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Abstract
Based on the framework of Filippov solutions, this paper considers synchronization of inertial
neural networks (INNs) with discontinuous activation functions and proportional delay. By
designing several non-chattering controllers, both finite-time and fixed-time synchronization
are studied. The designed controllers are simple to be implemented and can overcome the
effects of both nonidentical uncertainties of Filippov solutions and the proportional delay
without inducing any chattering. By designing new Lyapunov functionals and utilizing 1-
norm methods, several sufficient conditions are obtained to ensure that the INNs achieve
drive-response synchronization in finite time and fixed time, respectively. Moreover, the
settling time is estimated for the two types of synchronization. Simulations are provided to
illustrate the effectiveness of theoretical analysis.

Keywords Discontinuous activation functions · Finite-time and fixed-time
synchronization · Inertial neural networks · Non-chattering control · Proportional delay

1 Introduction

Recently, it’s reported that discontinuous neural networks (DNNs) are successfully used to
engineering tasks including dry friction, power circuits, switching in electronic circuits and
so on [1–3]. In addition, when dealing with neural networks (NNs) with high-slope nonlin-
ear elements, it’s often advantageous to model them with discontinuous neuron activation
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functions, rather than to study the case where the slope is high but of finite value [4]. More-
over, DNNs are ideal models for solving linear or nonlinear programming problems and
constrained optimization problems [5–8]. So, it’s worth studying DNNs and its dynamical
behaviors.

Synchronization of NNs has received considerable attention in recent years due to its
potential applications [9–18]. Especially, there exist many interesting works concerning syn-
chronization of DNNs [13–18]. To our knowledge, the Filippov solution is an effective tool
for investigating synchronization of DNNs. For example, under the framework of Filippov
solution, authors in [13,15] studied the quasi-synchronization issue for the delayedDNNs. By
designing a discontinuous controller which includes sign function, complete synchronization
of DNNs was analyzed in [16]. The main difficulty in studying complete synchronization
of DNNs is how to deal with the effects of nonidentical uncertainties of Filippov solutions.
Actually, the sign function in controller plays an extremely pivotal role when complete syn-
chronization problem for DNNs is studied. For instance, two kinds of controllers with sign
function were designed to achieve exponential synchronization of DNNs with time-varying
mixed delays in [17]. But, it’s well known that sign function always introduce chattering phe-
nomenon to the system state and controlled signals which causes the bad influence or even
damages equipments. Therefore, it is urgent to design new controller without sign function
to overcome the effect of uncertain Filippov solutions.

It is worth highlighting that most of previous studies only focused on NNs with first-
order differential states [3–5,13–18]. However, since the term of inertial possesses strong
background of biological application, it’s significant and necessary to introduce it into NNs
[19]. This kind of NNs are called as INNs, which are modeled by second-order differen-
tial equations. Compared with traditional first-order NNs [3–5,13–18], INNs exhibits more
complex behaviors including chaos and bifurcation [20]. Recently, in [21–24], asymptotic
synchronization of INNs has been investigated. Meanwhile, considering the better prop-
erty of finite-time control such as disturbance rejection and fast convergence rate [25–32],
some results on finite-time synchronization of INNs [33–35] have been reported. Authors
in [33] designed two different continuous delayed controllers to guarantee that memristive
INNs realize finite-time synchronization. In [34], several finite-time synchronization crite-
ria of memristive INNs with time-delays were gained by considering a hybrid controller. By
designing continuous and discontinuous state-feedback controllers, the problemof finite-time
synchronization for INNs without delay was addressed in [35]. It is not difficult to discover
that both continuous and discontinuous controllers in [33–35] include sign function, and the
activation functions of INNs mentioned above are all continuous. Actually, the sign function
seems to be indispensable for finite-time control [29,30], and few authors consider finite-time
synchronization of coupled systems with some controllers without the sign function. Mean-
while, considering the advantages of fixed-time control [36,36–42], the sign function also
plays a crucial role. Moreover, to the best of our knowledge, few published papers consider
finite-time and fixed-time synchronization of discontinuous INNs (DINNs). This motivates
us to consider finite-time and fixed-time synchronization ofDINNs via non-chattering control
technique.

In the literature, the effect of time delay on finite-time synchronization is very difficult
to be overcome. Recently, based on 1-norm analysis, the authors in [29–32] establish an
effective method in studying finite-time synchronization of time-delay systems. Especially,
by designing discontinuous controllers with the sign function, finite-time synchronization of
NNs with infinite-time distributed delays was considered in [32]. Moreover, it’s discovered
that, though the NNs with infinite-time distributed delays can be controlled to synchroniza-
tion, the settling time cannot be estimated. Obviously, it is not convenient in practice if the
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settling time is not available. Recently, another kind of delay called proportional delay has
attracted lots of attention [43], which exists inmany practical systems, such as,Web quality of
service routing decision system [44] and wireless networks [45]. Moreover, synchronization
of NNs with proportional delays has attracted increasing interests in recent years [46–49].
For example, finite-time synchronization of fuzzy cellular NNs with time-varying coeffi-
cients and proportional delays were derived by designing continuous controller with sign
function in [49]. However, the controllers in [49] are complex because they have to design
some special terms to overcome the effects of the proportional delays. That is, the terms
with proportional delay are removed by the controllers. From practical point of view, the
designed controller should be simple. This motivates us consider finite-time synchronization
of INNs with proportional delay by designing simple controller without sign function. Note
that both the infinite-time distributed delay and the proportional delay are unbounded and
time-varying. However, there are some conditions on the infinite-time distributed delay such
as

∫ +∞
0 Ki j (u)du = ki j for positive constants ki j , while there is no special condition on the

proportional delay. Since proportional delay (1−q)t → +∞ as t → +∞, it is more difficult
to synchronize systems with the proportional delay in finite time than that of systems with
infinite-time distributed delay by using simple controllers without the sign function. This
problem is also considered in this paper, and the settling time will be explicitly estimated.

Motivated by the above discussion, this paper investigates finite-time synchronization of
DINNswith proportional delay via non-chattering controllers.Moreover, fixed-time synchro-
nization of the DINNs with proportional delay is also considered. The main contributions
are as follows:

(1) Different from existing controllers where the sign function is indispensable to overcome
the uncertainties of Filippov solutions, the designed non-chattering controllers are just
state feedback, which are very simple. Moreover, the controller can overcome the effects
of uncertain Filippov solutions and the unbounded and time-varying proportional delay
at the same time while without inducing any chattering phenomenon;

(2) By designing new Lyapunov functionals and utilizing 1-norm methods, novel analytical
techniques are established to obtain several sufficient conditions for theDINNs to achieve
drive-response synchronization in finite time and even in a fixed time. Moreover, the
settling time is estimated for the two types of synchronization;

(3) It’s discovered that the settling time of the finite-time synchronization is dependent on
both the initial values and the proportional delay factor while the settling time of the
fixed-time synchronization is independent of the initial values and the proportional delay
factor.

The paper is organized as follows. In Sect. 2, the model of the DINNs with proportional
delay is presented, and some definitions and lemmas are also given. Section 3 provides some
criteria for finite-time and fixed-time synchronization of the DINNs with proportional delay
by strict mathematical proofs. Then two simulation examples are presented to illuminate the
effectiveness of the theoretical results in Sect. 4. Finally, conclusions are given in Sect. 5.

Notations : R is the set of real number, R
n denotes the set of n × 1 real vectors, and

R
n×m denotes the set of n×m matrices; ‖ · ‖1 is 1-norm of a vector or a matrix, respectively.

|B| is a vector derived by taking absolute values of all elements of a vector B; co[E] is the
closure of the convex hull of the set E ⊂ R

n .
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2 Model Description and Preliminaries

Consider a DINN with proportional delay as follows:

d2xi (t)

dt2
= −di

dxi (t)

dt
− ci xi (t) +

n∑

j=1

ai j f j (x j (t)) +
n∑

j=1

bi j f j (x j (qt)) + Ji , (1)

where t ≥ 1, i, j = 1, 2, . . . , n, xi (t) is the state of i th neuron, the second derivative
d2xi (t)
dt2

is
inertial term, di > 0 and ci > 0 are constants, f j (·) stands for the neuron activation function,
ai j and bi j are connection weights related to i th and j th neurons without and with delay,
respectively, Ji represents the external input of the i th neuron, 0 < q < 1 is the factor of the
proportional delay (1−q)t . The initial value of theDINN (1) is xi (s) = φi (s),

dxi (s)
ds = ψi (s),

for all s ∈ [q, 1].
Remark 1 The proportional delay exists in many practical systems, such as Web quality of
service routing decision system [44] and wireless networks [45]. Note that (1 − q)t →
+∞ as t → ∞, which is unbounded and time-varying. Hence, it is difficult to utilize the
finite-time analytical methods proposed in [29–32] in studying finite-time and fixed-time
synchronization of the DINN (1).

Suppose that the activation functions f j (·), j = 1, 2, . . . , n are discontinuous on R.
Hence, system (1) is a differential equation with discontinuous state on the right-hand side.
In this sense, the uniqueness of the solution of system (1) may not exist. Hence, the dynamics
of system (1) can be investigated in the framework of Filippov solution [50], which is given
below.

Definition 1 (Filippov regularization) [50]. The Filippov set-valued map of f (x) at x ∈ R
n

is defined by

F(x) =
⋂

δ>0

⋂

μ(�)=0

co[ f (B(x, δ)\�)],

where B(x, δ) = {y : ‖y − x‖ ≤ δ}, and μ(�) is the Lebesgue measure of set �, co[C] is
the closure of the convex hull of the set C .

Throughout this paper, the following assumptions are needed.

Assumption 1 For i = 1, 2, . . . , n, fi (·) : R → R is continuous except on a countable set of
isolated points {ρ̂i

k}, where both the right and left limits f +
i (ρ̂i

k) and f −
i (ρ̂i

k) exist. Moreover,
fi (·) has at most a finite number of jump discontinuous in every bounded compact interval
R.

Assumption 2 For i = 1, 2, . . . , n, 0 ∈ Fi (0), and there exist nonnegative constants li and
�i such that |γi − δi | ≤ li |x − y|+�i holds for ∀x, y ∈ R, where γi ∈ Fi (x), δi ∈ Fi (y) with
Fi (x) = [min{ f −

i (x), f +
i (x)},max{ f −

i (x), f +
i (x)}].

Assumption 3 The activation functions fi (·), i = 1, 2, . . . , n are bounded, i.e., there exist
constants Mi > 0, i = 1, 2, . . . , n such that | fi (x)| ≤ Mi for ∀x ∈ R.

The following result states the existence of Fillipov solution of system (1).

Lemma 1 Suppose that Assumptions 1 and 2 are satisfied. Then, any initial value for (1) has
at least one solution [xi (t), γi (t)] defined on [q,+∞), where γi (t) ∈ Fi (x).
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Proof Let νi (t) = xi (et ), thenDINN (1) is equivalently transformed into the followingDINN
with constant delay and time-varying coefficients

d2νi (t)

dt2
= (1 − di e

t )
dνi (t)

dt
+ et

⎛

⎝−ciνi (t) +
n∑

j=1

ai j f j (ν j (t))

+
n∑

j=1

bi j f j (ν j (t − τ)) + Ji

⎞

⎠ ,

for t ≥ 0, i = 1, 2, . . . , n, where τ = − ln q > 0. Then, one can obtain the conclusion by
using similar analysis methods as those in [16,29]. The proof is completed. 
�

In view of [20], let yi (t) = dxi (t)
dt , i = 1, 2, . . . , n. Then system (1) can be transformed

into the following equivalent system:
{

dxi (t)
dt = yi (t),

dyi (t)
dt = −di yi (t) − ci xi (t) + ∑n

j=1 ai j f j (x j (t)) + ∑n
j=1 bi j f j (x j (qt)) + Ji .

(2)

According to Definition 1 and Lemma 1, there exist γ j (t) ∈ Fj (x), j = 1, 2, . . . , n such
that

{
dxi (t)
dt = yi (t),

dyi (t)
dt = −di yi (t) − ci xi (t) + ∑n

j=1 ai jγ j (t) + ∑n
j=1 bi jγ j (qt) + Ji .

(3)

Consider system (2) as the master system, the corresponding controlled slave system is
designed as
{

dvi (t)
dt = wi (t) + u1i (t),

dwi (t)
dt = −diwi (t) − civi (t)

∑n
j=1 ai j f j (v j (t)) + ∑n

j=1 bi j f j (v j (qt)) + Ji + u2i (t),

(4)

where t ≥ 1, i, j = 1, 2, . . . , n, vi (t) is the state of the response system, dvi (t)
dt is inertial

term of the response system, u1i (t) and u2i (t) are control inputs to be designed. The initial
values are: vi (s) = φ̂i (s),

dvi (s)
ds = ψ̂i (s), s ∈ [q, 1].

Similar to (3), the Filippov solution of (4) satisfies the following system:
{

dvi (t)
dt = wi (t) + u1i (t),

dwi (t)
dt = −diwi (t) − civi (t) + ∑n

j=1 ai jδ j ((t)) + ∑n
j=1 bi jδ j (qt) + Ji + u2i (t),

(5)

where δ j (t) ∈ Fj (v). Two kinds of synchronization considered in this paper are given below.

Definition 2 Themaster–slave systems (2) and (4) are said to achieve finite-time synchroniza-
tion if, for suitable designed controllers, there exists a constant T which is dependent on the
initial values of systems (2) and (4) such that limt→T

∑n
i=1(|vi (t)−xi (t)|+|wi (t)−yi (t)|) =

0 and
∑n

i=1(|vi (t) − xi (t)| + |wi (t) − yi (t)|) ≡ 0 for t > T . Here, T is called settling time
of finite-time synchronization.

Definition 3 Themaster–slave systems (2) and (4) are said to achieve fixed-time synchroniza-
tion if, for suitable designed controllers, there exists a constant Tmax which is independent of
the initial values of systems (2) and (4) such that limt→Tmax

∑n
i=1(|vi (t) − xi (t)| + |wi (t) −
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yi (t)|) = 0 and
∑n

i=1(|vi (t)− xi (t)| + |wi (t)− yi (t)|) ≡ 0 for t > Tmax, and Tmax is called
the settling time of the fixed-time synchronization.

The following definition and lemmas are useful.

Definition 4 Function V (x) : R
n −→ R is called C-regular if V (x) is:

1. regular in R
n ;

2. positive definite. i.e. V (x) > 0 for x = 0 and V (0) = 0;
3. radially unbounded. i.e. V (x) −→ ∞ as ‖x‖ −→ ∞.

Lemma 2 (Chain rule) [51] If V (x) : R
n −→ R is C–regular, and x(t) is absolutely contin-

uous on any compact subinterval of [0,+∞]. Then, x(t) and V (x(t)) : [0,+∞] −→ R are
differentiable for a.a. (almost all) t ∈ [0,+∞] and

d

dt
V (x(t)) = γ (t)ẋ(t),∀γ (t) ∈ ∂V (x(t)),

where ∂V (x(t)) is the Clarke generalized gradient of V at x(t).

Lemma 3 [36] If there exists a continuous radially unbounded function V : R
n → R+ ∪ {0}

such that

(1) V (z) = 0 ⇔ z = 0;
(2) for some α, β > 0, 0 < p < 1, � > 1, any solution z(t) satisfies the following inequality

V̇ (z(t)) ≤ −αV p(z(t)) − βV �(z(t)),

then, the origin of system is globally fixed-time stable equilibrium and the fixed settling
time satisfies Tmax = 1

α(1−q)
+ 1

β(�−1) .

Lemma 4 [52] Let a1, a2, . . . , aN ≥ 0 and 0 < � ≤ 1, ℘ > 1. Then the following two
inequalities hold:

N∑

i=1

a�
i ≥

(
N∑

i=1

ai

)�

,

N∑

i=1

a℘

i ≥ N 1−℘

(
N∑

i=1

ai

)℘

.

3 Main Results

In this section, two kinds of non-chattering controllers are designed. By utilizing 1-norm
analysis techniques, sufficient conditions for the finite-time and fixed-time synchronization
between (2) and (4) are given through strict mathematical proofs. Moreover, settling time
for the two kinds of synchronization are estimated. It should be noticed that, different from
existing results, the controllers do not use the sign function to avoid chattering.

Denote ri (t) = vi (t) − xi (t), zi (t) = wi (t) − yi (t), i = 1, 2, . . . , n. It can be seen that
synchronizing (2) and (4) is equivalent to synchronizing between (3) and (5). So, subtracting
(3) from (5) derives the error system

{
dri (t)
dt = zi (t) + u1i (t),

dzi (t)
dt = −di zi (t) − ciri (t) + ∑n

j=1 ai jζ j (t) + ∑n
j=1 bi jζ j (qt) + u2i (t),

(6)

with initial values ri (s) = φ̂i (s) − φi (s), zi (s) = ψ̂i (s) − ψi (s), s ∈ [q, 1], where ζ j (t) =
δ j (t) − γ j (t), ζ j (qt) = δ j (qt) − γ j (qt), i, j = 1, 2, . . . , n.
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3.1 Finite-Time Synchronization

Design the following controllers:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u1i (t) =
⎧
⎨

⎩

− εi ri (t) − κ
ri (t)

‖r(t)‖1 , ‖r(t)‖1 = 0,

0, ‖r(t)‖1 = 0,

u2i (t) =
⎧
⎨

⎩

− ξi zi (t) − η
zi (t)

‖z(t)‖1 , ‖z(t)‖1 = 0,

0, ‖z(t)‖1 = 0,

(7)

where εi > 0 and ξi > 0, i = 1, 2, . . . , n are constants to be determined, η > 0 and κ > 0
are tunable constants, and r(t) = (r1(t), r2(t), . . . rn(t))T , z(t) = (z1(t), z2(t), . . . zn(t))T .
Note that εi , ξi > 0, η > 0 and κ > 0 mean that the controller (7) can access the full states
of ri (t) and ei (t).

Remark 2 Note that, if ‖r(t)‖1 = 0 and ‖z(t)‖1 = 0 for some finite time t , then
the synchronization is achieved and the controller is not needed, which is equivalent to
u1i (t) = u2i (t) = 0. Therefore, the controllers in (7) are reasonable. The controllers (7)
are very simple and do not need any information of the delay. Actually, the sign function is
very important for finite-time control. Hence, the control scheme (7) essentially improve the
corresponding one in [29–35]. Recently, finite-time synchronization of a class of NNs with
continuous activation functions and proportional delays was studied in [49]. To overcome the
difficulty of the effect of proportional delay, complicated controllers with the proportional
delays was designed to delete the corresponding terms directly. Furthermore, the controllers
in [49] have to utilize the sign function to drive the coupled systems synchronize in finite
time. Compared with the controllers in [49], the controllers in (7) are very simple and do not
induce chattering.

Theorem 1 Suppose that Assumptions 1 and 2 are satisfied. Consider the controller (7), if
the controller gains η > 0, and κ , εi , ξi satisfy the conditions

εi ≥c̄ +
n∑

j=1

li |a ji | +
n∑

j=1

li |b ji |
q

, (8)

ξi ≥max{−di + 1, 0}, (9)

κ =
n∑

i=1

n∑

j=1

(|ai j | + |bi j |)� j + σ, (10)

then the DINN (4) can be synchronized with DINN (2) in a finite time, where i = 1, 2, . . . , n,
c̄ = max{cl : l = 1, 2, . . . , n}, σ is a positive constant. Moreover, the settling time is
estimated as

T ≤ q

�

⎧
⎨

⎩

n∑

i=1

|ri (1)| +
n∑

i=1

|zi (1)| +
n∑

i=1

n∑

j=1

l j |bi j |
q

∫ 1

q
|r j (s)|ds

⎫
⎬

⎭
+ q,

� = min{η, σ }, r j (s) = φ̂ j (s) − φ j (s).
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Proof Define the following Lyapunov function:

V (t) =
n∑

i=1

|ri (t)| +
n∑

i=1

|zi (t)| +
n∑

i=1

n∑

j=1

l j |bi j |
q

∫ t

qt
|r j (s)|ds. (11)

When ‖r(t)‖1 = 0 and ‖z(t)‖1 = 0, by Lemma 2, taking the time derivative of V (t)
along the trajectory of (6) and considering the controller (7), one can obtain that

V̇ (t) =
n∑

i=1

⎡

⎣sign(zi (t))

⎛

⎝−di zi (t) − ciri (t) +
n∑

j=1

ai jζ j (t)

+
n∑

j=1

bi jζ j (qt) − ξi zi (t) − η
zi (t)

‖z(t)‖1

⎞

⎠

+ sign(ri (t))

(

zi (t) − εi ri (t) − κ
ri (t)

‖r(t)‖1
)

+
n∑

j=1

l j |bi j |
q

|r j (t)| −
n∑

j=1

l j |bi j ||r j (qt)|
⎤

⎦ . (12)

From Assumption 2, one has

sign(zi (t))
n∑

j=1

ai jζ j (t) ≤
n∑

j=1

l j |ai j ||r j (t)| +
n∑

j=1

|ai j |� j , (13)

sign(zi (t))
n∑

j=1

bi jζ j (qt) ≤
n∑

j=1

l j |bi j ||r j (qt)| +
n∑

j=1

|bi j |� j . (14)

Substituting (13) and (14) into (12) yields

V̇ (t) ≤
n∑

i=1

⎧
⎨

⎩

⎡

⎣(−di − ξi )|zi (t)| + c̄|ri (t)| +
n∑

j=1

l j |ai j ||r j (t)|

+
n∑

j=1

(|ai j | + |bi j |)� j − η
|zi (t)|
‖z(t)‖1

⎤

⎦

+
[

|zi (t)| − εi |ri (t)| − κ
|ri (t)|
‖r(t)‖1

]

+
n∑

j=1

l j |bi j |
q

|r j (t)|
⎫
⎬

⎭

=
n∑

i=1

⎛

⎝c̄ +
n∑

j=1

li |a ji | +
n∑

j=1

li |b ji |
q

− εi

⎞

⎠ |ri (t)| +
n∑

i=1

(−di + 1 − ξi ) |zi (t)|

+
n∑

i=1

⎛

⎝
n∑

j=1

(|ai j | + |bi j |)� j − κ
|ri (t)|
‖r(t)‖1

⎞

⎠ − η

n∑

i=1

|zi (t)|
‖z(t)‖1 . (15)

Note that

κ

n∑

i=1

|ri (t)|
‖r(t)‖1 = κ

∑n
i=1 |ri (t)|
‖r(t)‖1 = κ and η

n∑

i=1

|zi (t)|
‖z(t)‖1 = η. (16)
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It is obtained from (8)–(10), (15), and (16) that

V̇ (t) < −(η + σ) < −� < 0, (17)

where σ = κ − ∑n
i=1

∑n
j=1(|ai j | + |bi j |)� j , � = min{η, σ }.

From (11) and (17), one knows that V (t) is positive definite and non-increasing. Hence,
there exists nonnegative constant V ∗ such that

lim
t→+∞ V (t) = V ∗ and V (t) ≥ V ∗, for t ≥ 1. (18)

Integrating both side of the inequality (17) from 1 to t , it’s easy to gain that

V (t) − V (1) ≤ −�(t − 1). (19)

Now, let’s prove that there exists t1 ∈ (1,+∞) such that

lim
t→t1

V (t) = V ∗ and V (t) ≡ V ∗, for t ≥ t1. (20)

On the contrary, suppose
∑n

i=1(|ri (t)| + |zi (t)|) > 0 for all t ∈ (1,+∞), then there
exists ie ∈ {1, 2, . . . , n} or i∗e ∈ {1, 2, . . . , n} such that |rie (t)| > 0 or |zi∗e (t)| > 0. It is
obtained from (17) that V̇ (t) ≤ −� < 0 for all t ∈ (1,+∞). In this case, the inequality
(19) means that limt→+∞ V (t) = −∞. This contradicts (18), and hence the inequality
(19) is not true for t → ∞. Hence, there exists t1 ∈ (1,+∞) such that 20 is true, that is,
limt→t1 V (t) = V ∗ and V (t) ≡ V ∗, for t ≥ t1.

Next, prove V ∗ = 0. By contradiction, suppose V ∗ > 0, then there are three cases:
∑n

i=1 |ri (t1)| > 0 or
∑n

i=1 |zi (t1)| > 0 or
∑n

i=1
∑n

j=1
l j |bi j |

q

∫ t1
qt1

|r j (s)|ds > 0.

Case 1:
∑n

i=1 |ri (t1)| > 0. There exists at least one i2 ∈ {1, 2, . . . , n} such that |ri2(t1)| >

0. By (17), it is found that V̇ (t1) ≤ −� < 0. On the other hand, from the continuous of
|ri2(t1)| one has that there exists a instant t2 ∈ (t1, t1 + ε], where constant ε > 0, such that
|ri2(t2)| > 0 and V̇ (t2) ≤ −� < 0, which contradicts to V (t) ≡ V ∗ for t ≥ t1. Hence,∑n

i=1 |ri (t1)| = 0.
Case 2:

∑n
i=1 |zi (t1)| > 0. It can be derived from (17) that V̇ (t1) ≤ −� < 0. Similar to

the discussions in Case 1, one has V̇ (t3) ≤ −� < 0, which contradicts to V (t) ≡ V ∗ for
t ≥ t1, where t3 ∈ (t1, t1 + ε̂], ε̂ > 0. Hence,

∑n
i=1 |zi (t1)| = 0.

Case 3:
∑n

i=1
∑n

j=1
l j |bi j |

q

∫ t1
qt1

|r j (s)|ds > 0. There exist i3 ∈ {1, 2, . . . , n}, t4 ∈
[qt1, t1], and a small constant ε̄ > 0 such that |ri3(t)| > 0 for all t ∈ [t4−ε̄, t4+ε̄] ⊂ [qt1, t1].
Hence, V̇ (t) ≤ −� < 0 on [t4, t4 + ε̄], i.e. V (t) is monotonously decreasing on [t4, t4 + ε̄],
which is also contradicts with (20).

Considering the discussions for Cases 1, 2, and 3, it is obtained that V ∗ = 0, and so∑n
i=1 |ri (qt1)| = 0 and

∑n
i=1 |zi (t1)| = 0. Moreover, by the above similar analysis, it can

be found that

ri (qt) ≡ 0 and zi (t) ≡ 0 for t ≥ t1, i = 1, 2, . . . , n. (21)

Next, it is needed to prove

zi (qt) ≡ 0 for t ≥ t1, i = 1, 2, . . . , n. (22)

Since ri (qt1) = 0 and ri (t) ≡ 0 for t > qt1 and i = 1, 2, . . . , n, one has dri (qt1)
dt = 0.

Keeping this inmind and considering u1i (qt1) = 0 in (7), it is found from (6) that zi (qt1) = 0,
i = 1, 2, . . . , n. It is not difficult to find that zi (t) ≡ 0 for t ∈ [qt1, t1] is true. On the contrary,
there exist t5 > qt1 such that

∑n
i=1 |zi (t5)| > 0. Let tp = sup{t ∈ [qt1, t5] : ∑n

i=1 zi (t) =
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0}. It can be derived that tp < t5,
∑n

i=1 |zi (tp)| = 0 and
∑n

i=1 zi (t) > 0 for all t ∈ [tp, t5].
Therefore, there exists t6 ∈ [tp, t5] such that

∑n
i=1 zi (t) is monotonously increasing on the

[tp, t6], which contradicts V (t) ≡ V ∗, for t ≥ t1. Hence, zi (qt) = 0 and zi (t) ≡ 0 for
t > qt1, i = 1, 2, . . . , n.

Therefore, V (qt1) = 0 and V (t) ≡ 0 for ∀ t ≥ qt1. Let V (t1) = 0 in (19), one has t1 ≤
V (1)
�

+1. Considering the discussions above, the settling time is estimated as T = qV (1)
�

+q .
Based on the above discussion and Definition 2, the DINN (4) can be synchronized with
DINN (2) in finite time under the controller (7). The proof is completed. 
�
Remark 3 Theorem 1 is derived on the basis of 1-norm, and the key step is to obtain the
inequality (17). If the 2-norm based Lyapunov functions as those in [27,33–35,49] are used,
the inequality (17) can not be derived. The analytical techniques are different from those
used in [27,33–35,49] because their results are based on the inequality V̇ (t) ≤ −αV η(t) in
[25], where α > 0 and 0 < η < 1 are constants.

Remark 4 It should be noted that, in spite of the effect of proportional delay, which is
unbounded and time varying, the finite-time synchronization between the DINNs (2) and
(4) can still be achieved. Moreover, the settling time is estimated. Theorem 1 is different
from the results in [32]. It is reported in [32] that NNs with infinite-time distributed delay
can achieve synchronization in finite time but the settling time cannot be estimated. The
main reason for the estimation of the settling time for DINNs with proportional delay is
that qt → +∞ when t → +∞. Therefore,

∑n
i=1

∑n
j=1

l j |bi j |
q

∫ t
qt |e j (s)|ds = 0 when the

synchronization has been realized.

3.2 Fixed-Time Synchronization

The settling time T in Theorem 1 is heavily dependent on the initial conditions of the error
system (6). Such initial-condition-dependent settling time is not convenient in practice: (a)the
settling time increases as the increasing of the initial conditions of the error system (6); (b)
when the the initial conditions of (6) is not available, the settling time cannot be known. To
overcome these drawbacks, novel fixed-time controllers will be considered.

Design fixed time controllers as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1i (t) =

⎧
⎪⎨

⎪⎩

− ε̂i ri (t) − α
ri (t)|ri (t)|h

‖r(t)‖1 − β
ri (t)|ri (t)|l

‖r(t)‖1 , ‖r(t)‖1 = 0,

0, ‖r(t)‖1 = 0,

u2i (t) =

⎧
⎪⎨

⎪⎩

− ξ̂i zi (t) − κ̂
zi (t)

‖z(t)‖1 − α
zi (t)|zi (t)|h

‖z(t)‖1 − β
zi (t)|zi (t)|l

‖z(t)‖1 , ‖z(t)‖1 = 0,

0, ‖z(t)‖1 = 0,
(23)

where i = 1, 2, . . . , n, 0 < h < 1 and l > 1, α > 0 and β > 0 are tunable constants, ε̂i > 0,
κ̂ > 0 and ξ̂i > 0 are to be determined later.

Remark 5 Note that, different from most of existing results for fixed-time control techniques
[33,39–42], the controllers in (23) do not use the sign function, which induces the chattering
phenomenon. When the synchronization has been realized, the controllers are not needed,
and hence ‖z(t)‖1 = ‖r(t)‖1 = 0. Moreover, the parameters 0 < h < 1 and l > 1 make the
controllers easier to be tuned in practice than that in [37,38], where the controllers require
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the powers of error signals to be the quotient of two odd integers. Therefore, the designed
controllers in (23) improve most of existing ones for fixed-time control techniques.

Theorem 2 Suppose that Assumptions 1–3 are satisfied. If the controller gains η > 0, and
κ̂ , ε̂i , ξ̂i satisfy the conditions

ε̂i ≥ c̄ +
n∑

j=1

|a ji |li , (24)

ξ̂i ≥ max{−di + 1, 0}, (25)

κ̂ =
n∑

i=1

n∑

j=1

|bi j |Mj +
n∑

i=1

n∑

j=1

|ai j |� j , (26)

then the DINN (4) with the controllers (23) can be synchronized with DINN (2) in a fixed

time: Tmax = nh
α(1−h)

+ 2l−1nl
β(l−1) .

Proof Consider the following Lyapunov candidate function

V̂ (t) =
n∑

i=1

|ri (t)| +
n∑

i=1

|zi (t)| = ‖r(t)‖1 + ‖z(t)‖1. (27)

When ‖r(t)‖1 = 0 and ‖z(t)‖1 = 0, by Lemma 2, evaluating the time derivative of V̂ (t)
along the trajectory of the error system (6) and considering controllers (23), it follows that

˙̂V (t) =
n∑

i=1

sign(zi (t))

(

− di zi (t) − ciri (t) +
n∑

j=1

ai jζ j (t)

+
n∑

j=1

bi jζ j (qt) − ξ̂i zi (t) − κ̂
zi (t)

‖z(t)‖1 − α
zi (t)|zi (t)|h

‖z(t)‖1

−β
zi (t)|zi (t)|l

‖z(t)‖1
)

+
n∑

i=1

sign(ri (t))

(

zi (t) − ε̂i ri (t)

−α
ri (t)|ri (t)|h

‖r(t)‖1 − β
ri (t)|ri (t)|l

‖r(t)‖1
)

. (28)

It can be derived from Assumption 3 that

sign(zi (t))
n∑

j=1

bi jζ j (qt) ≤
n∑

j=1

|bi j |Mj . (29)

Combing (28) with (13) and (29) yields that

˙̂V (t) ≤
n∑

i=1

(−di + 1 − ξ̂i )|zi (t)| +
n∑

i=1

⎛

⎝c̄ +
n∑

j=1

|a ji |li − ε̂i

⎞

⎠ |ri (t)|

+
n∑

i=1

⎛

⎝
n∑

j=1

|bi j |Mj +
n∑

j=1

|ai j |� j − κ̂
zi (t)

‖z(t)‖1

⎞

⎠

− α

n∑

i=1

( |ri (t)|h+1

‖r(t)‖1 + |zi (t)|h+1

‖z(t)‖1
)
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− β

n∑

i=1

( |zi (t)|l+1

‖z(t)‖1 + |ri (t)|l+1

‖r(t)‖1
)

. (30)

It can be obtained from the second inequality in Lemma 4, for h + 1 > 1 and l + 1 > 1,
that

−
∑n

i=1 |ri (t)|h+1

‖r(t)‖1 ≤ − (
∑n

i=1 |ri (t)|)h+1

nh‖r(t)‖1 = −‖r(t)‖h1
nh

, and

−
∑n

i=1 |ri (t)|l+1

‖r(t)‖1 ≤ −‖r(t)‖l1
nl

. (31)

Similar to (31), it follows that

−
∑n

i=1 |zi (t)|h+1

‖z(t)‖1 ≤ −‖z(t)‖h1
nh

and −
∑n

i=1 |zi (t)|l+1

‖z(t)‖1 ≤ −‖z(t)‖l1
nl

. (32)

Substituting (31) and (32) into (30) yields that

˙̂V (t) ≤
n∑

i=1

(
−di + 1 − ξ̂i

)
|zi (t)| +

n∑

i=1

⎛

⎝c̄ +
n∑

j=1

|a ji |li − ε̂i

⎞

⎠ |r j (t)|

+
n∑

i=1

⎛

⎝
n∑

j=1

|bi j |Mj +
n∑

j=1

|ai j |� j − κ̂
zi (t)

‖z(t)‖1

⎞

⎠

− α

nh

(
‖r(t)‖h1 + ‖z(t)‖h1

)
− β

nl

(
‖z(t)‖l1 + ‖r(t)‖l1

)
. (33)

Combing (33) with conditions (24)–(26) derives that

˙̂V (t) ≤ − α

nh

(
‖r(t)‖h1 + ‖z(t)‖h1

)
− β

nl

(
‖z(t)‖l1 + ‖r(t)‖l1

)
. (34)

Using Lemma 4 again, it is not hard to check that

˙̂V (t) ≤ − α

nh
(‖r(t)‖1 + ‖z(t)‖1)h − 21−lβ

nl
(‖z(t)‖1 + ‖r(t)‖1)l

= x − α

nh
V h(t) − β

2(l−1)nl
V l(t). (35)

In view of Lemma 3, V̂ (t) converges to zero in fixed time, and the settling time is estimated

by Tmax = nh
α(1−h)

+ 2l−1nl
β(l−1) . Consequently, the DINN (4) is synchronized with DINN (2) in

fixed time under the controller (23). The proof is completed. 
�

4 Numerical Examples

In this section, two numerical examples are given to illustrate the effectiveness of the main
results. Specifically, Example 1 is to verify the Theorem 1, and Example 2 aims to illustrate
the Theorem 2. In simulations, the time step size is taken as 0.001.

Consider the following 2-dimension DINN with proportional delay:

d2xi (t)

dt2
= −di

dxi (t)

dt
− ci xi (t) +

2∑

j=1

ai j f j (x j (t))
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Fig. 1 Trajectory of inertial DINN (36) with initial condition φ(t) = (−0.3, 1.8)T , ψ(t) = (1.5, −0.7)T ,
t ∈ [0.75, 1]

+
2∑

j=1

bi j f j (x j (qt)) + Ji (t), i = 1, 2, (36)

where q = 0.75 J1(t) = cos(t), J2(t) = sin(t), d1 = 1.15, d2 = 1.2, c1 = c2 = 1,
a11 = −0.5, a12 = 1.2, a21 = −1, a22 = 0.8, b11 = −1.4, b12 = 0.6, b21 = 0.7,
b22 = −1.1,

f j (x j (t)) =
{
tanh(x j (t)) + 0.01, if x j (t) ≤ 0, j = 1, 2,

tanh(x j (t)) − 0.05, if x j (t) > 0, j = 1, 2.

When the initial conditions are chosen asφ(t) = (φ1(t), φ2(t))T = (−0.3, 1.8)T , ψ(t) =
(ψ1(t), ψ2(t))T = (1.5,−0.7)T , the trajectory of (36) is shown in Fig. 1. It is easy to check
that the discontinuous activation functions f j (·), j = 1, 2 satisfy Assumption 1. Moreover,
by simple computation, one can get l1 = l2 = 1, �1 = �2 = 0.06 and M1 = M2 = 1. Hence,
Assumptions 1–3 are all satisfied.

Example 1 Now, let’s verify Theorem 1. In this example, taking DINN (36) as the drive
system, the initial values are the same as those in Fig. 1. Choose the initial values of slave
system as φ̂(t) = (1.5, 0.85)T and ψ̂(t) = (−0.2, 2.1)T for t ∈ [0.75, 1]. By simple
computation, it is easy to obtain that ε1 ≥ 5.3, ε2 ≥ 5.2667, ξ1 ≥ 0.15, ξ2 ≥ 0.2, and∑n

i=1
∑n

j=1(|ai j | + |bi j |)� j = 0.438. According to Theorem 1, the DINNs can realize
finite-time synchronization under the controller (7) with ε1 = 5.3, ε1 = 5.2667, ξ1 = 0.15,
ξ2 = 0.2, η and κ = 0.438 + σ for η and σ are positive constants. Moveover, the settling
time can be explicitly obtained.

Taking η = σ = 0.5, one gets t1 ≤ 14.3225. When η = σ = 2, one can obtain t1 ≤
4.1431. Figure 2 presents the time evolution of ri (t) = vi (t)−xi (t) and ei (t) = dvi (t)

dt − dxi (t)
dt ,

i = 1, 2 with different values η and σ . From Fig. 2, one can see that the synchronization is
achieved in a finite time. Moreover, one can also see from Fig. 2 that the synchronization
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Fig. 2 Time response of synchronization error under the controller (7) with η and κ: a η = 0.5 and κ = 0.938;
b η = 2, and κ = 2.438
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Fig. 3 Time response of synchronization error under the controller (23) with different initial values of slave
system: a φ̂(t) = (1.9664,−0.3135)T , ψ̂(t) = (−0.2181, 1.0954)T ; b φ̂(t) = (208.4485,−165.1298)T ,
ψ̂(t) = (185.0666, 210.3338)T

time decreases as the increasing of control gains η and σ , this means that the control gains
η and σ are used to tune the synchronization time.

Example 2 This example is given to verify the effectiveness of Theorem 2. Taking DINN
(36) as the drive system, the initial values are the same as those in Fig. 1. The initial values
of slave system are randomly chosen from [−3, 3] and [−300, 300] for t ∈ [0.75, 1]. By
simple computation, it is easy to obtain that ε̂1 ≥ 2.5, ε̂2 ≥ 3, ξ̂1 ≥ 0.15, ξ̂2 ≥ 0.2,
and κ̂ = 4.01. According to Theorem 2, the DINNs can realize fixed-time synchronization
under the controller (23). Moveover, the settling time can be explicitly obtained, which is
independent of the initial conditions.

Take ε̂1 = 2.5, ε̂1 = 3, ξ̂1 = 0.15, ξ̂2 = 0.2, κ̂ = 4.01, l = 1.7, h = 0.8, α = β = 5.
According toTheorem2, the settling time can be explicitly estimatedTmax = 3.2491. Figure 3
shows the synchronization is realized in the fixed time under the controller (23) with different
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initial values of salve system: (a) φ̂(t) = (1.9664,−0.3135)T , ψ̂(t) = (−0.2181, 1.0954)T ;
(b) φ̂(t) = (208.4485,−165.1298)T , ψ̂(t) = (185.0666, 210.3338)T .

5 Conclusions

Both finite-time and fixed-time synchronization of INNs with discontinuous activation func-
tions and proportional delay have been studied. By constructing new Lyapunov functionals
and utilizing several effective analytical methods, sufficient synchronization criteria have
been derived. Moreover, the settling times are explicitly estimated. Without utilizing the sign
function, the designed controllers can overcome the effects of both uncertain Filippov solu-
tions and proportional delays and further achieve finite-time and fixed-time synchronization.
Numerical simulations illustrated the effectiveness of theoretical results.

Note that the controllers (7) and (23) designed in this paper need to use the full state of each
neuron, both ofwhich are centralized controllers. Consideringmany advantages of distributed
control, such as low communication performance requirements, good fault tolerance, strong
adaptability to the environment and strong scalability, our next research topic is to design
distributed non-chattering finite-time and fixed-time controllers for INNs with discontinuous
activation functions and proportional delay, which is interesting and challenging.
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