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Abstract
In this paper, a novel adaptive sampled-data observer design is studied for a class of nonlinear
systems with unknown Prandtl–Ishlinskii hysteresis and unknown unmatched disturbances
based on radial basis function neural networks (RBFNNs). To begin with, we investigate a
sampled-data nonlinear system and present sufficient conditions such that the sampled-data
nonlinear system is ultimately uniformly bounded (UUB). Then, an adaptive sampled-data
observer is designed to estimate the unknown states of the nonlinear system. The unknown
hysteresis and the unknown disturbances are approximated by RBFNNs. We also give the
learning laws of the weights of RBFNNs, and prove that the estimation errors of the states and
the weights are UUB, based on the obtained sufficient conditions and a special constructing
Lyapunov–Krasovskii function. Finally, the effectiveness of the proposed design method is
verified by numerical simulations.

Keywords PI hysteresis · Adaptive sampled-data observer · RBFNNs · Nonlinear systems ·
UUB

1 Introduction

Due to hysteresis is an important nonlinear phenomenon which exists widely in practical
systems, nonlinear systems with hysteresis have been one of the rigorous challenging and
worthy research for control [1]. The properties, such as, inaccuracies, oscillations and insta-
bility affected by the non-differentiability of hysteresis may gradually deteriorate the system
performance [2,3]. Recently, numerous adaptive control schemes have been developed to con-
trol uncertain nonlinear systems with unknown backlash-like hysteresis. In [4,5], an adaptive
state feedback control and an adaptive fuzzy output feedback control were designed for a
class of uncertain nonlinear systems preceded by unknown backlash-like hysteresis, respec-
tively. Note that the controllers designed in [4–6] are based on the backlash-like hysteresis.
There are other hysteresis patterns needed to be analyzed. The authors in [7] developed an
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adaptive neural output feedback control scheme for nonlinear systemswith unknownPrandtl–
Ishlinskii (PI) hysteresis. Additionally, there exist some methods of control and tracking for
this hysteresis system, such as adaptive robust output feedback control and robust adaptive
backstepping control, etc. [8–11].

In some cases, the states of a control system are usually unmeasurable, whereas the
system outputs are measurable at sampling instants. In particular, for a networked control
system (NCS), its outputs are usually acquired by data acquisitions at sampling instants.
Therefore, the design of sampled-data observers is more significant and challenging than
that of traditional observers. For a continuous linear system, observer can be designed on
the basis of its accurate discretization model. However, for a continuous nonlinear sys-
tem, it is usually difficult to obtain its accurate discretization model. Therefore, the design
method cannot be extended to continuous nonlinear systems. Recently, researchers have paid
great enthusiasm on sampled-data observer design for nonlinear systems, and developed
three categories of design method, such as design based on approximate discretization mod-
els [12,13], continuous design and corresponding discretization [14,15], and continuous and
discrete design [16–21]. Inspired by Chen andGe [7], we try to extend sampled-data observer
design for nonlinear systems with unknown hysteresis by the third method. Because when
the sampling-data observer adopts this method, the sampling-data can be directly utilized to
update the observer without discretizing the nonlinear system.

In practical engineering applications, nonlinearities anduncertainties are usually contained
in an amount of systems. In addition, unmatched time-varying disturbances are unavoidable,
with which the whole system will be unstable [22–24]. To this end, RBFNNs and fuzzy logic
systems possessing superior approximation and adaptability were employed to compensate
the uncertainties and the unmatched time-varying disturbances [25–28].

Following the previous references, few results are combined with sampled-data observers,
although researches on control and application of hysteresis have been carried out in recent
years. In this paper, we consider sampled-data observer design for a class of nonlinear systems
with unknown hysteresis and unknown unmatched disturbance based on RBFNNs. The main
contributions of this paper are summarized as follows. (1) We investigate a sampled-data
nonlinear systemandpresent sufficient conditions such that the considered system isUUB. (2)
Continuous observers are designed for a class of nonlinear systems with unknown hysteresis
andunknowndisturbances,which are approximatedbyRBFNNs.The sampledmeasurements
are used to update the observer whenever they are available. (3) By constructing a Lyapunov–
Krasovskii function, sufficient conditions are derived to guarantee that the observation errors
are UUB. Compared with [7], the ways of process of the hysteresis and the disturbances are
different, the restriction on the constant control gain parameter is relaxed, and the problem
of parameter selection is solved.

The rest of this paper is organized as follows. In Sect. 2, the problem statement, some
assumptions, and the control objective are described. Section 3 describes the design procedure
of the adaptive sampled-data observer by using RBFNNs. In Sect. 4, an example is used to
illustrate the validity of the proposed design methods. Some conclusions are given in Sect. 5.

2 Problem Formulations and Preliminaries

In this paper, our purpose is to design an adaptive sampled-data observer for the following
system
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t) + f1(x̄1(t)) + d1(x̄1(t), t),
...

ẋn−1(t) = xn(t) + fn−1(x̄n−1(t)) + dn−1(x̄n−1(t), t),

ẋn(t) = bω(u(t)) + fn(x̄n(t)) + dn(x̄n(t), t),

y(t) = x1(tk), t ∈ [tk, tk+1), k ≥ 0,

(1)

where x(t) = [x1(t), x2(t), . . . , xn(t)] ∈ Rn (x̄i (t) = [x1(t), x2(t), . . . , xi (t)]T ∈ Ri , (i =
1, 2, . . . , n)) is the state vector of the system, the input u(t) ∈ R, the system output y(t) ∈
R is sampled at time instant tk , where {tk} is a strictly increasing sequence and satisfies
limk→∞tk = ∞, T is the sampling period, and T=tk+1 − tk . fi (x̄i (t)) (i = 1, 2, . . . , n)

are known smooth nonlinear functions, di (x̄i (t), t) ∈ R (i = 1, 2, . . . , n) denote unknown
time-varying unmatched disturbances, b ∈ R (b �= 0) represents an unknown but bounded
constant control gain, ω(u(t)) ∈ R represents an unknown PI hysteresis, whose model is
given by [29]

ω(u(t)) = P[u](t) = p0u(t) −
∫ r1

0
p(r)Fr [u](t)dr ,

= p0u(t) + d0(u(t)),
(2)

where r is a threshold, p(r) is a given density function and satisfies p(r) > 0 and∫ ∞
0 rp(r)dr < ∞, p0 = ∫ r1

0 p(r)dr is a constant and depends on the density function,
and r1 denotes the upper limit of the integration. Let fr : R → R be defined by

fr (u(t), ω(u(t))) = max (u(t) − r ,min(u(t) + r , ω(u(t)))) .

The play operator Fr [u](t) is given by

Fr [u](0) = fr (u(0), 0) ,

Fr [u](t) = fr (u(t), Fr [u](ti )) ,

with ti < t ≤ ti+1 and 0 ≤ i ≤ N − 1, where 0 = t0 < t1 < · · · < tN = tE is a partition of
[0, tE ] such that the function u(t) is monotone on (ti , ti+1], and C[0, tE ] is a set of bounded
continuous functions on [0, tE ]. For any input u(t) ∈ C[0, tE ], the play operator is Lipschitz
continuous [29].

The system (1) can also be expressed as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t) + f1(x̄1(t)) + d1(x̄1(t), t),
...

ẋn−1(t) = xn(t) + fn−1(x̄n−1(t)) + dn−1(x̄n−1(t), t),

ẋn(t) = b0u(t) + bd0(u(t)) + δ(u(t)) + fn(x̄n(t))

+dn(x̄n(t), t),

y(t) = x1(tk), t ∈ [tk, tk+1), k ≥ 0,

(3)

where δ(u(t)) = (bp0 − b0)u(t) and b0 is a design parameter.
We make the following assumptions to facilitate analysis.

Assumption 1 ([6]) There exist constants li1 (i = 1, 2, . . . , n) such that the following
inequalities

∣
∣
∣ fi (x̄i (t)) − fi ( ˆ̄xi (t))

∣
∣
∣ ≤ li1(

∣
∣x1(t) − x̂1(t)

∣
∣ + · · · + ∣

∣xi (t) − x̂i (t)
∣
∣), (4)

hold.
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Assumption 2 For the nonlinear system (3), the input u(t) ∈ C[0, tE ], thus, there exists an
unknown positive constant σ0 such that |δ(u(t))| ≤ σ0.

Remark 1 Although the parameter b is unknown, we can select the design parameter b0 to
approach bp0. In other words, the design parameter b0 should be selected appropriately to
achieve better state estimation performance.

The following lemmas are needed, which can be found in [7,30].

Lemma 2.1 ([30]) Let M ∈ Rn×n and γ denote a positive definite matrix and a positive
real number, respectively. The vector function ϕ(t) is defined on the interval [0, γ ] and is
integrable. Then, we have

[∫ γ

0
ϕ(s)ds

]T

M

[∫ γ

0
ϕ(s)ds

]

≤ γ

[∫ γ

0
ϕ(s)T Mϕ(s)ds

]

.

Lemma 2.2 ([7]) Let f (Z) be a continuous function on a compact set �, which can be
approached by a RBFNN, that is,

f̂ (Z) = Ŵ T S(Z) + ς,

where Z = [z1, z2, . . . , zm]T ∈ � ⊂ Rm and Ŵ ⊂ Rq are the input vector and the weight
of the RBFNN, respectively, S(Z) = [S1(Z), S2(Z), . . . , Sq(Z)]T ∈ Rq is the basis function
vector, and ς > 0 is the approximation error. The optimal weight W ∗ of RBFNN is given by

W ∗ = arg min
Ŵ∈�

[

sup
Z∈Rq

∣
∣
∣ f̂ (Z |Ŵ ) − f (Z)

∣
∣
∣

]

.

By using the optimal weight, we have

f (Z) = W ∗T S(Z) + ς∗,
∣
∣ς∗∣∣ ≤ ς̄ ,

where ς∗ is the optimal approximation error, and ς̄ > 0 is the upper bound of the approxi-
mation error.

Lemma 2.3 ([31]) There exist real numbers c1, c2 and real-valued function 	(x, y) > 0
such that the following inequality holds:

|x |c1 |y|c2 ≤ c1
c1 + c2

	(x, y) |x |c1+c2 + c2
c1 + c2

	
− c1

c2 (x, y) |y|c1+c2 .

For a sampled-data nonlinear system, we give the definition of UUB and sufficient con-
ditions of UUB.

Definition 1 For the following sampled-data nonlinear system
{
ẋ(t) = g (x(t), x(tk)) ,

x(tk+1) = limt→t−k+1
x(tk), t ∈ [tk, tk+1), k ≥ 0,

(5)

where x(t) ∈ Rn is the state of the system, and g(·) is a continuous function with g(0) = 0.
Denote the solution to (5) with respect to the initial conditions x0 as x(t). If there exists a
constant b1 > 0 and a constant T ′(x0, b1) such that

|x(t)| < b1,∀t > t0 + T ′(x0, b1),

then, the system (5) is UUB.
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Lemma 2.4 For the nonlinear sampled-data system (5), if there exists a Lyapunov function
V (x(t)) defined on the interval [t0,∞) such that

dV (x(t))

dt
≤ −α1V (x(t)) + β1V (x(tk)) + C, t ∈ [tk, tk+1), (6)

and

α1 > β1,

hold, where α1, β1 and C are three positive real numbers, then it is UUB. Moreover, we have
limk→∞V (x(t)) ≤ 2−α2

1−α2

C
α1
.

Proof Multiplying eα1t on both sides of the inequality (6), we have

d(eα1t V (x(t)))

dt
≤ eα1tβ1V (x(tk)) + Ceα1t , t ∈ [tk, tk+1).

Then,

V (x(t)) ≤[(1 − β1

α1
)e−α1(t−tk ) + β1

α1
]V (x(tk)) + C

α1
, t ∈ [tk, tk+1). (7)

Let t = tk+1, we can obtain

V (x(tk+1)) ≤ α2V (x(tk)) + C

α1
(8)

where α2 = (1 − β1
α1

)e−α1T + β1
α1
. Since α1 > β1, we have α2 < 1. From (8), it follows that

V (x(tk)) ≤ α2
kV (x(t0)) + 1 − α2

k

1 − α2

C

α1
. (9)

Substituting (9) into (7) results in

V (x(t)) ≤ α2
kV (x(t0)) + 2 − α2 − α2

k

1 − α2

C

α1
, t ∈ [tk, tk+1).

Thus, limt→∞V (x(t)) ≤ 2−α2
1−α2

C
α1
, and the sampled-data nonlinear system (5) is UUB. �

3 Adaptive Sampled-Data Observer Design

Since the play operator Fr [u](t) is continuous and the density function is integrable, it
is concluded that the PI model is continuous. In order to design the adaptive sampled-data
observer,weuseRBFNNs to approximate the unknown time-varying unmatcheddisturbances
νi di (x̄i (t), t) (i = 1, 2, . . . , n) and unknown function ν0bd0(u(t)).

According to Lemma 2.2, we have

W ∗T S (u(t)) + ς∗
0 = ν0bd0 (u(t)) , (10)

θ
∗T
i ϕi (x̄i (t)) + ςi

∗ = νi di (x̄i (t), t), (11)

where νi > 0 (i = 0, 1, . . . , n) are some design parameters.
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Then, substituting (10) and (11) into the system (3), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t) + f1(x̄1(t)) + 1
ν1

θ
∗T
1 ϕ1(x̄1(t)) + 1

ν1
ς1

∗,
...

ẋn−1(t) = xn(t) + fn−1(x̄n−1(t)) + 1
νn−1

θ
∗T
n−1ϕn−1(x̄n−1(t))

+ 1
νn−1

ςn−1
∗,

ẋn(t) = b0u(t) + fn(x̄n(t)) + 1
νn

θ
∗T
n ϕn(x̄n(t)) + 1

νn
ςn

∗
+ 1

ν0
W ∗T S(u(t)) + 1

ν0
ς0

∗ + δ(u(t)),
y(t) = x1(tk), t ∈ [tk, tk+1), k ≥ 0,

(12)

where ς∗
i (i = 0, 1, . . . , n) are the optimal approximation errors, ϕi (x̄i (t)) (i = 1, 2, . . . , n)

and S(u(t)) are some basis function vectors, and which are selected such that the following
conditions

∣
∣
∣ϕi (x̄i (t)) − ϕi ( ˆ̄xi (t))

∣
∣
∣ ≤ li2(

∣
∣x1(t) − x̂1(t)

∣
∣ + · · · + ∣

∣xi (t) − x̂i (t)
∣
∣), (13)

hold for some positive real numbers li2 (i = 1, 2, . . . , n).
Let Di = 1

νi
ςi

∗, (i = 1, 2, . . . , n − 1) and Dn = δ(u(t)) + 1
νn

ςn
∗ + 1

ν0
ς0

∗. Then, the
system (12) can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t) + f1(x̄1(t)) + D1 + 1
ν1

θ
∗T
1 ϕ1(x̄1(t)),

...

ẋn−1(t) = xn(t) + fn−1(x̄n−1(t)) + Dn−1 + 1
νn−1

θ
∗T
n−1ϕn−1(x̄n−1(t)),

ẋn(t) = b0u(t) + fn(x̄n(t)) + Dn + 1
ν0
W ∗T S(u(t))

+ 1
νn

θ
∗T
n ϕn(x̄n(t)),

y(t) = x1(tk), t ∈ [tk, tk+1), k ≥ 0.

(14)

From Assumption 2 and definitions of Di and Dn , we can obtain that |Di | ≤ σi 1 with
σi 1 > 0, (i = 1, 2, . . . , n).

Now, we present the following dynamical system to estimate the unknown states of the
nonlinear sampled-data system (14).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x1(t) = x̂2(t) + f1( ˆ̄x1(t)) + �k1e1(tk) + 1
ν1

θ̂
T

1 ϕ1( ˆ̄x1(t)),
...

˙̂xn−1(t) = x̂n(t) + fn−1( ˆ̄xn−1(t)) + �n−1kn−1e1(tk)

+ 1
νn−1

θ̂
T

n−1ϕn−1( ˆ̄xn−1(t)),
˙̂xn(t) = b0u(t) + fn( ˆ̄xn(t)) + �nkne1(tk)

+ 1
ν0
Ŵ T S(u(t)) + 1

νn
θ̂
T

n ϕn( ˆ̄xn(t)),
x̂i (tk+1) = limt→t−k+1

x̂i (t), t ∈ [tk, tk+1), k ≥ 0,

(15)

where e1(tk) = x1(tk)− x̂1(tk), and x̂i (t), ˆ̄xi (t), Ŵ , θ̂i , (i = 1, 2, . . . , n) are the estimates of
xi (t), x̄i (t),W ∗, θ∗

i , respectively. � ≥ 1, ki > 0 (k = 1, 2, . . . , n) are the design parameters.
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From (14)–(15), the estimation error can be obtained.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė1(t) = e2(t) + f̃1 − �k1e1(tk) + D1 + 1
ν1

θ
∗T
1 ϕ̃1

+ 1
ν1

θ̃
T

1 ϕ1( ˆ̄x1(t)),
...

ėn−1(t) = en(t) + f̃n−1 − �n−1kn−1e1(tk) + Dn−1

+ 1
νn−1

θ
∗T
n−1ϕ̃n−1 + 1

νn−1
θ̃
T

n−1ϕn−1( ˆ̄xn−1(t)),

ėn(t) = f̃n − �nkne1(tk) + 1
ν0
W̃ T S(u(t)) + Dn

+ 1
νn

θ
∗T
n ϕ̃n + 1

νn
θ̃
T

n ϕn( ˆ̄xn(t)),
t ∈ [tk, tk+1), k ≥ 0,

(16)

where ei (t) = xi (t) − x̂i (t), f̃i = fi (x̄i (t)) − fi ( ˆ̄xi (t)), ϕ̃i = ϕi (x̄i (t)) − ϕi ( ˆ̄xi (t)), W̃ =
W ∗ − Ŵ , θ̃i = θi

∗ − θ̂i . Consider the following coordinate transformation

ϑi (t) = ei (t)

�i−1 , i = 1, 2, . . . , n.

After transformation, the system (16) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϑ̇1(t) = �ϑ2(t) − �k1ϑ1(t) + �k1 (ϑ1(t) − ϑ1(tk))

+ f̃1
�0 + D1

�0 + 1
ν1�0 θ

∗T
1 ϕ̃1 + 1

ν1�0 θ̃
T
1 ϕ1

( ˆ̄x1(t)
)

,

...

ϑ̇n−1(t) = �ϑn(t) − �kn−1ϑ1(t) + �kn−1(ϑ1(t)−
ϑ1(tk)) + f̃n−1

�n−2 + Dn−1
�n−2 + 1

νn−1�n−2 θ
∗T
n−1ϕ̃n−1

+ 1
νn−1�n−2 θ̃

T
n−1ϕn−1

( ˆ̄xn−1(t)
)

,

ϑ̇n(t) = −�knϑ1(t) + �kn (ϑ1(t) − ϑ1(tk))

+ f̃n
�n−1 + Dn

�n−1 + 1
ν0�n−1 W̃

T S(u(t))

+ 1
νn�n−1 θ

∗T
n ϕ̃n + 1

νn�n−1 θ̃
T
n ϕn

( ˆ̄xn(t)
)

,

t ∈ [tk, tk+1), k ≥ 0,

(17)

We can also obtain the following compact form of the system (17).

{
ϑ̇ = �Aϑ + F̃ + � K̃ + W̃λ + D̃ + �̃ + D̃λ,

t ∈ [tk, tk+1), k ≥ 0,
(18)

where ϑ = [ϑ1(t), ϑ2(t), . . . , ϑn(t)]T , k̂ = (k1, k2, . . . , kn)T , K̃=k̂(ϑ1(t) − ϑ1(tk)), F̃ =
[ f̃1
�0 ,

f̃2
�1 , . . . ,

f̃n
�n−1 ]T ,
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568 P. Li, Y. Shen

W̃λ =

⎡

⎢
⎢
⎢
⎣

0
...

0
1

ν0�n−1 W̃
T S(u(t))

⎤

⎥
⎥
⎥
⎦

n×1

, A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−k1 1 · · · 0
...

...
. . .

...

−kn−1 0 · · · 1
−kn 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, D̃ = [ D1
�0 , D2

�1 , . . . , Dn
�n−1 ]T , �̃ =

[ 1
ν1�0 θ

∗T
1 ϕ̃1,

1
ν2�1 θ

∗T
2 ϕ̃2, . . . ,

1
νn�n−1 × θ

∗T
n ϕ̃n]T , D̃λ = [ 1

ν1�0 θ̃
T

1 ϕ1( ˆ̄x1(t)), 1
ν2�1 θ̃

T

2 ϕ2( ˆ̄x2(t)),
. . . , 1

νn�n−1 θ̃
T

n × ϕn( ˆ̄xn(t))]T , and the gains ki > 0 (i = 1, 2, . . . , n) are chosen such that

the polynomial H(s) = sn + k1sn−1 + · · · + kn−1s + kn is Hurwitz. Thus, there exists a
symmetric positive definite matrix P (P=PT > 0) such that the following matrix inequality
holds,

AT P + PA ≤ −I . (19)

The adaptive laws of the weights Ŵ and θ̂i are designed as follows,

˙̂W = �0

(
−S(u(t))e1(tk)χ0 + �0Ŵ

)
, (20)

˙̂
θ i = �i

(
−ϕi ( ˆ̄xi (t))e1(tk)χi + �i θ̂i

)
, i = 1, 2, . . . , n, (21)

where �0 = �0
T > 0, �i = �i

T > 0 are some constant diagonal design matrices, and
�0 > 0, �i > 0, χ0 > 0, χi > 0 are some parameters to be designed.

Next, we give the definition of adaptive sampled-data observer of the nonlinear system (1).

Definition 2 For the nonlinear system (1), design the system (15), and the adaptive laws of
the weights (20) and (21), if there exist two positive real numbers δ0 and T1 > 0, such that

‖e(t)‖ < δ0, t > T1,

then, the system (15) with the adaptive laws (20) and (21) is called an adaptive sampled-data
observer of the system (1).

Theorem 1 Consider the system (1) with conditions (4) and (13). If ki > 0(i = 1, 2, . . . , n)

are selected such that the condition (19) holds, and the sampling period T , the parameters
φ, 	1, 	2, �0, �i satisfy the following conditions

T ≤ min

⎧
⎨

⎩

1
2 − p̄2φ

�
,

1

φ + L0 + 6L1
,

√
1
2 p̄3φ

(L0 + 6L1)k̄�2
,

√
1

4(L0 + 6L1)
,

√
√
√
√
√

�i
2 − 1

	1
− 1

	2
− 1

2λmax(�i
−1)φ

(L0 + 6L1)
η02

ν12

⎫
⎪⎬

⎪⎭
,

(22)

and

φ ≤ min

{
1

2 p̄2
,
�0 − 2

	1
− 2

	2

λmax(�0
−1)

,
�i − 2

	1
− 2

	2

λmax(�i
−1)

}

, (23)

and

�0 − 2

	1
− 2

	2
> 0, �i − 2

	1
− 2

	2
> 0, (24)

then, the state observation error system (18) is UUB, or, the system (15)–(20)–(21) is
an adaptive sampled-data observer of the system (1), where L0 = 24� p̄1nk̄, L1 =
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	2
2 υ0

2χ̄2 + 	2
2 η0

2χ̄2, υ0 = ‖S(u(t))‖, ηi =
∥
∥
∥ϕ( ˆ̄xi (t))

∥
∥
∥, η0 = max(ηi ), ν = min(ν0, νi )

χ̄ = max(χ0, χi ), p̄1 = λmax(PT P), p̄2 = λmax(P), p̄3 = λmin(P), k̄ = max(ki 2),

l̄ = max

(√
n∑

i=1
ili12,

√
n∑

i=1
ili22

)

.

Proof Consider the following Lyapunov–Krasovskii functional

V (t) = V1(t) + V2(t) + V3(t) + �2V4(t), (25)

where V1(t) = ϑT Pϑ , V2(t) = 1
2 W̃

T�0
−1W̃ , V3(t) = 1

2

n∑

i=1
θ̃
T

i �i
−1θ̃i , V4(t) =

∫ t
t−T

∫ t
τ

[
ϑ1(s)2 + ϑ2(s)2

]
dsdτ, t ∈ [tk0,∞), and k0 = min{k : T < tk}.

Then, along the trajectory of the system (18), the derivative of V1(t) is given as follows:

V̇1(t) =�ϑT (AT P + PA)ϑ + 2ϑT P(F̃ + � K̃ + D̃ + �̃ + D̃λ + W̃λ)

≤ − �ϑTϑ + 2ϑT P F̃ + 2�ϑT P K̃ + 2ϑT P D̃ + 2ϑT P�̃

+ 2ϑT P D̃λ + 2ϑT PW̃λ. (26)

Based on Assumption 1 and Lemma 2.3, the following inequalities hold.

2ϑT P F̃ ≤ 2
∥
∥
∥ϑT

∥
∥
∥ ‖P‖ l̄

√
√
√
√

n∑

i=1

∣
∣xi (t) − x̂i (t)

∣
∣2

�2(i−1)

≤ 2l̄
√
p̄1‖ϑ‖2, (27)

2ϑT P�̃ ≤ 2
∥
∥
∥ϑT

∥
∥
∥ ‖P‖

∥
∥
∥�̃

∥
∥
∥ ≤ 2l̄

√
p̄1

�0

ν
‖ϑ‖2, (28)

2ϑT P D̃λ ≤ 2
∥
∥
∥ϑT

∥
∥
∥ ‖P‖

∥
∥
∥D̃λ

∥
∥
∥

≤ 	1η0
2 p̄1

ν2
‖ϑ‖2 + 1

	1

n∑

i=1

∥
∥
∥θ̃i

∥
∥
∥
2
, (29)

2ϑT PW̃λ ≤ 2
∥
∥
∥ϑT

∥
∥
∥ ‖P‖

∥
∥
∥W̃λ

∥
∥
∥

≤ 	1υ0
2 p̄1

ν2
‖ϑ‖2 + 1

	1

∥
∥
∥W̃

∥
∥
∥
2
, (30)

2ϑT P D̃ ≤ 2
∥
∥
∥ϑT

∥
∥
∥ ‖P‖

∥
∥
∥D̃

∥
∥
∥ ≤ 4 p̄1‖ϑ‖2 + 1

4

n∑

i=1

σ 2
i1, (31)

2�ϑT P K̃ = 2�ϑT Pk̂(ϑ1(t) − ϑ1(tk))

≤ 4� p̄1nk̄(ϑ1(t) − ϑ1(tk))
2 + �

4
‖ϑ‖2, (32)

where �i =
∥
∥
∥θ∗

i
T
∥
∥
∥, �0 = max(�i ).
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According to Lemma 2.1, we can obtain

|ϑ1(t) − ϑ1(tk)|2 =
∣
∣
∣
∣

∫ t

tk
ϑ̇1(s)ds

∣
∣
∣
∣

2

≤ (t − tk)
∫ t

tk

∣
∣ϑ̇1(s)

∣
∣2ds

≤ (t − tk)
∫ t

tk

[

�ϑ2(s) − �k1ϑ1(tk) + f̃1
�0 + D1

�0 + 1

ν1�0 θ∗T
1 ϕ̃1

+ 1

ν1�0 θ̃T1 ϕ1

( ˆ̄x1(s)
)]2

ds

≤ 6�2(t − tk)
∫ t

tk

⎡

⎣ϑ2(s)
2 +

(1 + �0
2

ν12
)l12

�2 ϑ1(s)
2 + k̄ϑ1(tk)

2

+ 1

�2

n∑

i=1

σ 2
i1 + η0

2

ν12�2

n∑

i=1

∥
∥
∥θ̃i

∥
∥
∥
2
]

ds, t ∈ [tk, tk+1), k ≥ k0, (33)

where l1 = max (l11, l12), � ≥
√(

1 + �0
2

ν12

)
l12.

It follows from (32) and (33) that,

2�ϑT P K̃ ≤ �

4
‖ϑ‖2 + L0�

2k̄(t − tk)
2ϑ1(tk)

2

+ L0�
2(t − tk)

∫ t

tk

[
ϑ1(s)

2 + ϑ2(s)
2] ds

+ L0
η0

2

ν12
(t − tk)

2
n∑

i=1

∥
∥
∥θ̃i

∥
∥
∥
2 + L0(t − tk)

2
n∑

i=1

σi1
2,

t ∈ [tk, tk+1), k ≥ k0. (34)

From (26)–(31), and (34), we have

V̇1(t) ≤ −5

8
�‖ϑ‖2 + L0�

2k̄(t − tk)
2ϑ1(tk)

2

+ L0�
2(t − tk)

∫ t

tk

[
ϑ1(s)

2 + ϑ2(s)
2] ds

+
(

L0
η0

2

ν12
(t − tk)

2 + 1

	1

) n∑

i=1

∥
∥
∥θ̃i

∥
∥
∥
2

+
(

L0(t − tk)
2 + 1

4

) n∑

i=1

σi1
2 + 1

	1

∥
∥
∥W̃

∥
∥
∥
2
,

t ∈ [tk, tk+1), k ≥ k0, (35)

where � ≥ 8(2l̄
√
p̄1(1 + �0

ν1
) + 4 p̄1 + 	1υ0

2 p̄1
ν2

+ 	1η0
2 p̄1

ν2
).

In order to deal with W̃ and θ̃i , the derivatives of V2(t) and V3(t) are given as follows.

V̇2(t) = W̃ T�0
−1 ˙̃W = −W̃ T�0

−1 ˙̂W , (36)

V̇3(t) =
n∑

i=1

θ̃
T

i �i
−1 ˙̃

θ i = −
n∑

i=1

θ̃
T

i �i
−1 ˙̂

θ i . (37)
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Substituting (20)–(21) into (36)–(37) results in

V̇2(t) + V̇3(t) = −W̃ T
(
−S(u(t))ϑ1(tk)χ0 + �0Ŵ

)

−
n∑

i=1

θ̃
T

i

(
−ϕ( ˆ̄xi (t))ϑ1(tk)χi + �i θ̂i

)

= −W̃ T (−S(u(t))ϑ1(t)χ0 + S(u(t))(ϑ1(t) − ϑ1(tk))χ0

+�0Ŵ
)

−
n∑

i=1

θ̃
T

i

(
−ϕ( ˆ̄xi (t))ϑ1(t)χi + ϕ( ˆ̄xi (t))(ϑ1(t)−

ϑ1(tk))χi + �i θ̂i

)
, (38)

where e1(tk) = ϑ1(tk). Then, according to W̃ = W ∗ − Ŵ , θ̃i = θi
∗ − θ̂i and Lemma 2.3,

we have

2W̃ T Ŵ + 2θ̃
T

i θ̂i

=
∥
∥
∥W̃

∥
∥
∥
2 +

∥
∥
∥Ŵ

∥
∥
∥
2 − ∥

∥W ∗∥∥2 +
∥
∥
∥θ̃i

∥
∥
∥
2 +

∥
∥
∥θ̂i

∥
∥
∥
2 − ∥

∥θi
∗∥∥2

≥
∥
∥
∥W̃

∥
∥
∥
2 − ∥

∥W ∗∥∥2 +
∥
∥
∥θ̃i

∥
∥
∥
2 − ∥

∥θi
∗∥∥2, (39)

W̃ T S(u(t))ϑ1(t)χ0 +
n∑

i=1

θ̃
T

i ϕ( ˆ̄xi (t))ϑ1(t)χi

≤ L1‖ϑ‖2 + 1

2	2

∥
∥
∥W̃

∥
∥
∥
2 + 1

2	2

n∑

i=1

∥
∥
∥θ̃i

∥
∥
∥
2
, (40)

− W̃ T S(u(t)) (ϑ1(t) − ϑ1(tk)) χ0

≤ 	2

2
υ0

2χ̄2(ϑ1(t) − ϑ1(tk))
2 + 1

2	2

∥
∥
∥W̃

∥
∥
∥
2
, (41)

−
n∑

i=1

θ̃
T

i ϕ( ˆ̄xi (t))(ϑ1(t) − ϑ1(tk))χi

≤ 	2

2
η0

2χ̄2(ϑ1(t) − ϑ1(tk))
2 + 1

2	2

n∑

i=1

∥
∥
∥θ̃i

∥
∥
∥
2
, (42)

Considering (33), (41), and (42), we have

− W̃ T S(u(t)) (ϑ1(t) − ϑ1(tk))χ0 −
n∑

i=1

θ̃
T

i ϕ( ˆ̄xi (t))×

(ϑ1(t) − ϑ1(tk))χi

≤ 6L1�
2k̄(t − tk)

2ϑ1(tk)
2 + 6L1(t − tk)

2
n∑

i=1

σi1
2

+ 6L1�
2(t − tk)

∫ t

tk

[
ϑ1(s)

2 + ϑ2(s)
2] ds + 1

2	2

∥
∥
∥W̃

∥
∥
∥
2
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+
(

6L1
η0

2

ν12
(t − tk)

2 + 1

2	2

) n∑

i=1

∥
∥
∥θ̃i

∥
∥
∥
2
,

t ∈ [tk, tk+1), k ≥ k0. (43)

Based on (38)–(43), we have

V̇2(t) + V̇3(t)

≤ 1

8
�‖ϑ‖2 + 6L1�

2k̄(t − tk)
2ϑ1(tk)

2 + 6L1�
2(t − tk)

×
∫ t

tk

[
ϑ1(s)

2 + ϑ2(s)
2] ds −

n∑

i=1

(
�i

2
− 1

	2
− 6L1

η0
2

ν12

× (t − tk)
2)

∥
∥
∥θ̃i

∥
∥
∥
2 −

(
�0

2
− 1

	2

)∥
∥
∥W̃

∥
∥
∥
2 + 6L1(t − tk)

2×
n∑

i=1

σi1
2 + �0

2

∥
∥W ∗∥∥2 +

n∑

i=1

�i

2

∥
∥θi

∗∥∥2,

t ∈ [tk, tk+1), k ≥ k0, (44)

where � ≥ 8L1.
Note that when t ∈ [tk, tk+1), we have t − T < tk . Thus, from (35) and (44), it follows

that

V̇1(t) + V̇2(t) + V̇3(t)

≤ −1

2
�‖ϑ‖2 + (L0 + 6L1) k̄�

2T 2ϑ1(tk)
2

+ (L0 + 6L1)�
2T

∫ t

t−T
[ϑ1(s)

2 + ϑ2(s)
2]ds

−
n∑

i=1

(
�i

2
− 1

	1
− 1

	2
− (L0 + 6L1)

η0
2

ν12
T 2

)∥
∥
∥θ̃i

∥
∥
∥
2

−
(

� j

2
− 1

	1
− 1

	2

)∥
∥
∥W̃

∥
∥
∥
2 +

(

(L0 + 6L1)T
2 + 1

4

) n∑

i=1

σi1
2

+ �0

2

∥
∥W ∗∥∥2 +

n∑

i=1

�i

2

∥
∥θi

∗∥∥2, t ∈ [tk, tk+1), k ≥ k0. (45)

Further, the derivative of V4(t) is given by

V̇4(t) = T (ϑ1(t)
2 + ϑ2(t)

2) −
∫ t

t−T
(ϑ1(s)

2 + ϑ2(s)
2)ds,

t ∈ [tk, tk+1), k ≥ k0. (46)

Next, for n ≥ 2, we have

V̇4(t) ≤ T ‖ϑ‖2 −
∫ t

t−T

[
ϑ1(s)

2 + ϑ2(s)
2] ds,

t ∈ [tk, tk+1), k ≥ k0.

(47)
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Substituting (45) and (47) into (25), we have

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + �2V̇4(t)

≤ −(
1

2
− T�)�ϑT (t)ϑ(t) + (L0 + 6L1) k̄�

2T 2ϑ1(tk)
2

+ (
(L0 + 6L1)�

2T − �2)
∫ t

t−T
[ϑ1(s)

2 + ϑ2(s)
2]ds

−
n∑

i=1

(
�i

2
− 1

	1
− 1

	2
− (L0 + 6L1)

η0
2

ν12
T 2

)∥
∥
∥θ̃i

∥
∥
∥
2

−
(

�0

2
− 1

	1
− 1

	2

)∥
∥
∥W̃

∥
∥
∥
2 +

(

(L0 + 6L1)T
2 + 1

4

) n∑

i=1

σi1
2

+ �0

2

∥
∥W ∗∥∥2 +

n∑

i=1

�i

2

∥
∥θi

∗∥∥2, t ∈ [tk, tk+1), k ≥ k0, (48)

Note that

V4(t) ≤ T
∫ t

t−T
(ϑ1(s)

2 + ϑ2(s)
2)ds, t ∈ [tk, tk+1), k ≥ k0. (49)

Then, from (48) and (49), we can obtain

V̇ (t) ≤ −1 − 2T�

2 p̄2
V1(t) −

2
(

�0
2 − 1

	1
− 1

	2

)

λmax(�0
−1)

V2(t)

−
2
(

�i
2 − 1

	1
− 1

	2
− (L0 + 6L1)

η0
2

ν12
T 2

)

λmax(�i
−1)

V3(t)

− (1 − (L0 + 6L1) T )

T
�2V4(t) + (L0 + 6L1) k̄�2T 2

p̄3
V1(tk)

+
(

(L0 + 6L1)T
2 + 1

4

) n∑

i=1

σi1
2 + �0

2

∥
∥W ∗∥∥2 +

n∑

i=1

�i

2

∥
∥θi

∗∥∥2,

t ∈ [tk, tk+1), k ≥ k0. (50)

Since the sampling period T , and the parameters φ, 	1, 	2, �0, �i satisfy the conditions
(22)–(24), then,

d

dt
V (t) ≤ −φV (t) + φ

2
V (tk) + C1, t ∈ [tk, tk+1), k ≥ k0, (51)

where C1 = 1
2

n∑

i=1
σi1

2 + �0
2 ‖W ∗‖2 +

n∑

i=1

�i
2 ‖θi ∗‖2. In order to ensure the error system is

UUB, the corresponding high-gain design parameter � should be chosen such that

� ≥ max

⎧
⎨

⎩
1,

√(

1 + �0
2

ν12

)

l12, 8L1,

8

(

2l̄
√
p̄1(1 + �0

ν1
) + 4 p̄1 + 	1υ0

2 p̄1
ν2

+ 	1η0
2 p̄1

ν2

)}

.
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Since φ1 = (1− 1
2 )e

−φT + 1
2 < 1. From the differential inequality (51) and Lemma 2.4,

we have

V (t) ≤ φ1
kV (t0) + 2 − φ1 − φ1

k

1 − φ1

C1

φ
.

Thus, we obtain that the system (18) is UUB, i.e., limt→∞V (t) ≤ (2−φ1)C1
(1−φ1)φ

. On the one

hand, lim
t→∞ V1(t) ≤ lim

t→∞ V (t) ≤ (2−φ1)C1
(1−φ1)φ

, on the other hand, V1(t) ≥ p̄3ϑTϑ ≥ p̄3eT e
�2(n−1) .

Thus, we have

lim
t→∞ eT e ≤ (2 − φ1)C1�

2(n−1)

(1 − φ1)φ p̄3
,

This completes the proof. �
Remark 2 The design method can be extended to nonlinear systems with other hysteresis
inputs and may not necessarily limited to the system described by (1). On the one hand, C1

in (3) is determined by the parameters σi1, �0, �i . Note that the value of the parameters σi1,
�0, �i can be adjusted. Thus, a small value of C1 can be guaranteed. On the other hand, we
can properly select the design parameters �, ki , li1, li2, υ0, ηi , ν0, νi , �0, �i , χ0, χi , 	1 and
	2. Then, based on these parameters, the sampling period T and φ can be found such that
the error system converges to a relatively small neighborhood of the origin.

Remark 3 In [7], the estimation state x̂(t) is introduced into the RBFNNs to approximate
the hysteresis and the uncertainties. Therefore, the considered nonlinear system not only
has the unknown state x(t) but also the estimation state x̂(t). Whereas, in this paper, we
only use the system state x(t) to approximate the hysteresis and the disturbances. Thus, the
considered nonlinear system (12) only has x(t) but not x̂(t). Moreover, compared with [7],
we relaxed the restriction on the constant control gain parameter b by using the approximation
formulation (10), and solved the problem of parameter selection by introducing the high gain
parameter �.

4 Simulation Example

In this section, a simulation example will be demonstrated the effectiveness of the proposed
scheme.

Example 1 Consider the nonlinear systemwith unknown hysteresis and unknown unmatched
disturbance

⎧
⎪⎨

⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = bω(u(t)) + f (x̄(t)) + d(x̄(t), t),

y(t) = x1(tk), t ∈ [tk, tk+1), k ≥ 0,

where f (x̄(t)) = −3 sin(x1(t)) and d(x̄(t), t) = 0.1 sin(x1)e−0.1x2 . The PI hysteresis out
ω(u(t)) is determined by (2) and the density function is chosen as p(r) = 0.8e−0.067(r−1)2 .
We choose R=100 as the upper limit of integration.
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Fig. 1 Trajectory of
∥
∥
∥Ŵ

∥
∥
∥

Fig. 2 Trajectory of
∥
∥
∥θ̂

∥
∥
∥

Considering (15), the adaptive sampled-data observer is constructed as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̂x1(t) = x̂2(t) + �k1e1(tk),

˙̂x2(t) = b0u(t) − 3 sin(x̂1) + �2k2e1(tk) + 1
ν0
Ŵ T S(u(t))

+ 1
ν1

θ̂
T
ϕ( ˆ̄x(t)),

ŷ(t) = x̂1(tk), t ∈ [tk, tk+1), k ≥ 0,

and
⎧
⎨

⎩

S(u(t)) = [ 4
1+e−u(t) − 2.5, 5

1+e−u(t) − 3]T

ϕ( ˆ̄x(t)) = exp
[
− (x̂1−6+2l)2

2

]
× exp

[
− (x̂2−3+l)2

4

]
, l = 1, . . . , 5.

where e1(tk) = x1(tk) − x̂1(tk), and the update laws of the weights are given by (20)
and (21). In the following simulation, we choose � = 2, k1 = k2 = 1.5, u(t) =
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Fig. 3 Estimation of x1 of the nonlinear system

Fig. 4 Estimation of x2 of the nonlinear system

(12 cos(3t) − 4)/(1 + 6t) + cos(2t), b0 = 1, ν0 = 0.8, ν1 = 1.5, �1
0 = �2

0 = �l =
0.004, �10 = �20 = �l = 0.05, χ1

0 = 60, χ2
0 = 55, χl = (0.5, 40, 0.5, 60, 0.5) and

	1 = 	2 = 100. The initial conditions (x1(0), x2(0)) = (−1, 1), (x̂1(0), x̂2(0)) = (1, 3),
(Ŵ 1

0 (0), Ŵ 2
0 (0)) = (0.05, 0.05) and θ̂l(0) = (0, 0.01, 0,−0.05, 0). By simple com-

putation, we have P = [0.8482,−0.5093;−0.5093, 1.0689], λmax(P) = 1.4797 and
λmin(P) = 0.4374. The sampling period T is given as T = 0.1s. Figures 1 and 2 illus-

trate the trajectories of
∥
∥
∥Ŵ

∥
∥
∥ and

∥
∥
∥θ̂

∥
∥
∥, respectively. In Figs. 3 and 4, the state estimation

results of two unmeasurable states are presented, respectively. The trajectories of the state
estimate errors and Lyapunov function V (t) are depicted in Figs. 5 and 6, respectively.
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Fig. 5 Trajectories of the errors e1(t) and e2(t)

Fig. 6 Trajectory of the Lyapunov function V (t)

5 Conclusion

In this paper, a novel adaptive sampled-data observer design based on RBFNNswas proposed
for nonlinear systems with unknown PI hysteresis and unknown unmatched disturbances.
Firstly, RBFNNs were designed to approximate the unknown time-varying unmatched
disturbances and unknown hysteresis of the systems. Then, a sampled-data observer was con-
structed to estimate the unmeasured states, and the learning laws of the weights of RBFNNs
were also given. Based on a Lyapunov function and the corresponding sufficient conditions,
we demonstrated that the observer errors were UUB. Finally, the effectiveness of the design
scheme was verified by the illustrative simulation case. In the future, the developed adaptive
sampled-data observer design method will be extended to the MIMO nonlinear systems with
hysteresis and multiple uncertainties.
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