
Neural Processing Letters (2020) 51:2481–2495
https://doi.org/10.1007/s11063-020-10204-z

Distributed Pinning Impulsive Control for Inner–Outer
Synchronization of Dynamical Networks on Time Scales

Xiaodong Lu1 · Haitao Li1

Published online: 25 February 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In this paper, inner–outer synchronization problem of dynamical networks on time scales
is studied. This kind of network synchronization means that two dynamical networks can
achieve inner/outer synchronization simultaneously. By designing suitable distributed pin-
ning impulsive controllers, the inner–outer synchronization target is realized. Based on the
Lyapunov function method and the mathematical induction approach, two sufficient criteria
are given for inner–outer synchronization of two networks with identical and non-identical
topologies. Due to the structure of time scales, the derived results can be applied to study
the inner–outer synchronization problems of continuous/discrete networks and networks on
hybrid time domains. A numerical simulation example is given to illustrate the effectiveness
of the derived results.

Keywords Inner–outer synchronization · Identical and non-identical topologies ·
Distributed pinning impulsive control · Time scale

1 Introduction

It is well known that many practical systems in some fields, such as science, nature and
engineering, can be described by models of complex networks [1–9]. As an interesting and
important collective behavior of complex dynamical networks, synchronization inside a net-
work, which is also called “inner synchronization”, has attracted considerable attention over
the past years [10–16]. Besides, another kind of synchronization, named “outer synchroniza-
tion” between two networks, was first proposed in [17]. In reality, the phenomenon of outer
synchronization between two networks does exist in our lives, such as prey-predator commu-
nities [17] and AIDS [18]. Since then, a great number of results about outer synchronization
between two networks have been obtained [19–22]. Unfortunately, outer synchronization
between two networks dose not ensure that each network can achieve inner synchronization
and vice versa. Moreover, the inner/outer synchronization problems of two networks are
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always studied separately. Then, a natural question is that can inner/outer synchronization
between two dynamical networks be achieved simultaneously? To overcome this problem,
this paper proposes a kind of network synchronization, called inner–outer synchronization.

Almost all of existing results were about continuous or discrete networks, and they were
usually studied separately. However, different nodes in some networks can communicate
with each other on an arbitrary time domain, so it is meaningful and necessary to study
both continuous and discrete networks under a unform framework. In 1988, the time-scale
theory was introduced by Stefan Hilger to unify the theory of difference equations and
differential equations. To date, complex dynamical networks on time scales have received
continued attention [23–30]. However, to the best of our knowledge, the existing results are
only about inner synchronization of networks on time scales, therefore, numerous network
synchronization problems on time scales remain to be further solved, such as achieving outer
network synchronization on time scales, achieving inner and outer synchronization between
two networks on time scales simultaneously, etc.

Recently, inner or outer network synchronization problems have been investigated with
different control schemes, such as adaptive distributed control [31,32], distributed impulsive
control [33–37], pinning control [38–40], pinning impulsive control [30,41], etc. In [41],
the authors proposed a new control strategy, named pinning impulsive control, to solve
stabilization problem of nonlinear time-varying time-delay dynamical networks. In [30],
a different pinning impulsive control strategy was proposed to solve the synchronization
problem of linear dynamical networks on time scales, in which the number of the nodes to be
controlled at impulsive instants can be various. By designing an adaptive pinning impulsive
controller, the outer synchronization problem between drive and response networks was
investigated in [19].

Motivated by the aforementioned discussions, by designing proper distributed pinning
impulsive controllers, this paper investigates the inner–outer synchronization problems of
two dynamical networks with identical and non-identical topologies, which have never been
studied before. The main contributions can be summarized as follows:

(i) Different from the results in [23–28,30], this paper first investigates inner–outer syn-
chronization problem of dynamical networks on time scales, which means inner
synchronization and outer synchronization can be achieved simultaneously. Moreover,
by the proposed control strategies, inner synchronization and outer synchronization can
be realized separately.

(ii) Compared with the pinning impulsive control strategy in [30], the designed controllers
here allow each distributed controller to use information from its neighboring nodes,
which are more feasible to implement in some practical applications. In addition, the
designed control schemes here require that only parts of nodes be chosen to be controlled
at each impulsive instant, hence they can further reduce the control cost.

(iii) The derived results are of generality, since they can be also applied to investigate the
inner–outer synchronization problems of continuous/discrete networks and networks
on hybrid time domains.

This paper is organized as follows: In Sect. 2, we recall some preliminary knowledge. In
Sect. 3, the inner–outer synchronization problem of two dynamical networks on time scales
is formulated. By designing suitable distributed pinning impulsive controllers, two inner–
outer synchronization criteria for two dynamical networks with identical and non-identical
topologies on time scales are given in Sect. 4. In Sect. 5, we give an illustrative simulation
example, which is followed by a brief conclusion in Sect. 6.
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Notations. In the sequel, the following notations will be used:R+,Z,N,N+ represent the set
of all non-negative real numbers, the set of all integer numbers, the set of all natural numbers
and the set of all positive integer numbers, respectively; Rn denotes the n−dimensional
Euclidean space with the Euclidean norm ‖ · ‖; �M denotes the number of elements of a
finite set M ; M denotes the complementary set of the set M ; 0 represents the null vector
with proper dimension; the Kronecker product of matrices X ∈ Rm×n and Y ∈ Rp×q is
denoted as X ⊗ Y ∈ Rmp×nq ; exp(z) represents the usual exponential function ez . A matrix
A satisfying A > 0 means that it is positive definite.

2 Preliminaries

A time scale T is an arbitrary nonempty closed subset of the set of real numbers R. When
t > inf T, the backward jump operator ρ : T → T is defined as ρ(t) = sup{s ∈ T : s < t};
when t < supT, the forward jump operator σ : T → T is defined as σ(t) = inf{s ∈ T :
s > t}. If ρ(t) < t , t is said to be left-scattered; if ρ(t) = t , t is said to be left-dense; if
σ(t) > t , t is said to be right-scattered; if σ(t) = t , t is said to be right-dense. The graininess
function μ : T → R+ is defined by μ(t) := σ(t) − t . Assume g : T → R, if for any
ε > 0, there exists a constant δ > 0 and a neighborhood UT(= U

⋂
T) of t , such that

| g(σ (t)) − g(s) − δ[σ(t) − s] |≤ ε|σ(t) − s|, s ∈ UT, then g is said to be Δ-differentiable
at t , and the derivative is defined as gΔ(t).

Definition 1 [42] A function g : T → R is called rd-continuous provided it is continuous
at right-dense points and its left-sided limits exist (finite) at left-dense points. The set of all
rd-continuous functions g : T → R is denoted as Crd(T,R).

Definition 2 [42] A function q : T → R is called regressive, if for all t ∈ Tκ , 1+μ(t)q(t) �=
0, where the set Tκ is defined by the formula: Tκ = T \ (ρ(supT), supT] if supT < ∞
and left-scattered, and Tκ = T if supT = ∞. R = R(T) = R(T,R) denotes the set of all
regressive and rd-continuous functions. A function q : T → R is called positive regressive,
if for all t ∈ Tκ , 1+μ(t)q(t) > 0.R+ = R+(T) = R+(T,R) denotes the set of all positive
regressive and rd-continuous functions.

Definition 3 [42] If q ∈ R, then the exponential function is defined as eq(t, s) =
exp(

∫ t

s
ξμ(τ)(q(τ ))Δτ), where s, t ∈ T, ξμ(p) = 1

μ
log(1 + μp) if μ �= 0, ξμ(p) = p

if μ = 0.

Lemma 1 [42] Let g ∈ Crd(T,R) and q ∈ R+. Then, for all t ∈ T, zΔ(t) ≤ q(t)z(t)+ g(t)

implies that z(t) ≤ z(t0)eq(t, t0) +
∫ t

t0
eq(t, σ (s))g(s)Δs.

Lemma 2 [43] Let U = (ai j )N×N , M ∈ Rn×n, x = (xT
1 , . . . , xT

N )T , y = (yT
1 , . . . , yT

N )T ,
where xi = (xi1, . . . , xin)T ∈ Rn and yi = (yi1, . . . , yin)T ∈ Rn . If U = U T , and each
row sum of U is zero, then

xT (U ⊗ M)y = −
∑

1≤i< j≤N

ai j (xi − x j )
T M(yi − y j ).
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3 Problem Statement

Consider the following two dynamical networks:

xΔ
i (t) = Axi (t) + α

N∑

j=1

ci jΓ x j (t) + ui , (1)

yΔ
i (t) = Byi (t) + β

N∑

j=1

di jΓ y j (t) + vi , (2)

where i = 1, 2, . . . , N ; t ∈ T, T is a time scale with supT = ∞ and μ(t) ≤ μ, where
μ(t) is the graininess function, and μ ≥ 0 is a constant; xi (t) = (xi1(t), . . . , xin(t))T ∈ Rn ,
yi (t) = (yi1(t), . . . , yin(t))T ∈ Rn are the state vectors; matrices A, B ∈ Rn×n ; ui and
vi are the control inputs; Γ = diag{α1, . . . , αn} > 0 is the matrix describing the inner-
coupling between the subsystems at time t ; C = (ci j )N×N , D = (di j )N×N are the coupling
configurationmatriceswith zero-sum rows, and are defined as follows: if there is a connection
from node j to node i(i �= j), ci j > 0, di j > 0, otherwise ci j = 0, di j = 0; α > 0, β > 0
are the coupling strengthes.

Remark 1 According to the structure of time scales, different types of networks can be for-
mulated. For example, when T = R or Z, networks (1) and (2) can be transformed into the
following continuous or discrete forms:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋi (t) = Axi (t) + α

N∑

j=1

ci jΓ x j (t) + ui ,

ẏi (t) = Byi (t) + β

N∑

j=1

di jΓ y j (t) + vi , t ∈ R.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Δxi (k) = Axi (k) + α

N∑

j=1

ci jΓ x j (k) + ui ,

Δyi (k) = Byi (k) + β

N∑

j=1

di jΓ y j (k) + vi , k ∈ Z.

Except for the continuous and discrete networks, other forms can be also formulated by
networks (1) and (2), such as systems on nonuniform discrete time domains and systems
with a mixed time.

Let ei (t) = yi (t) − xi (t). The existing results are mainly focused on two cases: (i)
inner synchronization of a single dynamical network. (ii) outer synchronization between two
dynamical networks without centering on inner synchronization of each network. Our goal
is to design proper distributed pinning impulsive controllers that ensure networks (1) and (2)
can achieve inner–outer synchronization. The definition of inner–outer synchronization for
networks (1) and (2) is given as follows.

Definition 4 Networks (1) and (2) are said to be inner–outer synchronized if there exist
suitable controllers, such that for all i, j = 1, 2, . . . , N , lim

t→∞ ‖ xi (t) − x j (t) ‖= 0, lim
t→∞ ‖

yi (t) − y j (t) ‖= 0, and lim
t→∞ ‖ ei (t) ‖= 0.
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Remark 2 It is obvious that only if the states trajectories of network (1) and error network
converge to equilibriums, inner synchronization of network (2) can be achieved. Therefore,
the main objective is to design proper controllers to guarantee inner synchronization of
network (1) and outer synchronization between networks (1) and (2). Similarly, it is also
feasible to design suitable controllers that ensure inner synchronization of network (2) and
outer synchronization between networks (1) and (2). These two strategies are analogous, so
we only consider the first case in this paper.

To ensure that networks (1) and (2) can achieve inner–outer synchronization, the dis-
tributed pinning impulsive controllers are designed as follows:

ui =

⎧
⎪⎨

⎪⎩

∞∑

k=0

q1,k
(
xi (t) −

N∑

j=1

ci j x j (t)
)
δ(t − tk), i ∈ Dk,

0, i /∈ Dk,

(3)

vi =

⎧
⎪⎨

⎪⎩

∞∑

k=0

[
q1,k

(
yi (t) −

N∑

j=1

di j y j (t)
) + q2,kei (t)

]
δ(t − tk), i ∈ Dk,

0, i /∈ Dk,

(4)

where k ∈ N, the constants q1,k and q2,k are the impulsive control gains to be determined,
and δ(·) is the Dirac delta function; the impulsive instant sequence {tk} satisfies {tk} ∈ T,
0 = t0 < t1 < · · · < tk < tk+1 < · · · , and lim

k→∞tk = ∞; the index set Dk is defined as

follows: if the nodes xi and yi are chosen to be controlled at tk , then i ∈ Dk and �Dk = lk ,
where lk ≤ N .

Remark 3 In the distributed pinning impulsive control schemes (3) and (4), each node is
allowed to utilize the information from its neighboring nodes, and only lk nodes need to be
controlled at each impulsive instant, so the designed controllers (3) and (4) are practically
more feasible to implement than those control strategies in [30,35,36].

By the controller (3), network (1) can be transformed into the following form:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xΔ
i (t) = Axi (t) + α

N∑

j=1

ci jΓ x j (t), t �= tk,

Δxi (tk) = q1,k(xi (tk) −
N∑

j=1

ci j x j (tk)), i ∈ Dk,

(5)

and by the controllers (3) and (4), the error network is formulated as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eΔ
i (t) = Byi (t) − Axi (t) +

N∑

j=1

[
βdi jΓ y j (t) − αci jΓ x j (t)

]
, t �= tk,

Δei (tk) = q1,k(yi (tk) −
N∑

j=1

di j y j (tk)) + q2,kei (tk)

− q1,k(xi (tk) −
N∑

j=1

ci j x j (tk)), i ∈ Dk,

(6)

where Δxi (tk) = xi (t
+
k ) − xi (t

−
k ), Δei (tk) = ei (t

+
k ) − ei (t

−
k ). In this paper, we assume that

for all k ∈ N, xi (t
−
k ) = xi (tk), yi (t

−
k ) = yi (tk), which clearly yield ei (t

−
k ) = ei (tk).
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Let x = (xT
1 , . . . , xT

N )T , e = (eT
1 , . . . , eT

N )T and ϑ = (υi j )Nn×Nn be a diagonal matrix
with υi i equaling 1 if i ∈ Dk and υi i equaling 0 otherwise. Then, x = xDk + xDk

, e =
eDk + eDk

, where xDk = ϑx , eDk = ϑe. By this decomposition, systems (5) and (6) can be
rewritten as the following forms.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xΔ(t) = (IN ⊗ A + α(C ⊗ Γ ))x(t)

= Φ1x(t), t �= tk,

ΔxDk (tk) = q1,kϑ(INn − C ⊗ In)x(tk)

= q1,kΦ3x(tk),

(7)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eΔ(t) = [IN ⊗ B + β(D ⊗ Γ )]e(t)
+ [IN ⊗ (B − A) + β(D ⊗ Γ ) − α(C ⊗ Γ )]x(t)

= Φ2e(t) + (Φ2 − Φ1)x(t), t �= tk,

ΔeDk (tk) = q1,kϑ((C − D) ⊗ In)x(tk)

+ ϑ
[
q1,k(INn − D ⊗ In) + q2,k INn

]
e(tk)

= q1,k(Φ4 − Φ3)x(tk) + (q1,kΦ4 + q2,kϑ)e(tk),

(8)

where Φ1 = IN ⊗ A + α(C ⊗ Γ ), Φ2 = IN ⊗ B + β(D ⊗ Γ ), Φ3 = ϑ(INn − C ⊗ In) and
Φ4 = ϑ(INn − D ⊗ In).

For simplifying the presentation, in the sequel, we let H � = H T H and H∗ = H T + H
for any matrix H .

4 Main Results

In this section, by the controllers (3) and (4), we firstly study the inner–outer synchronization
problem of networks (1) and (2) with non-identical topologies (i.e. C �= D). A sufficient
condition is given as follows:

Theorem 1 Networks (1) and (2) can achieve inner–outer synchronization by the controllers
(3) and (4), if there exist three positive constants θ , γ , ε, two sets of positive constants {ηk}
and {bk}, k ∈ N, such that the following inequalities hold:

(ΦT
1 Ω)∗ + μΦT

1 ΩΦ1 + 1 + μ + μθ

θ
(Φ2 − Φ1)

� − εΩ ≤ 0, (9)

Φ∗
2 + μ(1 + θ)Φ�

2 + (θ − ε)INn ≤ 0, (10)

(q1,kΦ3 + INn)T Ω(q1,kΦ3 + INn)

+
(

q2
1,k + q1,k

θ

)
(Φ4 − Φ3)

� − ηkΩ ≤ 0, (11)

(1 + θq1,k)(q1,kΦ4 + q2,kϑ + INn)� − ηk INn ≤ 0, (12)
bk

bk+1
ηkeε(tk+1, tk)exp(γ (tk+1 − tk)) ≤ 1, (13)

where Φi (i = 1, . . . , 4) are given in (8), Ω = U ⊗ In, and

U =

⎛

⎜
⎜
⎜
⎝

N − 1 −1 · · · −1
−1 N − 1 · · · −1
...

...
. . .

...

−1 −1 · · · N − 1

⎞

⎟
⎟
⎟
⎠

N×N

.
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Proof Construct the Lyapunov function V (t) = V1(t) + V2(t), where V1(t) = xT (t)Ωx(t),
V2(t) = eT (t)e(t). When t �= tk , by calculating the Δ−derivative of Vi (t) (i = 1, 2) along
the trajectories of systems (7) and (8), we have from Theorem 1.20 in [42] that

V Δ
1 (t) = (xT (t))ΔΩx(σ (t)) + xT (t)ΩxΔ(t)

= (xT (t))ΔΩ(x(t) + μ(t)xΔ(t)) + xT (t)ΩxΔ(t)

= xT (t)ΩxΔ(t) + (xT (t))ΔΩx(t) + μ(t)(xΔ(t))T ΩxΔ(t)

= xT (t)ΩΦ1x(t) + xT (t)ΦT
1 Ωx(t) + μ(t)xT (t)ΦT

1 ΩΦ1x(t),

V Δ
2 (t) = eT (t)eΔ(t) + (eT (t))Δe(t) + μ(t)(eΔ(t))T eΔ(t)

= eT (t)
[
Φ2e(t) + (Φ2 − Φ1)x(t)

]

+ [
Φ2e(t) + (Φ2 − Φ1)x(t)

]T
e(t) + μ(t)

[
Φ2e(t)

+ (Φ2 − Φ1)x(t)
]T [

Φ2e(t) + (Φ2 − Φ1)x(t)
]

= eT (t)(Φ2 + ΦT
2 )e(t) + 2eT (t)(Φ2 − Φ1)x(t)

+μ(t)
[
eT (t)ΦT

2 Φ2e(t) + 2eT (t)ΦT
2 (Φ2 − Φ1)x(t)

+ xT (t)(Φ2 − Φ1)
T (Φ2 − Φ1)x(t)

]
.

According to the fact that xT y + yT x ≤ θxT x + 1
θ

yT y, where θ > 0, and by (9)-(10), we
can get

V Δ(t) ≤ εV (t). (14)

From (7), (8), and (11), (12) we can get

V (t+k ) = xT (t+k )Ωx(t+k ) + eT (t+k )e(t+k )

= xT (tk)(q1,kΦ3 + INn)T Ω(q1,kΦ3 + INn)x(tk)

+ q2
1,k xT (tk)(Φ4 − Φ3)

T (Φ4 − Φ3)x(tk)

+ eT (tk)(q1,kΦ4 + q2,kϑ + INn)T (q1,kΦ4

+ q2,kϑ + INn)e(tk) + 2q1,k xT (tk)(Φ4 − Φ3)
T

× (q1,kΦ4 + q2,kϑ + INn)e(tk)

≤ ηk V (tk). (15)

By Lemma 1, (14) and (15), we can get that for all t ∈ (tk, tk+1)T,

V (t) ≤ eε(t, t+k )V (t+k )

≤ ηkeε(t, t+k )V (tk).

Since ε > 0, we have

eε(t, t+k ) = eε(t, σ (tk)) ≤ eε(t, tk).

Thus,

V (t) ≤ ηkeε(t, tk)V (tk).

For t = tk+1, if tk+1 is left dense, then

V (tk+1) ≤ lim
t→t−k+1

ηkeε(t, tk)V (tk)

= ηkeε(tk+1, tk)V (tk).
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If tk+1 is left scattered, then

V (tk+1) = V (ρ(tk+1)) + μ(ρ(tk+1))V Δ(ρ(tk+1))

≤ [
1 + εμ(ρ(tk+1))

]
V (ρ(tk+1))

= eε(tk+1, ρ(tk+1))V (ρ(tk+1))

≤ ηkeε(ρ(tk+1), tk)eε(tk+1, ρ(tk+1))V (tk)

= ηkeε(tk+1, tk)V (tk).

Thus, for all t ∈ (tk, tk+1]T,
V (t) ≤ ηkeε(t, tk)V (tk). (16)

Let γ0 = exp(γ t1) supt∈[0,t1]T V (t). Then, for all t ∈ [0, t1]T, we have V (t) ≤ γ0exp(−γ t).
For t ∈ (t1, t2]T, by (13) and (16) we can get

V (t) ≤ η1eε(t, t1)V (t1)

≤ γ0η1exp(−γ t1)eε(t, t1)

≤ γ0eε(t, t1)
b2exp(−γ t2)

b1eε(t2, t1)

= b2γ0exp(−γ t2)

b1eε(t2, t)
.

Next, by the mathematical induction approach, we will prove that for all t ∈ (tk, tk+1]T,
k ∈ N+,

V (t) ≤ bk+1γ0exp(−γ tk+1)

b1eε(tk+1, t)
. (17)

Suppose for all t ∈ (tk, tk+1]T and k ≤ m (m ∈ N+), (17) holds. For k = m + 1 and
t ∈ (tm+1, tm+2]T, by (13) and (16), we can get

V (t) ≤ ηm+1eε(t, tm+1)V (tm+1)

≤ bm+1

b1
γ0ηm+1exp(−γ tm+1)eε(t, tm+1)

≤ γ0eε(t, tm+1)
bm+2exp(−γ tm+2)

b1eε(tm+2, tm+1)

= bm+2γ0exp(−γ tm+2)

b1eε(tm+2, t)
.

Thus, for all t ∈ (tk, tk+1]T, k ∈ N+, (17) holds, which implies

V (t) ≤ bk+1γ0exp(−γ tk+1)

b1eε(tk+1, t)

≤ bk+1γ0exp(−γ tk+1)

b1

≤ bk+1γ0exp(−γ t)

b1
,

and hence we can get lim
t→∞V (t) = 0.

By Lemma 2 we have, for all i, j = 1, 2, . . . , N ,
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∑

1≤i< j≤N

‖ xi (t) − x j (t)) ‖2 +
N∑

i=1

‖ ei (t) ‖2

=
∑

1≤i< j≤N

(xi (t) − x j (t))
T (xi (t) − x j (t)) + eT (t)e(t)

= xT (t)(U ⊗ I2)x(t) + eT (t)e(t)

= V (t)

which implies lim
t→∞ ‖ xi (t) − x j (t) ‖= 0 and lim

t→∞ ‖ ei (t) ‖= 0 for all i, j = 1, 2, . . . , N .

The proof is thus completed. ��
The result in Theorem 1 is concerned with two networks with non-identical topolo-

gies (i.e. C �= D). For networks (1) and (2) with identical topologies (i.e. C = D), a
sufficient condition can be similarly obtained if the inequality (9)–(13) are changed into the
corresponding forms.

Theorem 2 Networks (1) and (2) can achieve inner–outer synchronization by the controllers
(3) and (4), if there exist three positive constants θ , γ , ε, two sets of positive constants {ηk}
and {bk}, k ∈ N, such that the following inequalities hold:

(ΦT
1 Ω)∗ + μΦT

1 ΩΦ1 + 1 + μ + μθ

θ
(Φ2 − Φ1)

� − εΩ ≤ 0, (18)

Φ∗
2 + μ(1 + θ)Φ�

2 + (θ − ε)INn ≤ 0, (19)

(q1,kΦ3 + INn)T Ω(q1,kΦ3 + INn) − ηkΩ ≤ 0, (20)

(1 + θq1,k)(q1,kΦ3 + q2,kϑ + INn)� − ηk INn ≤ 0, (21)
bk

bk+1
ηkeε(tk+1, tk)exp(γ (tk+1 − tk)) ≤ 1, (22)

where Φi (i = 1, . . . , 3) are given in (8), Ω = U ⊗ In, and U is defined in Theorem 1.

Proof The proof can be directly derived from Theorem 1, so it is omitted here. ��
Remark 4 According to the statement in Remark 1, networks (1) and (2) are of generality and
can be transformed into other forms, thus, the sufficient criteria of Theorem 1 and Theorem 2
are also effective for the inner–outer synchronization problems of different types of networks.
For the case T = R, μ(t) ≡ 0, eε(tk+1, tk) = eε(tk+1−tk ); for the case T = hZ, h > 0 is a

constant, μ(t) ≡ h, eε(tk+1, tk) = (1 + hε)
tk+1−tk

h .

Remark 5 It is noted that the configurationmatricesC and D neednot be symmetric, diffusive,
or irreducible, which means that networks (1) and (2) can be undirected or directed, and may
also contain isolated nodes or clusters.

The results in Theorem 1 and Theorem 2 are concerned about the situation that the two
dynamical networks (1) and (2) can achieve inner/outer synchronization simultaneously,
for the cases that inner synchronization of network (1) and outer synchronization between
networks (1) and (2), we have the following two corollaries.

Corollary 3 Network (1) can achieve inner by the controller (3), if there exist two positive
constants γ , ε, two sets of positive constants {ηk} and {bk}, k ∈ N, such that the following
inequalities hold:

(ΦT
1 Ω)∗ + μΦT

1 ΩΦ1 − εΩ ≤ 0, (23)

123



2490 X. Lu, H. Li

(q1,kΦ3 + INn)T Ω(q1,kΦ3 + INn) − ηkΩ ≤ 0, (24)
bk

bk+1
ηkeε(tk+1, tk)exp(γ (tk+1 − tk)) ≤ 1, (25)

where Φ1 and Φ3 are given in (8), Ω = U ⊗ In, and U is defined in Theorem 1.

Proof Construct the Lyapunov function candidate V (t) = xT (t)Ωx(t). When t �= tk , by
calculating the Δ−derivative of V (t) along the trajectories of systems (7), we have

V Δ(t) = xT (t)ΩxΔ(t) + (xT (t))ΔΩx(t)

+μ(t)(xΔ(t))T ΩxΔ(t)

= xT (t)ΩΦ1x(t) + xT (t)ΦT
1 Ωx(t)

+μ(t)xT (t)ΦT
1 ΩΦ1x(t).

By (23), we can get

V Δ(t) ≤ εV (t).

From (7), (8), and (24) we can get

V (t+k ) = xT (t+k )Ωx(t+k )

= xT (tk)(q1,kΦ3 + INn)T Ω(q1,kΦ3 + INn)x(tk)

≤ ηk V (tk).

The rest proof is similar to that of Theorem 1, so it is omitted here. ��
Corollary 4 Networks (1) and (2) can achieve outer synchronization by the controller (4)
with q1,k = 0 for any k, if there exist three positive constants θ , γ , ε, two sets of positive
constants {ηk} and {bk}, k ∈ N, such that the following inequalities hold:

1 + μ + μθ

θ
(Φ2 − Φ1)

� − εΩ ≤ 0, (26)

Φ∗
2 + μ(1 + θ)Φ�

2 + (θ − ε)INn ≤ 0, (27)

(q2,kϑ + INn)� − ηk INn ≤ 0, (28)
bk

bk+1
ηkeε(tk+1, tk)exp(γ (tk+1 − tk)) ≤ 1, (29)

where Φ1 and Φ2 are given in (8), Ω = U ⊗ In, and U is defined in Theorem 1. ��
Proof Construct the Lyapunov function candidate V (t) = eT (t)e(t). When t �= tk , by
calculating the Δ−derivative of V (t) along the trajectories of systems (8), we have

V Δ(t) = eT (t)eΔ(t) + (eT (t))Δe(t) + μ(t)(eΔ(t))T eΔ(t)

= eT (t)
[
Φ2e(t) + (Φ2 − Φ1)x(t)

]

+ [
Φ2e(t) + (Φ2 − Φ1)x(t)

]T
e(t) + μ(t)

[
Φ2e(t)

+ (Φ2 − Φ1)x(t)
]T [

Φ2e(t) + (Φ2 − Φ1)x(t)
]

= eT (t)(Φ2 + ΦT
2 )e(t) + 2eT (t)(Φ2 − Φ1)x(t)

+μ(t)
[
eT (t)ΦT

2 Φ2e(t) + 2eT (t)ΦT
2 (Φ2 − Φ1)x(t)

+ xT (t)(Φ2 − Φ1)
T (Φ2 − Φ1)x(t)

]
.
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According to the fact that xT y + yT x ≤ θxT x + 1
θ

yT y, where θ > 0, and by (26) and (27),
we can get

V Δ(t) ≤ εV (t).

From (7), (8), and (28) we can get

V (t+k ) = eT (t+k )e(t+k )

= eT (tk)(q2,kϑ + INn)T (q2,kϑ + INn)e(tk)

≤ ηk V (tk).

The rest proof is similar to that of Theorem 1, so it is omitted here. ��

5 An Example

In this section, we give a simulation example to illustrate the effectiveness of the theoretical
results.

Consider dynamical networks (1) and (2) with n = 2, N = 5, α = β = 0.1,

A = B =
( −4.8 −0.65

−0.25 −5

)

, Γ =
(
1 0
0 1

)

,

C =

⎛

⎜
⎜
⎜
⎜
⎝

−0.9 0 0 0.3 0.6
0.2 −0.8 0 0.4 0.2
0 0.3 −0.7 0.4 0
0.3 0 0.2 −0.6 0.1
0.1 0 0 0.4 −0.5

⎞

⎟
⎟
⎟
⎟
⎠

, D =

⎛

⎜
⎜
⎜
⎜
⎝

−0.5 0.3 0.1 0 0.1
0.2 −0.6 0.2 0.2 0
0.4 0 −0.7 0.3 0
0 0.5 0.1 −0.8 0.2
0.6 0.3 0 0 −0.9

⎞

⎟
⎟
⎟
⎟
⎠

,

the time scale is given as T =
⋃

j∈Z
[0.5 j − 0.1, 0.5 j + 0.1], then, the graininess function

μ(t) is given as follows:

μ(t) =
⎧
⎨

⎩

0, t ∈
⋃

j∈Z
[0.5 j − 0.1, 0.5 j + 0.1),

0.3, t = 0.5 j + 0.1, j ∈ Z.

Given initial values x1(0) = (0.1, 0.2)T , x2(0) = −x5(0) = (−0.1,−0.1)T , x3(0) =
x4(0) = (0.1,−0.1)T , y1(0) = y3(0) = y5(0) = (0.1,−0.1)T , y2(0) = −y4(0) =
(−0.1,−0.1)T . Figures 1 and 2 show the states trajectories of networks (1) and (2) without
any control, from which we can see that inner synchronization of network (1) and outer
synchronization between networks (1) and (2) are not achieved.

To ensure networks (1) and (2) can achieve inner–outer synchronization, we design the
distributed pinning impulsive controllers (3) and (4) with the control gains q1,2k = −0.005,
q1,2k+1 = −0.45 and q2,2k = −0.1, q2,2k+1 = −0.25, and according to the form in [30], the
impulsive sequence is chosen as tk = 0.5k (k ∈ N). Let l2k = 3, l2k+1 = 5, which means
that 3 nodes are controlled at impulsive instants t2k , and 5 nodes are controlled at impulsive
instants t2k+1. In the designed control scheme, the nodes xi and yi (i = 1, 3, 5) are chosen
to be controlled at t2k , and the nodes xi , yi (i = 1, . . . , 5) are selected to be controlled at
t2k+1.

By using the Matlab LMI Toolbox to solve the inequalities in Theorem 1, we can get θ =
0.05, γ = 0.01, ε = 0.1, η2k = 3, η2k+1 = 0.25, accordingly, b2k = 3, b2k+1 = 10 (k ∈ N).
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|| 
x i(t)

-x
j(t)

 ||

Fig. 1 Trajectories ‖ xi (t) − x j (t) ‖ (i, j = 1, . . . , 5) of network (1) without control

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time t

0

0.5

1

1.5

2

2.5

3

|| 
e i(t)

 ||

Fig. 2 Trajectories ‖ ei (t) ‖ (i = 1, . . . , 5) between networks (1) and (2) without control

Therefore, networks (1) and (2) can achieve inner–outer synchronization under the designed
distributed pinning impulsive controllers, see Figs. 3and 4 for illustration.

6 Conclusion

In this paper, we have proposed a kind of network synchronization, called inner–outer syn-
chronization. Two dynamical networks achieving inner–outer synchronization means that
each of them can achieve inner synchronization, and outer synchronization between them
can be also achieved. By designing suitable distributed pinning impulsive controllers, we have
studied the inner–outer synchronization problems of two dynamical networks with identical
and non-identical topologies on time scales. According to the theory of time scales, by using
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||

Fig. 3 Trajectories ‖ xi (t) − x j (t) ‖ (i, j = 1, . . . , 5) of closed-loop network (5)
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time t

||e
i(t)

||

Fig. 4 Trajectories ‖ ei (t) ‖ (i = 1, . . . , 5) of closed-loop network (6)

the Lyapunov functionmethod and themathematical induction approach, we have established
two sufficient conditions for inner–outer synchronization of two networks on time scales. It
has been shown that the results in this paper are applicable to not only discrete/continuous
dynamical networks, but also the cases on hybrid time domains. To illustrate the effectiveness
of our results, a simulation example has been given. In the future works, we will consider
the effect of time delay on the synchronization results.
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