abstract
In the previous work, a typical recurrent neural network termed Zhang neural network (ZNN)
has been developed for various time-varying problems solving. Based on the previous work,
by exploiting a special activation function (i.e., Li activation function), the resultant ZNN
model is presented and investigated in this paper for online solution of time-varying lin-
ear matrix inequality (TVLMI). For such a Li-function activated ZNN (LFAZNN) model,
theoretical results are provided to show its excellent computational performance on solving
the TVLMI. That is, the presented LFAZNN model has the property of finite-time conver-
gence. Comparative simulation results with two illustrative examples further substantiate the
efficacy of the presented LFAZNN model for TVLMI solving.

Keywords Zhang neural network · Li activation function · Finite-time convergence ·
Theoretical results · Time-varying linear matrix inequality

1 Introduction

Recently, linear matrix inequality (LMI) has played a more and more important role in
science and engineering areas [1–6]. The LMI-based approaches have been designed and
used in many fields, such as stability analysis of fuzzy control system, robustness analysis of
neural network, and gain scheduled controller design. The LMI has been now considered as a
powerful formulation and design technique for solving different types of problems [1–13]. For
example, Lyapunov matrix inequality is constructed to analyze the stability and performance
of delayed dynamical systems [6–9]. As a powerful tool, the LMI-based technique can also
be applicable for solving the system identification problems, the nonconvex multi-criterion
optimal control problems, and the inverse problems of optimal control [9,13]. Generally
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speaking, these problems are transformed into the related LMI problems, which are then
solved by using neural-network models and/or numerical algorithms [7–9,13]. Given its
importance, an effective model/algorithm for solving a class of LMIs is worth developing
and investigating.

To solve a class of LMIs (e.g., Lyapunov matrix inequalities and algebraic Riccati matrix
inequalities), the gradient-based neural networks (which can be viewed as the common way)
were developed byLin et al. in [7] and [8]. In [9], a simplified neural network for a class ofLMI
problems solving was presented by Cheng et al. Besides, the dynamic system methods were
providedbyHu [14] for solvingmixedLMIs and linear vector inequalities and equalities.Note
that the intrinsical design of these neural networks and methods is for time-invariant LMIs
solving. As many systems in engineering applications are time-varying, the corresponding
LMIs may also be time-varying ones (i.e., the coefficients always change as time t evolves).
When the aforementioned neural networks and methods are exploited directly for time-
varying LMIs solving, the time-derivative information of coefficients is not involved. They
may be less effective and efficient due to the lack of consideration for such an important
information [13,15–17].

SinceMarch 2001, a typical recurrent neural network termedZhang neural network (ZNN)
has been formally proposed by Zhang et al. for various time-varying problems solving [16,
18]. The general procedure of the ZNN design is presented in the Appendix. For better
understanding, the concept of ZNN [13] is given as follows.
Concept Being a typical recurrent neural network, Zhang neural network (ZNN) has been
developed and studied since 2001. It originates from the research of Hopfield-type neural
networks and is a systematic approach for time-varying problems solving. Such a ZNN is
different from the traditional gradient-based neural network(s) in terms of the problem to be
solved, indefinite error function, exponent-type design formula, dynamic equation, and the
utilization of time-derivative information.

By following the inspirational work of Zhang et al. [16,18], two different ZNNmodels for
time-varying LMI (TVLMI) solving were proposed and investigated in the authors’ previous
work [13,17]. Specifically, in [17], the first ZNN model was developed by exploiting the
variant of the ZNN design formula. In [13], the second ZNN model was developed by
means of the conversion from inequality to equality. For such two ZNN models, the former
is depicted in an implicit dynamics, while the latter is depicted in an explicit dynamics.
Theoretical and simulative results were also provided in [17] and [13] to further show the
efficacy of the presented two ZNN models for TVLMI solving. By following the researches
of [13] and [17], another ZNN model was developed by Sun et al. in [19] for solving time-
varying Stein matrix inequality (which, to some extent, shows the significance of the ZNN
research community). All of the results in [13,17] and [19] also indicate that different choices
of activation functions result in different convergence performances for a ZNN model. That
is, the activation function affects greatly the ZNN convergence.

In [20], a special activation function termed Li activation function was designed by Li
et al. to accelerate the ZNN model to finite-time convergence. The recent research on ZNN
[21–24] has further revealed that the finite-time convergence of ZNNmodels can be achieved
by exploiting a specifically-designed activation function. Motivated by the idea in [20], this
paper presents a ZNN model with finite-time convergence on TVLMI solving by employing
the Li activation function. Evidently, the convergence property of such a model is different
from that of the existing ZNN model [13,17,19] using the previously-investigated activation
functions (e.g., power-sigmoid and hyperbolic-sine activation functions). It is also worth
pointing out here that at present the research on TVLMI solving is rare (though it can be an
appealing topic), not to mention a computational model with finite-time convergence.
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Being an extension of the successful work [13,17,19], this paper presents and investigates
the Li-function activated ZNN (LFAZNN)model for online solution of TVLMI. Specifically,
by defining an indefinite matrix-valued error function and by using the ZNN design formula,
the ZNN model depicted in an explicit dynamics is developed for TVLMI solving. For
such a ZNN model, employing Li activation function [20] results in the LFAZNN model.
Then, it is theoretically proven that the presented LFAZNN model has the property of finite-
time convergence. Simulation results with two illustrative examples further substantiate the
efficacy of the presented LFAZNN model for TVLMI solving.

The rest of this paper is organized into four sections. Section 2 presents the formulations
of the TVLMI problem and the ZNNmodel. In Sect. 3, the LFAZNNmodel is presented and
investigated for TVLMI solving, together with theoretical results showing the computational
performance of such anLFAZNNmodel. In Sect. 4, as synthesized by the presented LFAZNN
model, simulation results are illustrated. Section 5 concludes this paper with final remarks.
Before ending this section, it is worth summarizing and listing the main contributions of this
paper as follows.

– This paper presents the Li-function activated ZNN (LFAZNN) model for online solution
of time-varying linear matrix inequality (TVLMI). Note that Li activation function is
different from the activation functions investigated in [13,17,19].

– This paper gives theoretical result to show the finite-time convergence of the presented
LFAZNNmodel. This is the first time to provide the finite-time exact solution to TVLMI.

– This paper illustrates comparative simulation results to further substantiate the efficacy
of the presented LFAZNN model for TVLMI solving.

2 Time-Varying Linear Matrix Inequality

In this section, the formulation of the TVLMI problem is presented. Then, by defining an
indefinite matrix-valued error function and by using the ZNN design formula [13,15–19],
the resultant ZNN model is developed for TVLMI solving.

Specifically, in this paper, the following TVLMI problem is considered:

A(t)X(t) ≤ B(t), (1)

where A(t) ∈ Rm×m and B(t) ∈ Rm×n are smoothly time-varying matrices, and X(t) ∈
Rm×n is the unknown matrix to be obtained. The objective of this paper is to find a feasible
solution X(t) such that (1) holds true for any time instant t ≥ 0. Note that, in (1), the symbol
“≤”(between two matrices) is satisfied, if every element of one matrix is less than or equal to
the corresponding element of the other matrix. Besides, to lay a basis for further discussion,
A(t) is assumed to be nonsingular at any time instant t ∈ [0,+∞) in this paper.

To solve the TVLMI (1), the indefinite matrix-valued error function is defined as follows:

E(t) = A(t)X(t) − B(t) + Λ2(t) ∈ Rm×n, (2)

where Λ2(t) = Λ(t) � Λ(t) with the time-varying matrix Λ(t) being

Λ(t) =

⎡
⎢⎢⎢⎣

λ11(t) λ12(t) · · · λ1n(t)
λ21(t) λ22(t) · · · λ2n(t)

...
...

. . .
...

λm1(t) λm2(t) · · · λmn(t)

⎤
⎥⎥⎥⎦ ∈ Rm×n .
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Note that the multiplication operator� is the Hadamard product [25]. Thus, the time-varying
matrix Λ2(t) in (2) is written as below:

Λ(t) =

⎡
⎢⎢⎢⎣

λ211(t) λ212(t) · · · λ21n(t)
λ221(t) λ222(t) · · · λ22n(t)

...
...

. . .
...

λ2m1(t) λ2m2(t) · · · λ2mn(t)

⎤
⎥⎥⎥⎦ ∈ Rm×n,

of which each element is greater than or equal to zero, i.e., Λ2(t) ≥ 0. Evidently, when
E(t) = 0, the following result is obtained:

A(t)X(t) − B(t) = −Λ2(t) ≤ 0.

That is to say, solving the TVLMI (1) can be equivalent to solving the time-varying matrix
equation A(t)X(t) − B(t) + Λ2(t) = 0.

Besides, for further discussion, the relationship between matricesΛ(t) andΛ2(t) is refor-
mulated as

vec(Λ2(t)) = D(t)vec(Λ(t)),

where operator vec(·) ∈ Rmn generates a column vector obtained by stacking all column
vectors of a matrix [13,15,16]. In addition, the diagonal matrix D(t) is defined as follows:

D(t) =

⎡
⎢⎢⎢⎣

λ̃1(t) 0 · · · 0
0 λ̃2(t) · · · 0
...

...
. . .

...

0 0 · · · λ̃n(t)

⎤
⎥⎥⎥⎦ ∈ Rmn×mn,

with the i th (with i = 1, . . . , n) block matrix being

λ̃i (t) =

⎡
⎢⎢⎢⎣

λ1i (t) 0 · · · 0
0 λ2i (t) · · · 0
...

...
. . .

...

0 0 · · · λmi (t)

⎤
⎥⎥⎥⎦ ∈ Rm×m .

By defining v(t) = vec(Λ(t)) ∈ Rmn , the time derivative of vec(Λ2(t)) is formulated as

d(vec(Λ2(t)))

dt
= 2D(t)v̇(t),

with v̇(t) being the time derivative of v(t). Furthermore, by defining u(t) = vec(X(t)) ∈ Rmn

and w(t) = vec(B(t)) ∈ Rmn , the error function (2) is reformulated as follows:

Ẽ(t) = M(t)u(t) − w(t) + D(t)v(t) ∈ Rmn, (3)

where M(t) = I ⊗ A(t) ∈ Rmn×mn with I ∈ Rn×n being the identity matrix and⊗ denoting
the Kronecker product [13,15,16].

To make the error function Ẽ(t) converge to zero, the time derivative of Ẽ(t), i.e., ˙̃E(t),
is chosen via the following form (i.e., the so-called ZNN design formula) [13,15–19]:

˙̃E(t) = −γF(Ẽ(t)), (4)

where design parameter γ > 0 ∈ R, being the reciprocal of a capacitance parameter [26], is
used to scale the convergence rate of the solution, and F(·) denotes the activation-function
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array. Note that, in general, the value of γ should be set as large as the hardware system
would permit, or selected appropriately for simulation purposes [26]. In addition, function
f (·), being a processing element ofF(·), can be any monotonically increasing odd activation
function, e.g., the linear, power-sigmoid, power-sum and hyperbolic-sine activation functions
[13,15–19].

Based on (3) and (4), the following dynamic equation of a ZNN model is established:

M(t)u̇(t) + 2D(t)v̇(t) = −Ṁ(t)u(t) + ẇ(t) − γF(M(t)u(t) − w(t) + D(t)v(t)), (5)

where u̇(t), Ṁ(t) and ẇ(t) are the time derivatives of u(t), M(t) and w(t), respectively. As
for (5), it is reformulated as

[
M(t) 2D(t)

] [
u̇(t)
v̇(t)

]
= [−Ṁ(t) 0

] [
u(t)
v(t)

]
+ ẇ(t) − γF(

[
M(t) D(t)

] [
u(t)
v(t)

]
− w(t)).(6)

Thus, by defining the augmented vector y(t) = [uT(t), vT(t)]T ∈ R2mn , (6) is further
rewritten as follows:

W (t)ẏ(t) = Q(t)y(t) + ẇ(t) − γF(P(t)y(t) − w(t)), (7)

where ẏ(t) is the time derivative of y(t). In addition, the augmented matrices W (t) ∈
Rmn×2mn , Q(t) ∈ Rmn×2mn and P(t) ∈ Rmn×2mn are defined respectively as below:

W (t) =
[
MT(t)
2DT(t)

]T
, Q(t) =

[−ṀT(t)
0

]T
and P(t) =

[
MT(t)
DT(t)

]T
.

To make (7) more computable, we can reformulate (7) as the following explicit form:

ẏ(t) = W †(t)Q(t)y(t) + W †(t)ẇ(t) − γW †(t)F(P(t)y(t) − w(t)), (8)

where W †(t) = WT(t)(W (t)WT(t))−1 ∈ R2mn×mn . Therefore, based on the error function
(2), the ZNN model (8) is obtained for TVLMI solving. For (8), the following theoretical
result is provided, of which the proof can be generalized from [13,17–19].

Theorem 1 Given a smoothly time-varying nonsingular coefficient matrix A(t) ∈ Rm×m

and a smoothly time-varying coefficient matrix B(t) ∈ Rm×n in (1), if a monotonically
increasing odd activation function array F(·) is used, then ZNN model (8) generates an
exact time-varying solution of the TVLMI (1).

3 Li-Function Activated ZNNModel

In this section, by exploiting Li activation function in [20], the Li-function activated ZNN
(LFAZNN) model is developed and investigated for TVLMI solving.

Specifically, Li activation function originated from [20] is presented as follows:

ψ(ẽi ) = 1

2
Lipτ (ẽi ) + 1

2
Lip1/τ (ẽi ),

where ẽi is the i th element of Ẽ(t) depicted in (3) and τ ∈ (0, 1). In addition, Lipτ (·) is
defined as

Lipτ (ẽi ) =

⎧⎪⎨
⎪⎩

|ẽi |τ , if ẽi > 0,

0, if ẽi = 0,

−|ẽi |τ , if ẽi < 0,

123



718 D. Guo, X. Lin

with symbol | · | denoting the absolute value of a scalar.
Thus, by exploiting Li activation function array Ψ (·) [with ψ(·) being its element], the

following LFAZNN model for TVLMI solving is established:

ẏ(t) = W †(t)Q(t)y(t) + W †(t)ẇ(t) − γW †(t)Ψ (P(t)y(t) − w(t)). (9)

As for such an LFARNNmodel (9), the theoretical result on the general convergence property
is presented as follows, which can be generalized from Theorem 1.

Corollary Given a smoothly time-varying nonsingular coefficient matrix A(t) ∈ Rm×m and a
smoothly time-varying coefficient matrix B(t) ∈ Rm×n in (1), the presented LFAZNN model
(9) generates an exact time-varying solution of the TVLMI (1).

As to the presented LFAZNNmodel (9), its the neural-network structure is given in Fig. 1.
In such a figure, the i th (with i = 1, 2, . . . , 2mn) neuron of (9) is written as follows:

yi =
∫ μ∑

k=1

ŵik

( ν∑
j=1

qkj y j + ẇk − γψ
( ν∑

j=1

pkj y j − wk

))
dt,

where ν = 2μ = 2mn. ŵik , qkj , and pkj denote time-varying weights that correspond to the
ikth element ofW †(t), the k j th element of Q(t), and k j th element of P(t). ẇk andwk denote
time-varying thresholds that correspond to the kth elements of ẇ(t) and w(t), respectively.

Fig. 1 Structure of the neurons in the presented LFAZNN model (9) for TVLMI solving
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As shown in Fig. 1, there can be there layers for the structure of the presented LFAZNNmodel
(9). The i th output of the first layer is

∑ν
j=1 qkj y j + ẇk − γψ(

∑ν
j=1 pkj y j − wk), whereas

the i th output of the second layer is
∑μ

k=1 ŵik(
∑ν

j=1 qkj y j + ẇk −γψ(
∑ν

j=1 pkj y j −wk)),
i.e., ẏi (the time-derivative of yi ). The third layer possesses the integral action, and thus the
i th output of such a layer is yi . Given an initial state, the state of {y1, y2, . . . , yν} in Fig. 1
evolves as time elapses, and finally reaches an equilibrium state. At this time, the output of
the third layer is the solution of the TVLMI (1), showing that the presented LFAZNN model
(9) can generate an time-varying solution of (1).

Besides, as for the presented LFAZNN model (9), it has the property of finite-time con-
vergence for TVLMI solving.

Theorem 2 Given a smoothly time-varying nonsingular coefficient matrix A(t) ∈ Rm×m and
a smoothly time-varying coefficient matrix B(t) ∈ Rm×n in (1), the error function E(t) of
the presented LFAZNN model (9) can converge to zero within finite time, which corresponds
to the finite-time convergence of X(t) [whose vectorization form is the first part of the state
vector y(t) of (9)] to a time-varying theoretical solution of TVLMI (1).

Proof As for the presented LFAZNN model (9), it can be reformulated as follows:

˙̃E(t) = −γΨ (Ẽ(t)),

where Ẽ(t) is depicted in (3). Be defining ẽi (t) as the i th element of Ẽ(t) (with i =
1, 2, . . . ,mn), we have the following decoupled differential equation:

˙̃ei (t) = −γψ(ẽi (t)),

where ˙̃ei (t) denotes the time derivative of ẽi (t).
For further discussion, Ẽ(0) = M(0)u(0) − w(0) + D(0)v(0) is denoted as the initial

value of Ẽ(t) in (3). In addition, ẽ+(t) is denoted as the element in Ẽ(t)with the largest initial
value ẽ+(0) = max{Ẽ(0)}, and ẽ−(t) is denoted as the element in Ẽ(t) with the smallest
initial value ẽ−(0) = min{Ẽ(0)}.

Based on the comparison lemma [20], since ẽ+(0) = max{Ẽ(0)} ≥ ẽi (0) with i =
1, 2, · · · ,mn, then we have ẽ+(t) ≥ ẽi (t) with t ≥ 0. Similarly, we have ẽ−(t) ≤ ẽi (t) with
t ≥ 0. Thus, for all possible i , the following result is obtained, as time t goes on:

ẽ−(t) ≤ ẽi (t) ≤ ẽ+(t),

which means that ẽi (t) converges to zero when both ẽ+(t) and ẽ−(t) reach zero. That is to
say, for the presented LFAZNN model (9), its convergence time tc is bounded by the larger
one between the dynamics of ẽ+(t) and that of ẽ−(t). In mathematics, tc ≤ max{t+c , t−c },
where t+c and t−c denote the convergence time corresponding to ẽ+(t) and ẽ−(t).

Evidently, t+c and t−c should be calculated first so as to obtain tc. To calculate t+c , we have

˙̃e+(t) = −γψ(ẽ+(t)) with ẽ+(0) = max{Ẽ(0)}. (10)

Defining a Lyapunov function candidate L(t) = |ẽ+(t)|2, we have its time derivative as

L̇(t) = −2γ ẽ+(t)ψ(ẽ+(t)) = −γ
(
|ẽ+(t)|τ+1 + |ẽ+(t)| 1τ +1

)

≤ −γ |ẽ+(t)|τ+1 = −γ L
τ+1
2 (t).
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By solving L̇(t) ≤ −γ L
τ+1
2 (t) with the initial condition L(0) = |ẽ+(0)|2, the following

result is obtained:

L
1−τ
2 (t)

{
≤ |ẽ+(0)|1−τ − γ t(1−τ)

2 , if t ≤ 2|ẽ+(0)|1−τ

γ (1−τ)
,

= 0, if t >
2|ẽ+(0)|1−τ

γ (1−τ)
.

This implies that L(t) converges to zero at most after a time period 2|ẽ+(0)|1−τ /γ (1 − τ).
Therefore, ẽ+(t) reaches zero for t > 2|ẽ+(0)|1−τ /γ (1 − τ), i.e., the convergence time
for ẽ+(t) is t+c < 2|ẽ+(0)|1−τ /γ (1 − τ). By following the similar analysis, we have t−c <

2|ẽ−(0)|1−τ /γ (1 − τ). Thus, the convergence time for Ẽ(t) is obtained as follows:

tc < max

{
2|ẽ−(0)|1−τ

γ (1 − τ)
,
2|ẽ+(0)|1−τ

γ (1 − τ)

}
.

Note that Ẽ(t) is the vectorization form of the error function E(t) depicted in (2). By sum-
marizing the above analysis, the error function E(t) of the presented LFAZNNmodel (9) can
converge to zero within finite time tc, which corresponds to the finite-time convergence of
X(t) [whose vectorization form is the first part of the state vector y(t) of (9)] to a time-varying
theoretical solution of TVLMI (1). The proof in thus completed. �	

4 Simulative Verifications

In the previous section, the LFAZNNmodel (9) and its finite-time convergence property have
been presented and analyzed to solve TVLMI (1). In this section, simulation results with two
illustrative examples are provided to substantiate the efficacy of the presented LFAZNN
model (9) for TVLMI solving.

Example 1 In the first example, let us consider TVLMI (1) with smoothly time-varying coef-
ficient matrices A(t) and B(t) being as follows:

A(t) =
[

sin(t) cos(t)
− cos(t) sin(t)

]
∈ R2×2 and B(t) =

[
cos(2t) sin(2t) + 1

− sin(2t) + 1 − cos(2t)

]
∈ R2×2.

The simulation results synthesized by the presented LFAZNN model (9) are illustrated in
Figs. 2, 3, 4 and 5.

Specifically, Fig. 2 shows the neural states of the presented LFAZNN model (9) with
τ = 0.2 and γ = 1. As seen from Fig. 2, the trajectories of X(t) [being the first four elements
of y(t) in (9)] and Λ(t) [being the rest elements of y(t)], starting from five randomly-
generated initial states, are time-varying. In addition, Fig. 3a shows the characteristics of
residual error ‖P(t)y(t) − w(t)‖2 = ‖A(t)X(t) − B(t) + Λ2(t)‖F (with ‖ · ‖2 denoting the
two norm of a vector and ‖ · ‖F denoting the Frobenius norm of a matrix), from which we
can observe that the residual errors of the presented LFAZNN model (9) are all convergent
to zero. This means that the solutions of X(t) and Λ(t) shown in Fig. 2 are the time-varying
solutions to A(t)X(t) − B(t) + Λ2(t) = 0. Given that −Λ2(t) ≤ 0, A(t)X(t) = B(t) −
Λ2(t) ≤ B(t), showing that the X(t) solution is an exact time-varying solution of TVLMI
(1). For better understanding, Fig. 3b illustrates the profiles of the testing error function
ε(t) = A(t)X(t) − B(t). As shown in Fig. 3b, all the elements of ε(t) are less than or equal
to zero, i.e., A(t)X(t)−B(t) ≤ 0. Evidently, these simulation results substantiate the efficacy
of the presented LFAZNN model (9) for TVLMI solving. Besides, it is worth pointing out
here that, as shown in Fig. 3a, instead of converging exponentially to zero, the residual errors
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(a) (b)

Fig. 2 Neural states of the presented LFAZNN model (9) with τ = 0.2 and γ = 1 for TVLMI (1) solving

(a) (b)

Fig. 3 Profiles of residual error ‖P(t)y(t) − w(t)‖2 and testing error function ε(t) = A(t)X(t) − B(t)
synthesized by the presented LFAZNN model (9) with τ = 0.2 and γ = 1 for TVLMI (1) solving

(a) (b)

Fig. 4 Simulation results synthesized by the presented LFAZNN model (9) with τ = 0.2 and γ = 10 for
TVLMI (1) solving
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(a) (b)

Fig. 5 Profiles of residual error ‖P(t)y(t) − w(t)‖2 synthesized by the ZNN model (8) using different types
of activation functions and the LFAZNN model (9) with different γ values for TVLMI (1) solving

of (9) decrease directly to zero within finite time. This result of finite-time convergence is
quite from the convergence results in the previous work [13,17,19].

By increasing the value of γ (i.e., from 1 to 10), the presented LFAZNN model (9)
is simulated and the related results are shown in Fig. 4. As observed from such a figure
[especially, Fig. 4b], the problem of TVLMI (1) is solved effectively via (9) in terms of
residual errors converging to zero rapidly. This statement that the X(t) trajectories in Fig. 4a
satisfy A(t)X(t) ≤ B(t); i.e., they are the solutions to TVLMI (1). These results substantiate
again the efficacy of the presented LFAZNN model (9) for TVLMI solving. Furthermore, a
comparison of Figs. 3a and 4b shows that the convergence performance of (9) is improved,
as the value of γ increases. This result indicates that superior computational performance of
the presented LFAZNNmodel (9) (including its finite-time convergence) can be achieved by
increasing γ .

Besides, for comparison and to provide an intuitive result on finite-time convergence, the
ZNN model (8) using different types of activation functions (i.e., the linear, hyperbolic-sine,
power-sigmoid, power-sum, and Li activation functions [13,15–20]) are simulated to solve
TVLMI (1). The corresponding results are shown in Fig. 5, where τ = 0.2 for the LFAZNN
model (9). Evidently, these results indicate that the TVLMI (1) is solved successfully via
(8); i.e., the residual errors are all convergent to zero. In addition, the following results are
observed and summarized from Fig. 5.

– The convergence performance of the ZNNmodel (8) [including the LFAZNNmodel (9)]
is improved effectively by increasing the value of γ . Thus, the important role of γ is
confirmed again.

– The ZNNmodel (8) using the hyperbolic-sine, power-sigmoid and power-sum activation
functions possesses better convergence than the one using the linear activation function.

– The LFAZNN model (9) possesses a finite-time convergence, i.e., the corresponding
residual error decreases directly to zero within finite time instead of converging to zero
when t → ∞.

Based on these results, the LFAZNN model (9) is advantageous over the ZNN model (8)
using the previously-investigated activation functions [13,15–19] because it has the property
of finite-time convergence on TVLMI solving. Notably, using Li activation function, the
ZNN model for solving other time-varying problems [21–24] still processes the finite-time
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convergence. In addition, based on this activation function, more activation functions can
be constructed to further improve the ZNN performance [27,28]. This can be viewed as the
generalizability of Li activation function when comparing to those in [13,15–19].

In summary, the above simulation results (i.e., Figs. 2, 3, 4 and 5) have substantiated the
efficacy of the presented LFAZNN model (9) for online solution of TVLMI (1), and more
importantly, its property of finite-time convergence (in terms of the residual error decreasing
directly to zero within finite time).

Example 2 In the second example, we investigate how the value of parameter τ affects the
convergence performance of the presented LFAZNNmodel (9). The time-varying coefficient
matrices A(t) and B(t) of TVLMI (1) in this example are designed as follows:

A(t) =
⎡
⎣
3 + sin(3t) cos(3t)/2 cos(3t)
cos(3t)/2 3 + sin(3t) cos(3t)/2
cos(3t) cos(3t)/2 3 + sin(3t)

⎤
⎦ ∈ R3×3,

B(t) =
⎡
⎣

sin(3t) cos(3t)
cos(4t) + 1 sin(4t) + 1

sin(5t) + cos(5t) sin(5t) cos(5t)

⎤
⎦ ∈ R3×2.

The corresponding simulation results are illustrated in Figs. 6 and 7.

Specifically, as synthesized by the presented LFAZNNmodel (9) with τ = 0.4 and γ = 5,
Fig. 6a shows the trajectories of X(t) [being the first six elements of y(t) in (9)] that are
time-varying. Figure 6b shows the characteristics of residual error ‖P(t)y(t) − w(t)‖2 =
‖A(t)X(t)− B(t)+Λ2(t)‖F, which indicates that the residual errors of (9) decrease directly
to zero within finite time. These results substantiate the efficacy (as well as the finite-time
convergence property) of the presented LFAZNN model (9) for TVLMI solving.

By changing the value of τ (i.e., τ = 0.6 and τ = 0.8), the presented LFAZNN model
(9) is simulated to solve the aforementioned TVLMI. The related results are shown in Fig. 7,
which indicate that (9) is effective on solving the TVLMI (1) in terms of the residual errors
being convergent to zero rapidly and within finite time. The finite-time convergence property
of (9) for TVLMI solving is thus substantiated once again. Figs. 6b and 7 are also compared,
and the finding shows that the convergence times of (9) in these figures are about 0.7277 s,

(a) (b)

Fig. 6 Simulation results synthesized by the presented LFAZNN model (9) with τ = 0.4 and γ = 5 for
TVLMI (1) solving
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(a) (b)

Fig. 7 Profiles of residual error ‖P(t)y(t) − w(t)‖2 synthesized by the presented LFAZNN model (9) with
γ = 5 and different values of τ for TVLMI (1) solving

0.8778 s, and 1.5071 s, respectively. This scenario suggests that decreasing the value of τ

can enhance the finite-time convergence performance of the presented LFAZNN model (9).
Therefore, τ in (9) should be set appropriately small [20] to ensure the residual error of (9)
converging to zero in a short period of time.

Remark It follows from Figs. 3, 4, 5, 6 and 7 that the convergence time of the presented
LFAZNNmodel (9) can be expedited by increasing the value of γ , and can be further shorten
by decreasing the value of τ . Thus, to achieve superior convergence for (9), parameter γ

should be set appropriately large, while parameter τ should be set appropriately small.

5 Conclusions

In this paper, by exploiting Li activation function, the LFAZNNmodel (9) has been presented
and investigated for online solution of TVLMI (1). Then, theoretical results have been pro-
vided to show the excellent computational performance of the presented LFAZNN model
(9). That is, such an LFAZNN model has the property of finite-time convergence on solving
TVLMI. Comparative simulation results with two illustrative examples have been illustrated
to further substantiate the efficacy of the presented LFAZNN model (9) for TVLMI solv-
ing, as well as its finite-time convergence property (in terms of the residual error decreasing
directly to zero within finite time).

Acknowledgements The authors would like to thank the editors and anonymous reviewers for their valu-
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presentation and quality of this paper.

Appendix: Procedure of ZNN Design

In this appendix, the general procedure of the ZNN design [13,15–19] for time-varying
problems solving is presented.
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Specifically, as to a time-varying problem F(t) = 0 ∈ Rm×n to be solved, the following
matrix/vector-valued error function E(t) ∈ Rm×n is firstly defined:

E(t) := F(t).

Next, the timederivative Ė(t)of E(t) is selected such that E(t) can globally and exponentially
converge to zero.More specifically, Ė(t) can be selected via the ZNN design formula [13,15–
19] as follows:

Ė(t) = −γF(E(t)), (11)

where γ > 0 ∈ R denotes the parameter that is used to scale the convergence rate of the
solution, and F(·) : Rm×n → Rm×n denotes the monotonically-increasing odd activation-
function array. Finally, by expanding the ZNN design formula (11), the differential equation
of a ZNN model is thus established for solving a specifical time-varying problem.
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