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Abstract
Auto-encoders are unsupervised deep learning models, which try to learn hidden representa-
tions to reconstruct the inputs. While the learned representations are suitable for applications
related to unsupervised reconstruction, they may not be optimal for classification. In this
paper, we propose a supervised auto-encoder (SupAE) with an addition classification layer
on the representation layer to jointly predict targets and reconstruct inputs, so it can learn dis-
criminative features specifically for classification tasks. We stack several SupAE and apply a
greedy layer-by-layer training approach to learn the stacked supervised auto-encoder (SSu-
pAE). Then an adaptiveweightedmajority voting algorithm is proposed to fuse the prediction
results of SupAE and the SSupAE, because each individual SupAE and the final SSupAE
can both get the posterior probability information of samples belong to each class, we intro-
duce Shannon entropy to measure the classification ability for different samples based on the
posterior probability information, and assign high weight to sample with low entropy, thus
more reasonable weights are assigned to different samples adaptively. Finally, we fuse the
different results of classification layer with the proposed adaptive weighted majority voting
algorithm to get the final recognition results. Experimental results on several classification
datasets show that our model can learn discriminative features and improve the classification
performance significantly.

Keywords Deep learning · Supervised learning · Auto-encoder · Adaptive weighted voting
fusion

1 Introduction

Deep learning algorithms [1, 2] have been proposed in recent years to move machine learn-
ing systems towards the discovery of multiple levels of representation, and have attracted
much attentions both from the academic and industrial communities. The main concept of
deep leaning is automatically extracting complex data representation by developing a hier-
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archical architecture, which composes many non-linear transformations, each transform the
representations at a low level into representations at a higher, slightly more abstract level.
Deep learning algorithms often yield better results in different machine learning applications,
including computer vision [3–8], speech recognition [9], natural language processing [10].

Auto-encoder [11–14] is one of the most common deep learning methods for unsuper-
vised representation learning, it consists of twomodules, an encoder which encode the inputs
to hidden representations and a decoder which attempts to reconstruct the inputs from the
hidden representations. The hidden representations can retain as much as information of the
inputs and capture the posterior distribution of the underlying explanatory factors for the
observed inputs. Generally, auto-encoder can be used for pre-training greedily and initial-
ization for a stacked auto-encoder [11], where the encoded intermediate representations of
each auto-encode are fed to next one layer-wise. In recent years, auto-encoder has attracted
great attentions due to its simple implementation, various modifications of auto-encoder have
been proposed. Sparse auto-encoders (SpAE) [12] encouraged the activations of neurons to
be inactive most of the time with the KL divergence constraint, in order to exploit the hid-
den structures of the data and learn sparse representations. Denoising auto-encoder (DAE)
[13] reconstructed the clean input with the corrupted data to capture the stable structures of
the input distribution and increases the robustness of the model. Contractive auto-encoder
(CAE) [14] learned robust representations to infinitesimal input variations, by adding a con-
tractive penalty with Frobenius norm Jacobian matrix of hidden activations. Higher version
of contractive auto-encoder [15] regularized the norm of the Hessian matrix of the hidden
representation to favor smooth manifold, Hessian matrix can properly exploit the intrinsic
local geometry of the data manifold [16]. Auto-encoder and its variants show excellent per-
formance on a variety of tasks, including natural data analysis [17], language processing [18],
image processing [19], and object detection [20].

We notice that the SpAE, DAE and CAE are trained in an unsupervised manner, they
are non-discriminative as they do not utilize class information. Supervised learning method
learns similar featureswithin class and dissimilar features otherwise, which can improve clas-
sification performance. Use of supervision for auto-encoders has been explored recently, Du
et al. [21] trained a supervised auto-encoder over the noisy concatenated data and label, so it
taken the label information into account during feature detection for auto-encoder straightfor-
wardly. Singh et al. [22] presented a class representative auto-encoderwhich aimed at learning
discriminative features in nature by incorporating inter-class and intra-class variations at the
time of feature learning process. Gao et al. [23] proposed a supervised auto-encoder which
imposed similarity preservation term of same class samples to capture the discriminative
structures of face images. Group sparse auto-encoder (GSAE) [24] introduced supervision
using group sparse regularization on representations of same class to learn class-specific
features. Large margin auto-encoders (LMAE) [25] added large margin penalty in hidden
feature space to encourage the hidden representations to be large marginally distributed.
Most of these algorithms incorporated class information at the time of feature extraction
with the aim of reducing the intra-class variations and increasing the inter-class variations.
Some other methods incorporated graph Laplacian regularization into auto-encoders from
the manifold learning perspective, which encouraged the learned representation to preserve
the local connectivity for data points on the manifold, such as Laplacian auto-encoder (LAE)
[26], graph regularized auto-encoder (GAE) [27], and discriminative auto-encoders [28].

For unsupervised learning, a good representation is often one that captures the posterior
distribution of the underlying explanatory factors for the observed input. For supervised
learning, a good representation is often one that is discriminative for supervised predictors. In
this paper, in order to extract discriminative representation with auto-encoder, we designed a
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Fig. 1 The generic flowchart of an auto-encoder

supervised auto-encoder (SupAE)with an additional classification layer on the representation
layer to jointly predict targets and reconstruct inputs, then we build a stacked supervised
auto-encoder (SSupAE) for classification tasks. In both pre-training and fine-tuning stage,
SupAE and SSupAE can output the classification results, we consider to fuse them from the
classifiers ensemble perspective, so we further proposed a new adaptive majority weighted
voting algorithm to fuse the results of the each individual SupAE and the SSupAE. Thus both
taking the label information into account during pre-training and the classifiers ensemble can
contribute the improvement of classification performance. The contributions of the proposed
work are as follows:

(1) We propose a SupAE, it consists of three parts: an encoder to encode the input, a
decoder to reconstruct the input, and a classifier to predict the target. In this way, the
combination of the reconstruction loss and the classification loss has the promise to
both balance extracting underlying structure in data, as well as learning discriminative
representation, thus the unsupervised learning can be converted to supervised learning
by designing a joint label-related cost function and reconstruction loss.

(2) With our SupAE as building block to initialize amulti-layer neural network, we can build
a SSupAE for classification tasks specifically, SSupAE incorporate the label information
in both pre-training and fine-tuning stage, so it can provide more accurate prediction
performance.

(3) We further propose an adaptiveweightedmajority voting algorithm to fuse the prediction
results of SupAEand theSSupAE.Because each individual SupAEand thefinal SSupAE
can both get the posterior probability information of samples belong to each class, we
introduce Shannon entropy based on the posterior probability information to measure
the classification ability for different samples, and assigns high weight to sample with
low entropy, thus more reasonable weights are assigned to different samples adaptively.
Finally, we fuse the different results of classification layer to improve the classification
performance with the proposed adaptive weighted majority voting algorithm.

The rest of the paper is organized as follows. Section 2 overviews related work about
auto-encoders. Section 3 present the proposed framework. Experimental results and analysis
are provided in Sect. 4. Section 5 includes conclusion.

2 Brief Review of Auto-encoder and Its Variants

Auto-encoder [11] is a typical unsupervised neural network, which aims at learning hidden
representation of data based on an encoder-decoder paradigm, as shown in Fig. 1.

The encodermap the input x to the latent representation space hwith a non-linear function
f , such as the sigmoid function, the hyperbolic tangent function, and ReLu function.

h � f (x) � f (Wx + b) (1)
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where W is the weight matrix used for encoding the input x, and b is bias vector.
The decoder attempts to transform the latent representation h to output z for the recon-

struction of input.

z � g(h) � g(W′h + b′) (2)

where g is activation function,W′ is weight matrix, b′ is bias vector. The tied weights strategy
W′ � WT has been usually employed to simplify the network architecture.

Auto-encoder attempts to reconstruct the input with output as much as possible, so the
objective function to train an auto-encoder can be defined as:

JAE (θ ) � 1

N

∑

x∈X
‖x − g( f (x))‖22 + λR(W) (3)

where θ � (W, b, b′) is the set of parameters, N is the samples number of training dataset
X, R(W) is the regularization term to prevent overfitting, such as L2-norm regularization,
λ is the regularization parameter. Minimizing reconstruction error is usually carried out by
gradient descent based algorithms [29].

To exploit the hidden structure of the data and learn sparse representation, the sparse
auto-encoder(SpAE) [12] imposes the sparsity constraint on the hidden units. Generally, a
neuron whose output is close to one is active, while a neuron whose output is close to zero is
inactive. Suppose ρ̂ j � 1

N

∑n
i�1 h(xi ) is the average activation value of the jth hidden unit,

a sparse auto-encoder limits the activations of neurons ρ̂ j � ρ (ρ is typically a small number
close to zero) so that they are inactive most of the time. The training objective of the SpAE
can be denoted as:

JSpAE (θ ) � 1

N

∑

x∈X
l(x, g( f (x))) + β

N∑

j�1

K L(ρ||ρ̂ j ) (4)

where K L(ρ||ρ̂ j ) � ρ log ρ

ρ̂ j
+ (1 − ρ) log 1−ρ

1−ρ̂ j
is KL divergence, β is the sparsity penalty

parameter.
In the case of denoising auto-encoder (DAE) [13], it reconstructs the clean input with the

corrupted data, the training criterion for DAE is expressed as:

JDAE (θ ) � 1

N

∑

x∈X
‖x − g( f (x̃))‖22 + λR(W) (5)

where x̃ is the stochastically corrupted input, while x is the clean input. DAE can capture
the stable structure of the input distribution and increase the robustness of the model.

Contractive auto-encoder (CAE) [14] aims at minimizing the sensitivity of the hidden
representation to slight changes in input for the purpose of leaning robust representations.
The objective function of CAE is given by:

JCAE (θ ) � 1

N

∑

x∈X
l(x, g( f (x)))) + ‖J (X)‖22 (6)

where J (X) denotes the Jacobian matrix of X. CAE penalizes the sensitivity of the features,
and the penalty is analytic. So CAE is notable different with DAE, although they share a
similar motivation of learning robust representations.
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Laplacian auto-encoder [26] encourages the learned representation to preserve the local
connectivity for data points on the manifold:

JLAE � 1

N

N∑

i�1

∥∥x̂i − xi
∥∥2
2+

λ

2

∑

i �� j

wi j
∥∥ f (xi ) − f (x j )

∥∥2
2 (7)

where the second term is the local graph embedding regularization, wi j is the similarity
between sample xi and x j , f (xi ) and f (x j ) are the corresponding representations. LAE
added the local graph embedding regularization to enforce mapping the neighboring samples
close together in the embedding space, so it can capture discriminative information and
preserve some geometric similarity of the data.

Auto-encoder and its variants can learn underlying explanatory representation of data.
Once the auto-encoder is trained, the decodermodule is abandoned, and the encodermodule is
stacked greedy layer-by-layer to construct the stacked auto-encoder, the final representations
provide useful informationwhich can be used as features for building classifiers. On the top of
last layer, a softmax classifier is added for supervised training. Stacking up auto-encoder can
learn more abstract and complicated representations of data by composing representations
acquired in a hierarchical architecture.

3 ProposedMethod

We intentionally want to learn discriminative feature with auto-encoder, so from the point
view of supervised learning, we investigate a SupAE to jointly predict targets and reconstruct
inputs, and then build a SSupAE specifically for the classification tasks. From the point view
of classifiers ensemble, we proposed an adaptive weighted voting algorithm to fuse the results
of each individual SupAE and the final SSupAE to improve the performance. So our proposed
stacked fusion supervised auto-encoder(SFSupAE) framework consists of two phases: (1)
Supervised pre-training and fine-tuning for SSupAE. (2) Adaptive weighted voting fusion
recognition. Next, we describe the formulation of the proposed SFSupAE framework.

3.1 Supervised Pre-training and Fine-Tuning for Stacked Supervised Auto-encoder

For a classification problem with N training samples and m classes, suppose that the dataset
is {X,Y} � {(xi , yi )|xi ∈ Rd , yi ∈ Rm}Ni�1, where xi is the ith training data, d is the
dimension of data, yi is the corresponding one-hot label vector of ith sample. When using
the stacked auto-encoder for prediction, we usually train several auto-encoders greedily in an
unsupervised manner and stack them to construct stacked auto-encoder. In the pre-training
stage, auto-encoders aim at capturing the underlying explanatory factors for the observed
input, but does the learned representations are discriminative for data separation? We think
the underlying representative structures of the data not always be optimal for classification.
So we investigate a SupAE to jointly predict targets and reconstruct inputs. Our SupAE
consist three part: an encoder to encode the input x, a decoder to reconstruct x, a classifier
to predict y, as shown in Fig. 2.

The decoder attempts to map the latent representation h to output z for reconstruction of
the input:

z � g(h) � g(W′h + b′) (8)
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Fig. 2 Supervised auto-encoder
with an addition classification
layer

encoder

decoder
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The classifier predicts the y with the latent representation h:

y
′ � s(h) � s(Wch + bc) (9)

The classifier is parameterized by weight matrixWc, and bias vector bc. s is the activation
function of classifier, we use softmax function, in this case, the classification assignments
are formulated as probabilities, continuous values between 0 and 1.

The aim of SupAE is learning not only representative but also discriminative features.
The objective can be denoted as:

JSupAE (θ ) � 1

N

∑

x∈X
(L(x, z) + λL( y′, y)) (10)

where L(x, z) is the reconstruction loss, such as mean squared error loss, L( y
′
, y) is the

supervised loss, such as cross-entropy loss, mean squared error loss. λ is the parameter
balance reconstruction loss and the supervised loss. The encoder and the decoder make
up the standard auto-encoder, but along with the flexible classifier, we can combine the
reconstruction loss and the classification loss to both balance extracting underlying structure,
as well as providing discriminative features. The additional supervised loss can better direct
representation learning towards representations those are effective for the classification tasks.
Thus the unsupervised learning can be converted to supervised learning by designing a joint
label-related cost function and reconstruction loss.

After the SupAE is pre-trained, the classifier and decoder are abandoned, we can take
the intermediate representations learned from the previous SupAE to the next one layer-wise
to extract complex discriminative representations at high levels of abstractions. At the end,
another softmax classification layer is put on top of the last representation layer, and thewhole
network is fine-tuned in a supervised manner. The proposed stacked supervised auto-encoder
framework is shown in Fig. 3.

The SSupAE encode the label information into hidden layer of SupAE, the learned param-
eterswill extract not only representative but also discriminative features. Then, the fine-tuning
process will further speed up the network convergence and the performancewill be improved.

3.2 AdaptiveWeightedMajority Voting Fusion

Training several classifiers at the same time to solve same problem, and then combining
their outputs to improve classification accuracy, is known as ensemble method [30, 31].
Ensemble method seeks to combine the predictions of multiple classifiers to obtain better
predictive performance, because different models can complement each other by appropriate
compensation of weaknesses and strengths of the individual models. When working with
classifiers ensemble, one important issue to be taken into consideration is related to the
selection of an efficient combinationmethod.Many combinationmethods have beenproposed
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Fig. 3 Stacked supervised
auto-encoder framework, X is the
input dataset, Y is label,
Hi , i � 1, 2, . . . k is the hidden
representation
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for classifier ensembles, such as bagging [30], boosting [30, 31], evidence theory [32, 33],
error correcting output coding(ECOC) [34, 35], and weighted majority vote [30, 31, 36–38].
Among them, weighted majority vote is a simple but effective ensemble learning algorithm,
which allows one to classification via voting on the outputs of several classifiers. The key
issues for weighted majority voting algorithm is to assign appropriate voting weights for
classifiers. Many methods have been proposed to assign specific voting weights, such as
classification error determines the importance of individual classifier [37], confusion matrix
[38] is used to measure different classification ability for different classes.

For our proposed SSupAE, we notice that each individual SupAE and the final SSupAE
can both get the posterior probabilities information of samples belong to each class. We
should take advantage of those results, so we consider to design an adaptive weighted voting
algorithm to fuse those recognition results.

For a sample x, if it’s posterior probability belongs to each class is even, then it’s recog-
nition result is uncertainty, so the sample x is more easy to get wrong when classification,
and the classification ability of classifier for sample x is poor; In contrast, if the posterior
probability is concentrated on a certain class, the classification result is credible, and the
classification ability of classifier for sample x is strong. So posterior probabilities imply the
classification certainty and classification ability for samples. Therefore we introduce infor-
mation entropy [39, 40] to measure classification certainty, and assigns high weight to sample
with low entropy, thus more reasonable weights are assigned to different samples adaptively.
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For m classes classification problem, suppose that k classifiers are used for ensemble. For
sample x, the posterior probability matrix of all classifiers denotes as:

P(x) �

⎧
⎪⎪⎨

⎪⎪⎩

p11(x) p12(x) · · · p1m(x)
p21(x) p22(x) · · · pkm(x)
· · · · · · · · ·

pk1(x) pk2(x) · · · pkm(x)

⎫
⎪⎪⎬

⎪⎪⎭
k×m

(11)

Each row is the posterior probabilities of a classifier for sample x. The entropy of each
classifier for sample x is:

Hi (x) � −
m∑

j�1

pi j log2 pi j , i � 1, 2, . . . , k (12)

The Hi (x) measures the classification certainty of sample x by ith classifier. If the entropy
is lower, the classification result is more certainty. Thus the classification capability of ith
classifier for sample x is stronger, the fusion weight of the ith classifier for the sample x
should be larger. So in this paper we calculate fusion weight by the formula (13):

wi � exp(−Hi (x))∑k
j�1 exp(−Hj (x))

(13)

For each classifier, after determining the fusion weight of the sample x, the ith row of the
probability matrix P(x) is multiplied by the correspondingweightwi to get a new probability
matrix P ′(x):

P ′(x) �

⎧
⎪⎪⎨

⎪⎪⎩

w1 p11(x) w1 p12(x) · · · w1 p1m(x)
w2 p21(x) w2 p22(x) · · · w2 p2m(x)

· · · · · · · · ·
wk pk1(x) wk pk2(x) · · · wk pkm(x)

⎫
⎪⎪⎬

⎪⎪⎭
k×m

(14)

Then the posterior probability of sample x belongs to each class is fused by weighted
majority vote strategy, namely calculate pvote by getting the column sum of the P ′(x):

pvote(x) �
[

k∑

i�1

wi pi1,
k∑

i�1

wi pi2, . . .
k∑

i�1

wi pim

]
(15)

The predicted class is the column of pvote with largest probability, namely:

Class(x) � argmax
j�1,2,...m

k∑

i�1

wi pi j (16)

With the proposed adaptiveweightedmajority voting algorithm,we can fuse the classification
results of the individual SupAE and the final SSupAE, and the SFSupAE framework is shown
in Fig. 4.

The learning procedure of SFSupAE is summarized in Algorithm 1.
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Fig. 4 Stacked fusion supervised auto-encoder framework, X is the input data, Y is label, Hi , i � 1, 2, . . . k
is the hidden representation
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Table 1 Specification of selected
datasets for classification
problems

Datasets #Feature #Train #Test #Categories

Spambase 57 3681 920 2

CarEvaluation 6 1100 628 4

Vowel 13 790 200 11

Vehicle 18 500 346 4

Shuttle 9 29,834 26,936 7

Letter 16 10,500 9500 26

Sat_image 36 4435 2000 7

Segmentation 19 1733 577 7

Page-blocks 10 4385 1100 5

Connect4 42 50,000 17,577 3

DNA 180 1400 1186 3

Musk2 166 3000 3598 2

Protein 357 14,895 6621 3

Isolete 617 6238 1559 26

YaleB 1024 1680 734 38

4 Experiments and Results

4.1 Experimental Setup

To analyze the performance of our proposed method, we perform extensive experiments on
15 UCI [41] benchmark datasets. Details of recognition datasets are listed in Table 1.

We compare our method with several state of-the-art methods, including stacked
auto-encoder (SAE), stacked sparse auto-encoder (SSpAE), stacked denoising auto-
encoder(SDAE), stacked contractive auto-encoder (SCAE), and stacked Laplacian auto-
encoder (SLAE). For SSpAE, the KL-divergence sparsity constant sparsity parameter ρ

is set as 0.05, and sparsity penalty coefficient β � 0.1. SDAE is added with Gaussian noise.
For SLAE, it needs to calculate the similarity between pairs of samples.

In [26], the authors used KNN to determinate the neighbors, and Gaussian kernels to
calculate the similarity weights, but when the data representation dimensions are high, it is
very time-consuming. So in this paper, we treat the same class samples in a mini-batch data
as the neighboring samples, and neighboring samples have same similarity weights:

wi j �
{
1/|N (xi )| i f x j ∈ N (xi )
0 otherwise

(17)

where denote x j ∈ N (xi ), if x j is neighbor of xi . For SLAE, the regularization parameter λ

is searched in range [0.0001, 0.001, 0.01, 0.1, 1]. For our method, parameter λ are also chosen
from [0.0001, 0.001, 0.01, 0.1, 1]. We optimize models with Adam [42] algorithm for 100
epochs. The learning rate is set 0.001 for pre-training stage, and 0.0005 for fine-tuning stage,
mini-batch size is 256, all internal layers are activated by ReLU nonlinearity function. All
thesemethods have the same network architecture for each dataset. All models are implement
with TensorFlow and trained on a single Nvidia GeForce GTX 1080Ti GPU.
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Table 2 Test accuracy of SSupAE
on Spambase with different
parameters

1st layer λ 2nd layer λ

0.0001 (%) 0.001 (%) 0.01 (%) 0.1 (%) 1 (%)

0.0001 91.73 91.84 91.35 91.84 91.57

0.001 92.17 92.35 92.17 91.73 91.59

0.01 92.25 91.52 92.08 91.98 91.83

0.1 91.32 91.63 91.79 91.19 91.08

1 91.27 91.52 91.49 91.08 91.30

Table 3 Test accuracy of SSupAE
on Sat_image with different
parameters

1st layer λ 2nd layer λ

0.0001 (%) 0.001 (%) 0.01 (%) 0.1 (%) 1 (%)

0.0001 88.95 88.65 89.21 89.15 88.8

0.001 88.45 89.23 89.64 89.41 89.0

0.01 89.50 89.45 89.60 89.15 89.35

0.1 89.51 89.23 88.91 89.25 89.35

1 89.15 89.05 88.95 89.15 88.65

Table 4 Test accuracy of SSupAE
on Page_blocks with different
parameters

1st layer λ 2nd layer λ

0.0001 (%) 0.001 (%) 0.01 (%) 0.1 (%) 1 (%)

0.0001 95.88 95.88 95.72 96.06 95.98

0.001 96.28 95.97 96.06 96.31 95.86

0.01 96.61 96.25 96.54 96.21 96.06

0.1 96.15 96.28 96.49 96.01 96.46

1 95.89 95.98 95.57 96.17 96.38

4.2 Classification Results on UCI Datasets

In this section, we evaluate the classification performance of our method on 15 UCI datasets.
We analyze the influence of regularization parameter λ on our proposed model SSupAE, and
carry out comparative analyses about the classification performance and computation time
with other relevant stacked auto-encoder methods.

4.2.1 The Influence of the Parameter

We use two hidden layers neural network to train our SSupAE. In pre-training stage, we
greedily search the parameter λ of first and second layer in range [0.0001, 0.001, 0.01, 0.1, 1]
according to the classification performance. The experimental results of SSupAE on datasets
Spambase, Sat_image, Page_blocks, and Musk2 are shown in Tables 2, 3, 4 and 5.

As we can see from the Tables 2, 3, 4 and 5, parameter λ have relatively small impacts
on SSupAE model for different datasets, so SSupAE is not very sensitive to parameter, but
better parameter can still achieve excellent performance than other parameters. It indicates
that we do not need too large classification loss penalty, it maybe because parameter λ is
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Table 5 Test accuracy of SSupAE
on Musk2 with different
parameters

1st layer λ 2nd layer λ

0.0001 (%) 0.001 (%) 0.01 (%) 0.1 (%) 1 (%)

0.0001 97.68 98.52 98.82 97.58 98.21

0.001 98.61 98.42 98.54 97.98 97.86

0.01 98.75 98.29 98.02 97.64 97.65

0.1 98.68 98.41 98.40 98.06 97.55

1 98.16 98.27 98.35 97.98 97.68

Table 6 Performance of the first SupAE, the second SupAE, SSupAE, and the fusion results of SFSupAE on
UCI datasets

Datasets Networks First SupAE (%) Second SupAE
(%)

SSupAE (%) SFSupAE (%)

Spambase 57-100-50-2 90.67 91.22 92.35 92.87

CarEvaluation 6-100-50-4 93.75 96.57 97.71 98.25

Vowel 13-100-50-11 80.17 87.88 95.94 94.16

Vehicle 18-100-50-4 76.78 79.58 81.67 82.24

Shuttle 9-100-50-7 95.78 96.89 99.08 99.56

Letter 16-100-50-26 78.07 77.58 90.32 87.21

Sat_image 36-100-50-7 85.15 85.65 89.64 87.12

Segmentation 19-100-50-7 87.35 91.85 94.13 93.24

Page-blocks 10-100-50-10 95.52 95.98 96.61 97.27

Connect4 42-100-50-2 66.83 67.86 70.12 70.73

DNA 180-200-100-3 91.65 90.39 94.01 93.55

Musk2 166-200-100-2 96.45 97.91 98.82 99.29

Protein 357-200-100-3 66.76 66.35 67.98 68.54

Isolete 617-400-200-26 93.65 94.72 95.89 96.57

YaleB 1024-400-200-
38

93.53 94.40 96.49 96.87

used to balance extracting underlying structure of data, as well as providing discriminative
features, when classification loss penalty is large (such as λ � 0.1 or 1), SSupAE may not
well capture the underlying explanatory representations of data.

4.2.2 Classification Experiments

With the best parameters, we conduct classification experiments on UCI datasets, and give
the test dataset recognition results of the first SupAE, the second SupAE, SSupAE, and the
fusion results of SFSupAE in Table 6.

The results indicate that with the additional classification layer, the first SupAE and sec-
ond SupAE can also achieve very excellent classification performance, this strengthens our
claim that combination the reconstruction loss and the classification loss can both extract
underlying structures, as well as provide discriminative features. Because all the hidden
layer representations are discriminative, after fine-tuning, the performances of SSupAE are
significantly improved.When fuse those three classifiers, the recognition results of SFSupAE
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are improved again on most of the datasets. On dataset Vowel, Letter, Sat_image, Segmenta-
tion, and DNA, the fusion results of SFSupAE are lower than that of SSupAE, this is mainly
caused by the poor performance of the first SupAE and second SupAE. Therefore, for our
method, it may encounter problem that some weak classifiers influence the fusion result,
especially for the first SupAE, the low level learned representation may achieve relatively
lower accuracy compared with the final SSupAE, in the fusion stage, the fusion result of
SFSupAE may lower than that SSupAE. To tackle this problem, we can just select the best
results of the SSupAE and the SFSupAE as final recognition results, this process manner is
simple but effective.

Our proposed method is very flexible, it has four advantages:

(1) Firstly, we can add the classifier for any auto-encoder to save the training time if the
whole network is deep, we do not need to add the classifier for each auto-encoder. If we
add classifier on ith auto-encoder, we train it with supervised loss and reconstruction
loss; Otherwise, we just train it with reconstruction loss.

(2) Secondly, the classifier can be treat as a basic component, and can be added on any
variants of auto-encoder to learn discriminate feature, such as SpAE, DAE, and CAE.

(3) Thirdly, the fusion step can also be flexible. We can use many other fusion algorithms. If
there exist weak classifiers, we can abandon them, but fusion results of other classifiers.

(4) Meanwhile, it can be used for processing data in a semi-supervised leaning manner. For
example, if dataset contains labeled samples and unlabeled samples, we can feed the
network with unlabeled samples and learn representation with reconstruction loss, then
we feed the networkwith labeled samples, and use the supervised loss and reconstruction
loss to adjust the network.

To conduct some more comprehensive comparisons of our method with SAE, SSpAE,
SDAE, SCAE and SLAE, we perform 10 rounds tests for each dataset, and report the average
test classification error and standard deviation of different algorithms on each dataset. Table 7
shows the test classification performances on those benchmark datasets, the bold values in
the text indicate the best results.

It can be seen that the basic SAE achieve the worst performance, while SSpAE, SCAE
and SDAE achieves slightly improved performance on UCI datasets than SAE. SSpAE incor-
porates the sparse regularization, which can alleviate over-fitting and learn sparse feature,
so it performs better than SAE. Usually, datasets are often corrupt with noises in practical
application, SCAE and SDAE share similar motivations of learning robust representations,
so they also perform better than SAE. SLAE can learn discriminative representation with
graph embedding, so it performs better than SAE, SSpAE, SDAE SCAE. From the Table 7,
we also noticed that our SFSupAE have slightly improvements compared with SLAE. Our
proposed method SFSupAE outperforms all the other algorithms, there are about more than
0.5–1% improvement on most of the datasets. On the one hand, for our proposed SupAE, it
combines the reconstruction loss and the classification loss to extract underlying structures of
data, as well as provide discriminative features in the pre-training process, incorporation of
supervision can facilitate learning of representative yet discriminative features, which result
in the improvement of classification performance. On the other hand, we adapt an adaptive
weighted voting algorithm to fuse the recognition results of all the classifiers, different lev-
els information can be complementary with each other and our model can get a boost of
classification performance, the classification results can also be improved.
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Table 8 Computational time comparison

Datasets Models First layer
pre-training
time (s)

Second layer
pre-training
time (s)

Fine-tuning
time (s)

Total
training time
(s)

Testing time
(s)

CarEvaluation SAE 1.802 2.442 1.894 6.139 <0.001

SLAE 2.663 4.213 1.986 8.862 <0.001

SFSupAE 2.223 2.854 1.868 6.945 <0.001

Sat_image SAE 4.437 4.826 5.169 14.432 0.002

SLAE 7.266 7.865 5.233 20.364 0.003

SFSupAE 5.192 5.791 5.382 16.365 0.003

Protein SAE 32.356 23.343 25.982 81.681 0.030

SLAE 52.353 41.285 26.853 120.491 0.028

SFSupAE 35.856 26.758 26.555 91.181 0.033

Isolete SAE 27.385 13.403 27.934 68.722 0.017

SLAE 38.893 20.285 28.427 87.605 0.018

SFSupAE 34.826 16.156 28.152 79.134 0.014

YaleB SAE 12.036 4.347 9.561 25.944 0.009

SLAE 15.121 6.992 9.494 31.067 0.012

SFSupAE 18.787 8.645 9.635 37.067 0.011

4.2.3 Computation Time Analysis

Compared with traditional auto-encoder, our SupAE adds an addition classification layer
on the representation layer, so our method may have higher computational complexity in
pre-training stage. In this section, we conduct experiments to analyze the computation time.
For comparison methods, we choose SAE and SLAE. Because SAE, SSpAE, SDAE and
SCAE nearly have the same computational time, so we just choose SAE for comparison. The
computation time on dataset CarEvaluation, Sat_image, Isolete, Protein and YaleB are shown
in Table 8, we show the pre-training time of the first layer, the second layer, and fine-tuning
training time, the sum of those three training time is the total training time, we also show
the testing time. For our SFSupAE, it need to perform fusion recognition, the fusion stage is
very efficient, we can just ignore the fusion time.

Aswe can see fromTable 8, the fine-tuning time and the testing time are almost same for all
methods, this is because that SAE, SLAE, SFSupAE have the same network architecture for
each dataset. Our method SFSupAE needs more pre-training time than SAE on all datasets,
but on dataset CarEvaluation, Sat_image, and Protein, the increment of pre-training time is
very little, this is because the categories of those three datasets is just 4, 7 and 3 respectively,
so the nodes of addition classification layer are very small, so just a little more time are
needed to pre-training for SFSupAE. While the categories of dataset Isolete and YaleB are
26 and 38, so compared SFSupAE with SAE, the increment of pre-training time is much.
Our SupAEmodel adds an addition classification layer, so the increment of pre-training time
for SFSupAE is mainly related to the category of dataset, the more categories there are, the
more pre-training time are needed. But for classification problem in practice, the category is
small generally, so our method is still computational efficiency when applied in practice.

On small size dataset CarEvaluation, Sat_image, SLAE need a little more pre-training
time than SAE and our method, on YaleB, the pre-training time of SLAE is more than that
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Table 9 Performance
comparisons on digits datasets

Methods Optigits (%) Usps (%) Mnist (%)

SAE 96.67±0.31 96.61±0.28 98.31±0.18

SSpAE 97.09±0.29 96.96±0.26 98.48±0.16

SDAE 96.96±0.37 97.12±0.23 98.58±0.13

SCAE 97.12±0.24 97.18±0.21 98.46±0.17

SLAE 97.31±0.31 97.41±0.26 98.72±0.18

SFSupAE 97.68±0.29 97.65±0.25 98.77±0.16

of SAE, but less than that of our method. On large size datasets Protein and Isolete, SLAE
needs much more pre-training time than SAE and our method. This is because that SLAE
needs to determine neighboring samples and calculate the similarity between pairs of samples
when construct the graph embedding in pre-training stage, which may be time-consuming
when the size of datasets is large. Generally, the datasets may have many samples in practice
especially in today’s era of big data, so SLAEmay encounter high computational complexity
in practice.

4.3 Application on Digits Recognition

In this section, we apply our method on three handwritten digit recognition datasets, they
are Optigits, Usps, and Mnist. Optigits consists of 5620 8×8 greyscale digit images. We
divided it into 3823 training samples and 1797 test samples. Each image is flattened to a
vector of size 8×8 � 64. Usps consists of 16×16 greyscale handwritten digit images, it is
collected form US postal service. There are 7291 training samples and 2007 test samples.
Each image is represented by a vector of size 16×16 � 256. Mnist is a famous handwritten
digit recognition dataset which consists of 55,000 training samples and 10,000 test samples.
Each sample is 28×28 greyscale images. We reshape each image to a vector of size 28×28
� 784.

We use a 64-100-50-10 network for Optigits, 256-200-100-10 network for Usps, 784-400-
200-100-10 network for Mnist to trained all the models. The experiments were repeated for
10 times, and the average results were obtained for comparisons. The results are shown in
Table 9.

The results show that our method can achieve higher classification accuracy than other
algorithms on these three digits datasets. The superior performance of our SFSupAE has
been proved once again.

As we stated before, incorporation of supervision can facilitate learning of representative
yet discriminative features. So next, we conduct experiments to demonstrate the discrim-
inability of the learned representations for our method. We adapt t-distributed stochastic
neighbor embedding method(t-SNE) [43] to produce meaningful representation visualiza-
tions on 2-D space. We pre-train the first auto-encoder network 256-200-256 on Usps dataset
and apply the t-SNE on the 200 dimension hidden representations and reduce them to 2-
dimension data. The visualizations of different approaches are as shown in Fig. 5.

In the figures, each sample is represented by a point with different color denoting dif-
ferent class. As we can see, there exist some digit data points of different classes mixed for
SAE, SpAE, DAE, and CAE, those methods only use the unsupervised loss to reconstruct
the input raw data, though the learned representations are representative, but not discriminate
and optimal for the data separation. It is suggested that points derived from our SupAE and
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Fig. 5 2-D representations learned by different methods on Usps. a AE; b SpAE; c DAE; d CAE; e LAE;
f SupAE

LAE are more distinctive than other methods, for LAE, the representation of digit 8 (marked
in orange) have small margins with that of other digits when compared with SupAE, so
our SupAE method provides more discriminate representation in the 2D embedding space
than the other methods. For our SupAE, incorporating supervision during feature learning
encodes class specific characteristics at the feature level, the discriminability of the learned
representations attribute to qualitative visualization results in the 2D space. Therefore, combi-
nation of the supervised loss and reconstruction loss can better direct feature learning towards
representations those are discriminate for the classification tasks.

5 Conclusion

In this paper, we investigate a SupAE to jointly predict targets and reconstruct inputs, our
SupAE consist of three parts: an encoder to encode the input, a decoder to reconstruct the
input, and a classifier to predict the target. The combination of the reconstruction loss and
the classification loss can promote to learn representative and discriminative features, which
are useful when building SSupAE for classification tasks. From the point view of classifiers
ensemble, we proposed an adaptive weighted voting algorithm based on entropy to fuse
the results of each individual SupAE and the final SSupAE, experimental results on several
classification datasets show that our method can learn discriminative representations, and
improve the classification performance.
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