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Abstract
The impulsive control for the synchronization problem of coupled inertial neural networks
involved distributed-delay coupling is investigated in the present paper. A novel impulsive
pinning control method is introduced to obtain the complete synchronization of the coupled
inertial neural networks with three different coupling structures. At each impulsive control
instant, the pinning-controlled nodes can be selected according to our selection strategywhich
is dependent on the lower bound of the pinning control ratio. Our criteria can be utilized to
declare the synchronization of the coupled neural networks with asymmetric and reducible
coupling structures. The effectiveness of our control strategy is exhibited by typical numerical
examples.

Keywords Coupled inertial neural networks · Synchronization · Impulsive control · Pinning
control · Hybrid couplings

1 Introduction

Since1980’s, several neural network systemswere studied, includingdelayedneural networks
[1–4], memristive neural networks [5,6], stochastic neural networks [7–9], etc. Particularly,
the inertial neural networks (INNs) were first introduced by Babcock and Westervelt, and
the bifurcation and chaos problems were investigated in [10]. Since then, several interesting
workswere reported on the dynamic problems of the INNs, including bifurcation and stability
problem [11–15], dissipativity analysis [16–18] and synchronization problems [19–23]. In
addition, several techniques, including matrix measurement, differential inequalities and
linear matrix inequalities also were used to derive the novel and interesting stability criteria
for variety of INNs [12–15].
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The synchronization problem was widely studied for various dynamical systems [19–34].
A nonlinear control law [20] was designed to gain the synchronization of the drive-response
INNs. A novel sampled data control method based on pinning control [19] was adopted to
obtain the synchronization of INNs with reaction-diffusion term. The Lyapunov function and
the differential inclusion theory were utilized to study the synchronization issue of coupled
neural network with markovian jump [21] and supremums [22], respectively. In order to
decrease the control cost, the pinning control [19,35–38] was widely used in the synchro-
nization investigation of complex dynamical networks. For instance, the pinning control was
used to study the synchronization and the outputs robustness of the coupled Lure networks
[35] and Boolean control networks [36,37], respectively. Similarly, the synchronization prob-
lem of the dynamical system with nonlinear coupling was studied by using the impulsive
pinning control [38], which be used in the present paper to obtain our main results. Addi-
tionally, the synchronization applications of the coupled INNs also were reported, such as
image encryption [21] and secure communication [32]. Recently, the finite-time synchro-
nization was investigated for the drive-response coupled INNs. In [33,34], both the sampled
data control and Filippov discontinuous theory were employed to obtain the finite-time and
fixed-time synchronization criteria for the coupled INNs, in term of algebraic inequalities.
However, few works have been involved to study the synchronization issue of the coupled
INNs with hybrid couplings, by using the pinning control and impulsive control.

Based on the above-mentioned discussion, the synchronization problem is investigated for
the coupled INNs with hybrid couplings here. The object is to construct the impulsive control
and pinning control laws to obtain the completely synchronization of the coupled INNs. The
contributions in this paper are outlined as: (1) different from the synchronization problem
studied in [19–23,32–34], the hybrid couplings are involved in the complete synchronization
issue of the INNs, (2) different from the control schemes in [19–23,32–34], a novel impulsive
control and pinning control are given here to realize the synchronization for the coupled INNs
with hybrid couplings, (3) a novel selection strategy of the pinning-controlled nodes at each
impulsive instant is proposed for the coupled INNs, according to our pinning control criteria
in terms of algebraic inequalities. The rest of this paper is organized as follows. Several
preliminaries are outlined in Sect. 2. The synchronization control design based on impulsive
control and pinning control are studied in Sect. 3. The numerical example part and the
conclusion part are given in Sects. 4 and 5, respectively.

2 Problem Formulation

Let Rn represent the n-dimensional real space and ⊗ mean the Kronecker product. ZT

represents the transpose of matrix Z and Z < 0 indicates that Z is a negative definite matrix.
λmin(Z) (λmax(Z)) denotes the minimal (maximal) eigenvalue of the symmetrical matrix Z. I
means the unit matrix of appropriate dimension. The notation � denotes the symmetric block
in a symmetric matrix.

The i th node dynamic equation of the coupled INNs here is described as

üi (t) = −Au̇i (t) − Bui (t) + C f (ui (t)) + D f (ui (t − τ(t))) + J, i = 1, . . . , N , (1)

where ui (t) ∈ R
n is the state vector. A = diag{a1, . . . , an} and B = diag{b1, . . . , bn} are

real matrices with ai , bi > 0, i = 1, . . . , n. f (ui (t)) is the activation function. τ(t) is the
time delay function with 0 ≤ τ(t) ≤ τ0. C = (cs j )n×n and D = (ds j )n×n are connection
weight matrices. J = (J1, . . . , Jn)

T is the external input.
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Consider the coupled INNs with hybrid couplings as follows

üi (t) = − Au̇i (t) − Bui (t) + C f (ui (t)) + D f (ui (t − τ(t))) + J

+ c1

N∑

j=1

l(1)i j �1(u̇ j (t) + u j (t)) + c2

N∑

j=1

l(2)i j �2(u̇ j (t − κ0) + u j (t − κ0))

+ c3

N∑

j=1

l(3)i j �3

∫ t

t−h0
(u̇ j (s) + u j (s))ds, i = 1, . . . , N ,

(2)

where h0 and κ0 represent the distributed-delay and transmittal-delay, respectively. c1, c2 and
c3 are the constant coupling strengths. �1 = diag {�11, · · · , �1n}, �2 = diag {�21, · · · , �2n}
and �3 = diag {�31, · · · , �3n} are the inner coupling matrices with �i j > 0, i = 1, 2, 3,

j = 1, . . . , n. L(i) =
(
l(i)s j

)

N×N
are the coupling matrices in which l(i)s j > 0 if there

exists an edge from node j to node s, otherwise ls j = 0. L(i), i = 1, 2, 3 also satisfy

l(i)ss = −∑N
j=1, j �=s l

(i)
s j for s = 1, . . . , N . Note that the matrices L(1), L(2) and L(3) here are

not assumed to be symmetric or irreducible, our impulsive control thus can be employed to
synchronize the coupled INNs with those coupling structures.

The synchronization control object is given as

s̈(t) = −Aṡ(t) − Bs(t) + C f (s(t)) + D f (s(t − τ(t))) + J, (3)

where s(t) ∈ R
n . Take ei (t) = ui (t)−s(t),

∑n
j=1 l

(1)
i j �1(u j (t)+u̇ j (t)) = ∑n

j=1 l
(1)
i j �1(e j (t)+

s(t)) + (ė j (t) + ṡ(t)) = ∑n
j=1 l

(1)
i j �1(e j (t) + ė j (t)) + �1(s(t) + ṡ(t))

∑n
j=1 l

(1)
i j =

∑n
j=1 l

(1)
i j �1(e j (t) + ė j (t)). Similarly,

∑n
j=1 l

(2)
i j �2(u j (t − κ0) + u̇ j (t − κ0)) =

∑n
j=1 l

(2)
i j �2(e j (t−κ0)+ ė j (t−κ0)) and

∑n
j=1 l

(3)
i j �3

∫ t

t−h0
u j (s)+ u̇ j (s)ds =

∑n

j=1
l(3)i j �3

∫ t

t−h0
e j (s) + ė j (s)ds, then we have the following synchronization error system

ëi (t) = − Aėi (t) − Bei (t) + C f (ei (t)) + D f (ei (t − τ(t)))

+ c1

N∑

j=1

l(1)i j �1(ė j (t) + e j (t)) + c2

N∑

j=1

l(2)i j �2(ė j (t − κ0) + e j (t − κ0))

+ c3

N∑

j=1

l(3)i j �3

∫ t

t−h0
(ė j (s) + e j (s))ds,

(4)

where f (ei (t)) = f (ui (t)) − f (s(t)), i = 1, . . . , N .
Set yi (t) = ei (t) + ėi (t), i = 1, . . . , N , the synchronization error system with impulsive

control is
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ėi (t) = −ei (t) + yi (t), t �= tk,
Δei (tk) = ei (tk) − ei (t

−
k ) = K1ei (t

−
k ),

ẏi (t) = −(A − In)yi (t) − (B − (A − In))ei (t)

+C f (ei (t)) + D f (ei (t − τ(t))) + c1

N∑

j=1

l(1)i j �1y j (t)

+c2

N∑

j=1

l(2)i j �2y j (t − κ0) + c3

N∑

j=1

l(3)i j �3

∫ t

t−h0
y j (s)ds, t �= tk,

Δyi (tk) = yi (tk) − yi (t
−
k ) = K2yi (t

−
k ),

(5)

where K1 and K2 are real constants. The impulsive instants tk satisfy 0 = t0 < t1 < · · · <

tk < . . . and lim
k→∞ tk = ∞. Let e(t) = (eT1 (t), . . . , eTn (t))T , y(t) = (yT1 (t), . . . , yTn (t))T and

F(e(t)) = ( f T (e1(t)), . . . , f T (en(t)))T , the system (5) can be rewritten as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė(t) = − e(t) + y(t), t �= tk,
Δe(tk) = (1 + K1)e(t

−
k ),

ẏ(t) = −(IN ⊗ (A − In))y(t) − (IN ⊗ (B − (A − In)))e(t)
+(IN ⊗ C)F (e(t))) + (IN ⊗ D)F(e(t − τ(t)) + c1L

(1) ⊗ �1y(t)

+c2L
(2) ⊗ �2y(t − κ0) + c3L

(3) ⊗ �3

∫ t

t−h0
y(s)ds, t �= tk,

Δy(tk) = (1 + K2)y(t
−
k ).

(6)

Remark 1 If the constants c2 and c3 in the system (2) equal to zero, the coupling structures of
the coupled INNs in our paper degenerate to the coupling structures discussed in [19–23,32–
34]. Thus, the impulsive control developed here can be used to study the synchronization
problems in those works.

Assumption 1 [39] For f (z) = ( f1(z), . . . , fn(z))T in the system (1), there exist nonnegative
constants βs j , for z1 = (z11, . . . , z1n)

T and z2 = (z21, . . . , z2n)
T ∈ R

n such that

| fs(z11, . . . , z1n) − fs(z21, . . . , z2n)| ≤
n∑

j=1

βs j |z1 j − z2 j |, s = 1, . . . , n.

Definition 1 The coupled INNs (4) can realize exponential synchronization if there exist
positive constants ι0 and ν0 such that the synchronization error system (6) satisfies

‖ei (t)‖2 + ‖yi (t)‖2 ≤ ι0e
−ν0t

for any t ≥ 0, where i = 1, . . . , N and ‖ · ‖ represents the Euclidean norm.

Definition 2 [40] The positive scalarTa is said be the average impulsive interval of impulsive

sequence ι = {t1, t2, . . .} if there exist positive integerN0 such that
T − t

Ta
−N0 ≤ Nι(T , t) ≤

T − t

Ta
+ N0, 0 ≤ t ≤ T , where Nι(T , t) represents the impulsive time numbers of ι =

{t1, t2, . . .} in the time interval (t, T ).

Lemma 1 [41] Let τi (t), i = 1, 2, 3 be time delay functions with 0 ≤ τi (t) ≤ ι and a real
scalar function F(t, u, ū1, ū2) defined on R

+ × R × R × R be nondecreasing in ū1, ū2 for
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fixed (t, u). Suppose Ik(u) : R → R be nondecreasing in u. If the following inequalities
hold

⎧
⎨

⎩
D+w(t) ≤ F(t, w(t), w(t − τ1(t)), w(t − τ2(t))) + ϑ

∫ t

t−τ3(t)
w(s)ds, t �= tk,

w(tk) ≤ Ik(w(t−k )), k = 1, 2, . . . ,
(7)

⎧
⎨

⎩
D+z(t) > F(t, z(t), z(t − τ1(t)), z(t − τ2(t))) + ϑ

∫ t

t−τ3(t)
v(s)ds, t �= tk,

z(tk) ≥ Ik(z(t
−
k )), k = 1, 2, . . . ,

(8)

where ϑ > 0. Then w(t) ≤ z(t) for −ι ≤ t ≤ 0 means that w(t) ≤ z(t) for all t > 0, where
D+w(t) represents the right upper Dini derivative of w(t).

3 Synchronization Control Design

For the real constants K1 and K2, take β̃ = max{(1 + K1)
2, (1 + K2)

2} in the subsequent
discussion.

3.1 Impulsive Control Design

Theorem 1 Assume that 0 < β̃ < 1 and the impulsive instants satisfy the Definition 2. If
there are matrices P1 > 0, P2 > 0, diagonal matrices Σ j > 0, j = 1, 2, 3, 4 and positive
constants θi > 0, i = 1, 2, 3, α > 0 such that

ΠΣ2Π < θ1P1, c2Σ3 < θ2P2, c3Σ4 < θ3P2, (9)

⎡

⎢⎢⎢⎢⎢⎢⎣

Θ1 Θ2 IN ⊗ (P2C) IN ⊗ (P2D) c2(L
(2) ⊗ P2�2) c3h0(L(3) ⊗ P2�3)

� Φ 0 0 0 0
� � −IN ⊗ Σ1 0 0 0
� � � −IN ⊗ Σ2 0 0
� � � � −c2 IN ⊗ Σ3 0
� � � � � −c3h0 IN ⊗ Σ4

⎤

⎥⎥⎥⎥⎥⎥⎦
< 0, (10)

α + ln β̃

Ta
+ θ1 + θ2 + θ3h0

βN0
< 0 (11)

hold, where Θ1 = −(IN ⊗P2)H1 −HT
1 (IN ⊗P2)−α IN ⊗P2, Θ2 = IN ⊗ (P1 +P2(A−

B − In)), H1 = IN ⊗ (A − In) − c1L
(1) ⊗ �1, Φ = −IN ⊗ ((2 + α)P1 − ΠTΣ1Π) and

Π = (βs j )n×n. Then the synchronization error system (6) is exponentially stable, and the
coupled INNs (2) can realize exponential synchronization.

Proof Construct Lyapunov function as

V (t) = eT (t)(IN ⊗ P1)e(t) + yT (t)(IN ⊗ P2)y(t), (12)
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where P1, P2 are positive definite matrices. Then,

V̇ (t) =2eT (t)(IN ⊗ P1)ė(t) + 2yT (t)(IN ⊗ P2)ẏ(t)

=eT (t)(−IN ⊗ P1 − IN ⊗ P1)e(t) + 2eT (t)(IN ⊗ P1)y(t)

+ yT (t)(−(IN ⊗ P2)H1 − HT
1 (IN ⊗ P2))y(t) − 2yT (t)(IN ⊗ P2)H2e(t)

+ 2yT (t)IN ⊗ (P2C) f (e(t)) + 2yT (t)IN ⊗ (P2D) f (e(t − τ(t)))

+ 2c2y
T (t)(IN ⊗ P2)(L

(2) ⊗ �2)y(t − κ0)

+ 2c3y
T (t)(IN ⊗ P2)(L

(3) ⊗ �3)

∫ t

t−h0
y(s)ds,

(13)

where H1 = IN ⊗ (A − In) − c1L
(1) ⊗ �1 and H2 = IN ⊗ (B − (A − In)).

For the diagonal matrices Σ1,Σ2 > 0, we obtain from Assumption 1 that

2yTi (t)P2C f (ei (t)) ≤ yTi (t)P2CΣ−1
1 CTP2yi (t) + f T (ei (t))Σ1 f (ei (t))

≤ yTi (t)P2CΣ−1
1 CTP2yi (t) + eTi (t)ΠTΣ1Πei (t), (14)

2yTi (t)P2D f (ei (t − τ(t))) ≤ yTi (t)P2DΣ−1
2 DTP2yi (t)

+ f T (ei (t − τ(t)))Σ2 f (ei (t − τ(t)))

≤ yTi (t)P2CΣ−1
2 CTP2yi (t)

+eTi (t − τ(t))ΠTΣ2Πei (t − τ(t)). (15)

Thus,

2yT (t)IN ⊗ (P2C)F(e(t)) ≤ yT (t)IN ⊗ (P2CΣ−1
1 CTP2)y(t)

+eT (t)IN ⊗ (ΠTΣ1Π)e(t), (16)

2yT (t)IN ⊗ (P2D)F(e(t − τ(t))) ≤ yT (t)IN ⊗ (P2DΣ−1
2 DTP2)y(t)

+eT (t − τ(t))IN ⊗ (ΠTΣ2Π)e(t − τ(t)). (17)

Similarly,

2c2y
T (t)(IN ⊗ P2)(L

(2) ⊗ �2)y(t − κ0)

≤ c2y
T (t)(IN ⊗ P2)(L

(2) ⊗ �2)(IN ⊗ Σ−1
3 )(L(2) ⊗ �2)

T (IN ⊗ P2)y(t)

+ c2y
T (t − κ0)IN ⊗ Σ3y(t − κ0),

(18)

2c3y
T (t)(IN ⊗ P2)(L

(3) ⊗ �3)

∫ t

t−h0
y(s)ds

≤ c3h0y
T (t)(IN ⊗ P2)(L

(3) ⊗ �3)(IN ⊗ Σ−1
4 )(L(3) ⊗ �3)

T (IN ⊗ P2)y(t)

+ c3h0

∫ t

t−h0
yT (s)IN ⊗ Σ4y(s)ds

(19)
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hold for the diagonal matrices Σ3,Σ4 > 0. Using the Eqs. (9)–(10) and the Schur comple-
mentary theorem,

V (t) ≤ αV (t) + θ1e
T (t − τ(t))IN ⊗ P1e

T (t − τ(t))

+ θ2y
T (t − κ0)IN ⊗ P2y

T (t − κ0) + θ3

∫ t

t−h0
yT (s)IN ⊗ P2y(s)ds

≤ αV (t) + θ1V (t − τ(t)) + θ2V (t − κ0) + θ3

∫ t

t−h0
V (s)ds

(20)

holds for t �= tk and

V (tk) = eT (tk)IN ⊗ P1e(tk) + yT (tk)IN ⊗ P2y(tk)

≤ (1 + K1)
2e(t−k )I ⊗ P1e(t

−
k ) + (1 + K2)

2y(t−k )I ⊗ P2y(t
−
k )

≤ β̃V (t−k ).

(21)

According to the Eqs. (20)–(21), consider the following comparison system,

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = αx(t) + θ1x(t − τ(t)) + θ2x(t − κ0) + θ3

∫ t

t−h0
x(s)ds + ν0, t �= tk,

x(tk) = β̃x(t−k ),

x(s) = λmax(P1)‖e(s)‖2 + λmax(P2)‖y(s)‖2 + ν0,−max{τ0, κ0, h0} ≤ s ≤ 0,

(22)

where x(t) is the unique solution for any ν0 > 0. Using the Lemma 1 and the analysis method
in the proof of the theorem 2 in the [11], the origin of the error system (6) is exponentially
stable. 
�

Corollary 1 Assume that 0 < β̃ < 1 and the impulsive instants satisfy the Definition 2, and
the matrixL(1) is irreducible with zero-row-sum. If there are positive definite matrixP2 > 0,
diagonal matrices P1 > 0, Σ j > 0, j = 1, 2, 3, 4 and positive constants θ1, θ2, θ3 > 0,
α > 0 such that the Eq. (9), the Eq. (11) and

⎡

⎢⎢⎢⎢⎢⎢⎣

Ψ1 Ψ2 P2C P2D c2λmax(L
(2)L(2)T )P2�2 c3h0λmax(L

(3)L(3)T )P2�3
� Φ1 0 0 0 0
� � −Σ1 0 0 0
� � � −Σ2 0 0
� � � � −c2λmax(L

(2)L(2)T )Σ3 0
� � � � � −c3h0λmax(L

(3)L(3)T )Σ4

⎤

⎥⎥⎥⎥⎥⎥⎦
< 0 (23)

hold, where Ψ1 = −P2(A − In) − (A − In)TP2 − αP2, Ψ2 = P1 + P2(A − B − In),
Φ1 = −(2 + α)P1 + ΠTΣ1Π and Π is defined in the Theorem 1. Then the coupled INNs
(2) can realize exponential synchronization.

Proof On the one hand, L(1) + L(1)T ≤ 0 because L(1) is irreducible with zero-row-sum.
Therefore, the following one is valid for any diagonal matrix P1 > 0,

2c1

N∑

i=1

eTi (t)P1

N∑

j=1

l(1)i j �1e j (t) = c1e
T (t)

(
L(1) + L(1)T

)
⊗ P1�1e(t) ≤ 0. (24)
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On the other hand,

2c3y
T (t)(IN ⊗ P2)(L

(3) ⊗ �3)

∫ t

t−h0
y(s)ds

≤ c3h0y
T (t)(L(3) ⊗ P2�3)

(
IN ⊗ Σ−1

4

)
(L(3) ⊗ P2�3)

T y(t)

+ c3

∫ t

t−h0
yT (s)ds(IN ⊗ Σ4)

∫ t

t−h0
y(s)ds

≤ c3h0λmax

(
L(3)L(3)T

)
yT (t)(IN ⊗ P2)

(
IN ⊗ �3Σ

−1
4 �3

)
(IN ⊗ P2)y(t)

+ c3

∫ t

t−h0
yT (s)ds(IN ⊗ Σ4)

∫ t

t−h0
y(s)ds.

(25)

2c2y
T (t)(IN ⊗ P2)(L

(2) ⊗ �2)y(t − κ0)

≤ c2y
T (t)(IN ⊗ P2)(L

(2) ⊗ �2)(IN ⊗ Σ−1
3 )(L(2) ⊗ �2)

T (IN ⊗ P2)y(t)

+ c2y
T (t − κ0)IN ⊗ Σ3y(t − κ0)

≤ c2λmax

(
L(2)L(2)T

)
yT (t)(IN ⊗ P2)

(
IN ⊗ �2Σ

−1
3 �2

)
(IN ⊗ P2)y(t)

+ c2y
T (t − κ0)(IN ⊗ Σ3)y(t − κ0).

(26)

By adopting the proceeds of the former proof in the Theorem 1, the Corollary 1 holds. 
�

3.2 Pinning Impulsive Control Design

Let I(tk) = {
j1, j2, . . . , jmk

} ⊂ {1, 2, . . . , N } represent the set of pinning-controlled nodes
at each impulsive instant t = tk . Simultaneously, readjust the node error states ei (t) such
that

Z j1(tk) = ∥∥e j1(tk)
∥∥ + ∥∥y j1(tk)

∥∥ ≥ · · · ≥ Z jm (tk) = ∥∥e jm (tk)
∥∥ + ∥∥y jm (tk)

∥∥

≥ Z jm+1(tk) = ∥∥e jm+1(tk)
∥∥ + ∥∥y jm+1(tk)

∥∥

≥ · · · ≥ Z jN (tk) = ∥∥e jN (tk)
∥∥ + ∥∥y jN (tk)

∥∥ ,

(27)

where jm,m ∈ {1, 2, . . . , N } and js �= jr if s �= r . Moreover, if
∥∥e jm (tk)

∥∥ + ∥∥y jm (tk)
∥∥ =∥∥e jm+1(tk)

∥∥ + ∥∥y jm+1(tk)
∥∥, then take jm < jm+1. Consider the coupled INNs with pinning

impulsive control as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė(t) = −e(t) + y(t), t �= tk,
Δe(tk) = (IN ⊗ K1)e(t

−
k ), i ∈ I(tk), otherwise Δe(tk) = 0,

ẏ(t) = −(IN ⊗ (A − In))y(t) − (IN ⊗ (B − (A − In)))e(t)
+(IN ⊗ C)F (e(t)) + (IN ⊗ D)F(e(t − τ(t))) + c1L

(1) ⊗ �1y(t)

+c2L
(2) ⊗ �2y(t − κ0) + c3L

(3) ⊗ �3

∫ t

t−h0
y(s)ds, t �= tk,

Δy(tk) = (IN ⊗ K2)y(t
−
k ), i ∈ I(tk), otherwise Δy(tk) = 0,

(28)

where K1 and K2 are defined in the Eq. (5). I(tk) is the index set of the pinning-controlled
nodes at tk and �I(tk) = lk is the number of the pinning-controlled nodes at t = tk .
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Definition 3 The pinning impulsive control ratio ηk at t = tk is defined as

ηk =

∑
i∈I(tk )

eTi (t−k )ei (t
−
k ) + yTi (t−k )yi (t

−
k )

N∑
i=1

eTi (t−k )ei (t
−
k ) + yTi (t−k )yi (t

−
k )

=

∑
i∈I(tk )

Zi (t
−
k )

N∑
i=1

Zi (t
−
k )

.

Theorem 2 Assume that 0 < β̃ < 1 and the impulsive instants satisfy theDefinition 2. If there
are matrices P1 > 0, P2 > 0, diagonal matrices Σ j > 0, j = 1, 2, 3, 4, positive constants
θ j , j = 1, 2, 3, α > 0, d ∈ (0, 1) and the pinning impulsive control ratio ηk ∈ (0, 1) such
that the Eqs. (9)–(10) and

(β̃ − 1)ληk + λ̄ ≤ dλ, (29)

α + ln d

Ta
+ θ1 + θ2 + θ3h0

dN0
< 0 (30)

hold, where λ̄ = max{λmax(P1), λmax(P2)} and λ = min{λmin(P1), λmin(P2)}. The origin
of the system (6) is exponentially stable and the coupled INNs (2) can realize exponential
synchronization.

Proof Clearly,

V (tk) =
∑

i∈I(tk )
eTi (tk)P1ei (tk) + yTi (tk)P2yi (tk)

+
∑

i /∈I(tk )
eTi (tk)P2ei (tk) + yTi (tk)P2yi (tk)

=
∑

i∈I(tk )
eTi (t−k )(In + K1)

TP1(In + K1)ei (t
−
k )

+ yTi (t−k )(In + K2)
TP2(In + K2)yi (t

−
k )

+
∑

i /∈I(tk )
eTi (t−k )P1ei (t

−
k ) + yTi (t−k )P2yi (t

−
k )

≤ β̃
∑

i∈I(tk )
eTi (t−k )P1ei (t

−
k )

+ yTi (t−k )P2yi (t
−
k ) +

∑

i /∈I(tk )
eTi (t−k )P1ei (t

−
k ) + yTi (t−k )P2yi (t

−
k )

≤ (β̃ − 1)ληk + λ̄

λ
V (t−k ) ≤ dV (t−k ).

(31)

holds for t = tk . By adopting the similar proceeds in the proof of Theorem 1, the desired
result holds. 
�

Take P1 = P2 = In , Σi = δi In , i = 0, 1, 2, 3, 4, then the following criterion holds for
pinning control.

Theorem 3 Assume that 0 < β̃ < 1 and the impulsive instants satisfy the Definition 2. If
there are real scalars δi > 0, i = 0, 1, 2, 3, 4, d ∈ (β̃, 1) such that

1 − d

1 − β̃
≤ ηk < 1, (32)
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α + ln d

Ta
+ δ2λmax(Π

TΠ) + c2δ3 + c3δ4h0
dN0

< 0 (33)

hold, whereηk is the pinning impulsive control ratio,α = max{−2+δ0+δ1λmax(Π
TΠ), α1},

α1 = δ−1
0 λmax((A−B)T (A−B))+δ−1

1 λmax(CCT )+δ−1
2 λmax(DDT )+δ−1

3 c2λmax(L
(2)L(2)T )

λmax(�2�
T
2 ) + δ−1

4 c3h0λmax(L
(3)L(3)T )λmax(�3�

T
3 ) + λmax(−H1 − HT

1 ), H1 = IN ⊗ (A −
In) − c1L(1) ⊗ �1 and Π is defined in the Theorem 1. The coupled INNs (2) can realize
exponential synchronization.

Proof For δi > 0, i = 0, 1, 2, 3, 4, we have

V̇ (t) ≤ − 2eT (t)e(t) + 2eT (t)y(t) − yT (t)(H1 + HT
1 )y(t) − 2yT (t)H2e(t)

+ δ−1
1 yT (t)(IN ⊗ CCT )y(t) + δ1e

T (t)(IN ⊗ ΠTΠ)e(t)

+ δ−1
2 yT (t)(IN ⊗ DDT )y(t) + δ2e

T (t − τ(t))(IN ⊗ ΠTΠ)e(t − τ(t))

+ c2λmax(L
(2)L(2)T )

δ3
yT (t)IN ⊗ �2�

T
2 y(t) + c2δ3y

T (t − κ0)y(t − κ0)

+ c3h0λmax(L
(3)L(3)T )

δ4
yT (t)IN ⊗ �3�

T
3 y(t) + c3δ4

∫ t

t−h0
yT (s)y(s)ds

≤(−2 + δ0 + δ1λmax(Π
TΠ))eT e(t)

+ α1y
T (t)y(t) + δ2λmax(Π

TΠ)eT (t − τ(t))e(t − τ(t))

+ c2δ3y
T (t − κ0)y(t − κ0) + c3δ4

∫ t

t−h0
yT (s)y(s)ds

≤ αV (t) + δ2λmax(Π
TΠ)V (t − τ(t)) + c2δ3V (t − κ0) + c3δ4

∫ t

t−h0
V (s)ds.

(34)

According to the Eq. (31), this criterion holds. 
�

Remark 2 Let η0 = 1 − d

1 − β̃
and N be the size of the coupled INNs. It is clear that

η0
(
1 + ∑N

i=2
Z ji (t

−
k )

Z j1 (t−k )

)
≤ 1 if η0N ≤ 1. Thus, η0N ≤ 1 implies that ηk(tk) =

Z j1(t
−
k )

∑N
i=1 Z ji (t

−
k )

= 1

1 + ∑N
i=2

Z ji (t
−
k )

Z j1 (t−k )

∈ [η0, 1), in which the pinning impulsive control ratio

ηk satisfies the the Eq. (32). Therefore, the coupled INNs (2) can do realize synchronization
by exerting the impulsive control on one node at each impulsive time tk if the lower bound
η0 of the pinning control ratio ηk satisfies Nη0 < 1. Although the pinning impulsive control
with one controlled node can reduce the complexity of the controller design, it will lead small
Ta which can increase the control cost. As a consequence, there is a tradeoff between the
control cost and simple controller design in real practice.

Remark 3 The ratio ηk in Definition 3 is dependent on both the impulsive instant tk and the
states ei (·) and yi (·). Thus, at each impulsive instant tk , the pinning control ratio ηk cannot be
employed to determine the controlled nodes in the the Eq. (27) directly. However, the lower
bound η0 of the control ratio ηk can help us to determine the number of the pinning controlled
nodes. If η0N ≤ 1, the pinning controlled node is the first one in the Eq. (27). If η0N > 1,
assume that the first s0 (s0 ≤ N ) nodes should be pinning controlled in the Eq. (27), then
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we next show that s0
∑N

i=1 Z ji (t
−
k ) ≤ N

∑s0
i=1 Z ji (t

−
k ) if the Eq. (27) holds. Clearly, the Eq.

(27) implies that

N
s0∑

i=1

Z ji (t
−
k ) − s0

N∑

i=1

Z ji (t
−
k ) = (N − s0)

s0∑

i=1

Z ji (t
−
k ) − s0

N∑

i=s0+1

Z ji (t
−
k )

≥ (N − s0)s0Z js0
(t−k ) − s0(N − s0)Z js0+1(t

−
k )

≥ 0.

(35)

Therefore, take

ηk =
∑s0

i=1 Z ji (t
−
k )

∑N
i=1 Z ji (t

−
k )

≥ s0
N

≥ η0, (36)

which implies that s0 > Nη0. Thus, the minimal value of the integer η0 is [Nη0] + 1, where
[·] is the integral function and N represents the size of the coupled networks.

Remark 4 According to the Eq. (32) and the Eq. (33), there are three steps to design the
pinning impulsive control. 1). Choose the positive constants δi , i = 0, 1, . . . , 4 such that
the parameter α is a positive constant in the Eq. (33), 2). for any given pinning control ratio
0 < ηk < 1, determine the constant d in the Eq. (32) satisfied 0 < d < 1, 3). for given N0,
determine the average impulsive interval Ta according to the Eq. (33).

Remark 5 Note that the synchronization criteria here are not dependent on τ̇ (t), i. e. the
derivative of time delay function. Thus, our results do not require that the transmission τ(t)
is a derivable function [19–21], which shows that our developed method is more applicable
in designing the synchronization controller for the coupled INNs with various transmission
delays.

4 Numerical Examples

The identical node of the considered coupled INNs is described as

üi (t) = −Au̇i (t) − Bui (t) + C f (ui (t)) + D f (ui (t − τ0)), (37)

where ui (t) ∈ R
2, i = 1, 2, f (ui ) = [tanh(ui1), tanh(ui2)]T , A = diag{0.88, 1.2}, B = I2,

τ0 = 1 and

C =
(
2.1 −0.15
−5 3.1

)
, D =

(−1.5 −0.1
−0.2 −2.5

)
.

The phase plot of the above-mentioned system is given in the Fig. 1.

Example 1 The considered structures of the coupled INNs are illustrated in the Fig. 2. Noting
thatL(1) is irreducible with zero-row-sum, the Corollary 1 can be utilize to design the pinning
impulsive controller for the coupled INNs. Suppose that �1 = �2 = �3 = I2, c1 = c3 = 0.2,
c2 = 0.1. Take α = 7, θ1 = θ2 = θ3 = 0.5 and solve the Eq. (9) and the Eq. (23) inMATLAB
environment yields

P1 =
[
1732.5 4.7
4.7 691.1

]
, P2 =

[
322.5455 0.4637
0.4637 62.8682

]
,

Σ1 = diag{9809.8, 1593.4}, Σ2 = diag{741.5999, 334.6486},
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Fig. 1 The phase plot of the
system (37)

-1.5 -1 -0.5 0 0.5 1 1.5
x
i1

-6

-4

-2

0

2

4

6

x i
2

Fig. 2 a The delay-free case, b the transmittal delay case, c the distributed-delay case in Example 1

Fig. 3 Time histories of the variables (a). xi1 and (b). xi2 of the coupled INNs in Example 1

Σ3 = diag{1261.4, 298.1}, Σ4 = diag{762.7841, 155.3765}.
The time histories of the coupled INNs without impulsive control are given in the Fig. 3.
Obviously, the coupled INNs cannot realize the synchronization without control input. Set
β̃ = 0.36 and N0 = 2, we can obtain that Ta < 0.055 according to the Eq. (11). Take
tk = 0.1k, k = 1, 2, . . ., the time histories of the state variables are shown in the Fig. 4 and
the time histories of the synchronization error are illustrated in the Fig. 5. Clearly, the coupled
INNs with identical nodes (37) can achieve the synchronization under impulsive control.
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Fig. 4 Time histories of the variable (a). xi1 and (b). xi2 of the coupled INNs with impulsive control in
Example 1
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Fig. 5 Time histories of the synchronization error variables (a). ei1 and (b). ei2 with impulsive control in
Example 1

Example 2 Different from the symmetrical couplingmatrices in Example 1, the coupled INNs
with asymmetric coupling matrices are considered in this example. The effectiveness of the
Theorem 3 is verified by designing the pinning impulsive control. The considered coupling
structures are illustrated in the Fig. 6.

Suppose that the coupling strength c1 = 1.2, c2 = 1, c3 = 0.5, and the inner coupling
matrices �1 = diag{2, 3}, �2 = I2, �3 = diag{0.8, 0.5}. Take δ0 = 0.1, δ1 = 15, δ2 = 4,
δ3 = 1, δ4 = 3, K1 = K2 = −0.65I2 and d = 0.86, the lower bound of the pinning
impulsive control ratio ηk is η0 = 0.1595 for k = 1, 2, . . ., we have α = 13.1 which implies
that Ta < 0.0054 holds for N0 = 4. Note that η0 = 0.1595 means that 6η0 = 0.9 < 1.
Therefore, the impulsive control can expended on only 1 node at each impulsive instant tk ,
in order to obtain the synchronization of the coupled INNs.

For numerical simulation, set the impulsive instant tk = 0.02k, k = 1, 2, · · · , the evo-
lutions of all nodes and the synchronization error system are given in the Figs. 7 and 8,
individually. Under the pinning control exerted on 1 node at each impulsive time, it is clear
that the coupled INNs can achieve synchronization.

5 Conclusion

The synchronization controller design issue for coupled INNs with hybrid coupling has
been investigated here. The distributed-delay-dependent synchronization criteria have been
given based on impulsive control and pinning control. Several easy-checked algebraic criteria
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Fig. 6 a The delay-free case, b the transmittal delay case, c the distributed-delay case in Example 2
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Fig. 7 Time histories of the variables (a). xi1 and (b). xi2 of the coupled INNs with impulsive control in
Example 2
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Fig. 8 Time histories of the synchronization error variables (a). ei1 and (b). ei2 of the coupled INNs with
impulsive control in Example 2

has been introduced to reduce the calculated amount of the criteria based on linear matrix
inequalities. The selection strategy of the pinning controlled nodes is given by using the lower
bound η0 of the pinning control ration ηk at each impulsive control instant. Specifically, if
Nη0 ≤ 1, the controlled node is the first one in the Eq. (27), else the pinning impulsive
controlled nodes are the first [Nη0] + 1 nodes in the Eq. (27), where [·] is the integral
function and N represents the size of the coupled networks. Finally, two numerical examples
are outlined to exhibit the capability of our control strategy. In the future work, as discussed
in the works [42–45], the finite-time stability and synchronization problems of the coupled
complex/octonionneural networks are investigatedbyusing the impulsive control andpinning
control strategy proposed in the present paper.
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