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Abstract
In this paper, we consider Clifford-valued fuzzy cellular neural networks with time-varying
delays. In order to avoid the inconvenience caused by the non-commutativity of the multipli-
cation of Clifford numbers, we first decompose the considered n-dimensional Clifford-valued
systems into 2mn-dimensional real-valued systems. Then by using the Banach fixed point
theorem and a proof by contradiction, we establish sufficient conditions ensuring the exis-
tence, the uniqueness and the global exponential stability of S p-almost periodic solutions
for the considered neural networks. Finally, we give an example to illustrate the effective-
ness of the obtained results. Our results are new even when the considered neural networks
degenerates to real-valued, complex-valued and quaternion-valued neural networks.

Keywords Clifford-valued fuzzy cellular neural networks · S p-almost periodic solution ·
Global exponential stability

1 Introduction

Fuzzy cellular neural networks are a class of neural networks that combine fuzzy operations
(fuzzy AND and fuzzy OR) with cellular neural networks [1,2]. They have been found many
applications in various fields such as physics, chemistry, biology, economics, sociology,
medicine andmeteorology [3–6]. Since all of these applications are related to their dynamics,
their various dynamic behaviors are heavily studied [7–17]. For example, in [7], the existence
and global attractivity of a unique almost periodic solution for a class of fuzzy cellular
neural networks with multi-proportional delays was investigated by applying contraction
mapping fixed point theorem and differential inequality techniques, in [8], the existence
and exponential stability of almost periodic solutions for a class of fuzzy cellular neural
networks with time-varying delays was studied by the almost periodic function theory and
differential inequality techniques, in [10], the global exponential convergence of T-S fuzzy
complex-valued neural networks with time-varying delays and impulsive effects is discussed
by employing Lyapunov functional method and matrix inequality technique, in [11], the
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existence and global exponential stability of periodic solutions of quaternion-valued fuzzy
cellular neural networks with time-varying delays was established by using the Schauder
fixed point theorem and by constructing an appropriate Lyapunov function.

Clifford-valued neural networks are a kind of neural networks whose state variables,
connectionweights and external inputs areClifford numbers. They are generalizations of real-
valued, complex-valued and quaternion-valued neural networks. They have been proved to
be superior to real-valued, complex-valued and quaternion-valued neural networks in dealing
with high-dimensional data, multi-level data and spatial geometric transformation [18,19].
However, due to the fact that the multiplication of Clifford numbers does not satisfy the
commutative law, the current research on the dynamics of Clifford-valued neural networks
is still rare [20–24]. For example, in [20], authors studied the existence of anti-periodic
solutions for a class of Clifford-valued inertial Cohen–Grossberg networks by a coincidence
degree theory and constructing a suitable Lyapunov functional, in [22], authors investigated
the stability of Clifford-valued recurrent neural networks with time delays in terms of a
linear matrix inequality, in [23], authors considered the global asymptotic almost periodic
synchronization of Clifford-valued cellular neural networks with discrete delays based on
the Banach fixed point theorem and Lyapunov functional method.

Periodic oscillation, almost periodic oscillation and stability of solutions are important
dynamic characteristics of dynamic systems. Therefore, the periodic and almost periodic
oscillations, and the stability of solutions of differential equations, neural network systems,
ecosystems and physical systems have been extensively studied [25–47]. The almost peri-
odicity is a generalization of the periodicity, which was invented by Bohr [48,49]. The
concept of Bohr’s almost periodic functions has attracted wide attention of mathematicians
since it was put forward, which has led to various extensions and variants of the concept.
However, Bohr’s almost periodic functions are defined on the class of uniformly continuous
functions. Stepanov [50] proposed a weaker concept of almost periodic functions in Bohr’s
sense, while Stepanov’s almost periodic function may be discontinuous. For more details on
Stepanov almost periodic functions, see [51,52]. But until today, there is no research on the
existence and stability of S p-almost periodic solutions of fuzzy cellular neural networks with
time-varying delays. This is an interesting and valuable question.

Motivated by the above discussion, in this paper,we consider the followingClifford-valued
fuzzy cellular neural network with time-varying delays:

x ′
i (t) = −ai (t)xi (t) +

n∑

j=1

bi j (t) f j
(
x j (t)

) +
n∑

j=1

di j (t)μ j (t)

+
n∧

j=1

αi j (t)g j
(
x j (t − τi j (t))

) +
n∨

j=1

βi j (t)g j
(
x j (t − τi j (t))

)

+
n∧

j=1

Ti j (t)μ j (t) +
n∨

j=1

Si j (t)μ j (t) + Ii (t), (1)

where i ∈ {1, 2, . . . , n} =: I , A is a Clifford algebra, n is the number of neurons in layers;
xi (t) ∈ A,μi (t) ∈ A and Ii (t) ∈ A are the state, input and bias of the i th neuron, respectively;
ai > 0 represents the rate with which the i th neuron will reset its potential to the resting state
in isolation when they are disconnected from the network and the external inputs at time t ,
αi j (t) ∈ A, βi j (t) ∈ A, Ti j (t) ∈ A, and Si j (t) ∈ A are the elements of fuzzy feedback
MIN template, fuzzy feedback MAX template, fuzzy feed forward MIN template and fuzzy
feed forward MAX template, respectively; bi j (t) ∈ A and di j (t) ∈ A are the elements of
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feedback template and feed forward template,
∧
,
∨

denote the fuzzy AND and fuzzy OR
operations, respectively, which will be defined in the next section; f j and g j : A → A are
the activation functions; τi j (t) ≥ 0 corresponds to transmission delays at time t .

The initial conditions of system (1) are

xi (s) = ϕi (s), s ∈ [−τ, 0],
where τ = max1≤i, j≤n{τ i j }, ϕi ∈ C([−τ, 0],A), i ∈ I .

Our main aim of this paper is to study the existence and global stability of S p-almost
periodic solutions of system (1). As we mentioned that there is no research on the S p-almost
periodicity of fuzzy cellular neural networks with time-varying delays. Even when system
(1) degenerates into real-valued, complex-valued, and quaternion-valued systems, the results
of this paper are brand new.

The rest of the paper is organized as follows. In Sect. 2, we make some preparation.
In Sect. 3, we state and prove the existence, the uniqueness and the global exponential
stability of the S p-almost periodic solution. In Sect. 4, we present an example to illustrate
the effectiveness of the obtained results. In Sect. 5, we give a conclusion.

2 Preliminaries

The real Clifford algebra over Rm is defined as

A =
{ ∑

A⊆{1,2,...,m}
aAeA, aA ∈ R

}
,

where eA = eh1eh2 · · · ehν with A = {h1, h2, . . . , hν}, 1 ≤ h1 < h2 < · · · < hν ≤ m.

Moreover, e∅ = e0 = 1 and e{h} = eh, h = 1, 2, . . . ,m are called Clifford generators which
satisfy the relations:

{
eμeν + eνeμ = 0, μ 	= ν,

e2μ = −1, μ = 1, 2, . . . ,m.

For simplicity, when one element is the product of multiple Clifford generators, we will
write its subscripts together. For example e1e2 = e12 and e3e7e4e5 = e3745. We define
Λ = {∅, 1, 2, . . . , A, . . . , 12 · · ·m}, then it is easy to see that

A =
{ ∑

A∈Λ

aAeA, aA ∈ R

}
.

For every x, y ∈ R, we define

x
∧

y =
{
x, if x ≤ y,
y, if x > y

and

x
∨

y =
{
y, if x ≤ y,
x, if x > y.

For every x = ∑
A∈Λ x AeA, y = ∑

A∈Λ yAeA ∈ A, we define x
∧

y = ∑
A∈Λ(x A ∧

yA)eA
and x

∧
y = ∑

A∈Λ(x A ∨
yA)eA.
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For any x = ∑
A x A ∈ A, the principal involution of x is defined as

x =
∑

A∈Λ

x AeA,

where eA = (−1)
n[A](n[A]+1)

2 eA, if A = ∅, then n[A] = 0 and if A = h1h2 · · · hv ∈ Λ, then
n[A] = v.

It is easy to see that eAeA = eAeA = 1 and xy = yx for A ∈ Λ, x, y ∈ A.
The derivative of function z = ∑

A z
AeA : R → A is given by ż(t) = ∑

A∈Λ ż A(t)eA,

where zA : R → R.
Due to the fact that eBeA = (−1)

n[A](n[A]+1)
2 eBeA, we can simplify and express eBeA = eC

or eBeA = −eC with eC being some basis of Clifford algebra. For example, e42e27 =
−e42e27 = −e4e2e2e7 = e4e7 = e47. So it is possible to find a unique corresponding basis
eC for the given eBeA. Define

n[B · A] =
{
0, if eBeA = eC ,

1, if eBeA = −eC ,

then eBeA = (−1)n[B·A]eC . In addition, for any Θ ∈ A, define ΘC satisfying ΘB·A =
(−1)n[B·A]ΘC for eBeA = (−1)n[B·A]eC . Therefore,

ΘB·AeBeA = ΘB·A(−1)n[B·A]eC = (−1)n[B·A]ΘC (−1)n[B·A]eC = ΘCeC

and

Θ =
∑

C∈Λ

ΘCeC ∈ A.

For example, for the second term in system (1), we have

n∑

j=1

bi j (t) f j
(
x j (t)

) =
n∑

j=1

∑

C∈Λ

bCi j (t)eC
∑

B∈Λ

f Bj
(
x j (t)

)
eB

=
n∑

j=1

∑

A∈Λ

∑

B∈Λ

(−1)n[A·B]bA·B̄
i j (t)(−1)n[A·B]eAeB f Bj

(
x j (t)

)
eB

=
n∑

j=1

(−1)2n[A·B] ∑

A∈Λ

∑

B∈Λ

bA·B̄
i j (t) f Bj

(
x j (t)

)
eAeBeB

=
n∑

j=1

∑

A∈Λ

∑

B∈Λ

bA·B̄
i j (t) f Bj

(
x j (t)

)
eA, i ∈ I .

To overcome the difficulty of the non-commutativity of the Clifford number’s multiplica-
tion, according to the above discussion, we can transform (1) into the following equivalent
real-valued system:

ẋ A
i (t) = −ai (t)x

A
i (t) +

n∑

j=1

∑

B∈Λ

bA·B
i j (t) f Bj

(
x j (t)

) +
n∑

j=1

∑

B∈Λ

d A·B
i j (t)μB

j (t)

+
n∧

j=1

∑

B∈Λ

αA·B
i j (t)gBj (x j (t − τi j (t)))
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+
n∨

j=1

∑

B∈Λ

β A·B
i j (t)gBj (x j (t − τi j (t)))

+
n∧

j=1

∑

B∈Λ

T A·B
i j (t)μB

j (t) +
n∨

j=1

∑

B∈Λ

SA·B
i j (t)μB

j (t) + I Ai (t), i ∈ I (2)

and

x A
i (s) = ϕA

i (s), i ∈ I , s ∈ [−τ, 0],
where

xi (t) =
∑

A∈Λ

x A
i (t)eA, Ii (t) =

∑

A∈Λ

I Ai (t)eA,

bi j (t) =
∑

C∈Λ

bCi j (t)eC , bA·B̄
i j (t) = (−1)n[A·B̄]bCi j (t),

di j (t) =
∑

C∈Λ

dCi j (t)eC , d A·B̄
i j (t) = (−1)n[A·B̄]dCi j (t),

αi j (t) =
∑

C∈Λ

αC
i j (t)eC , αA·B̄

i j (t) = (−1)n[A·B̄]αC
i j (t),

βi j (t) =
∑

C∈Λ

βC
i j (t)eC , β A·B̄

i j (t) = (−1)n[A·B̄]βC
i j (t),

Ti j (t) =
∑

C∈Λ

bCi j (t)eC , T A·B̄
i j (t) = (−1)n[A·B̄]TC

i j (t),

Si j (t) =
∑

C∈Λ

SCi j (t)eC , SA·B̄
i j (t) = (−1)n[A·B̄]SCi j (t),

f j (x j (t − τi j (t))) =
∑

B∈Λ

f Bj (xC1
j (t − τi j (t)), x

C2
j (t − τi j (t)), . . . ,

xC2m

j (t − τi j (t)))eB =
∑

B∈Λ

f Bj (x j (t − τi j (t)))eB ,

g j (x j (t)) =
∑

B∈Λ

gBj (xC1
j (t), xC2

j (t), . . . , xC2m

j (t))eB =
∑

B∈Λ

gBj (x j (t))eB ,

for eAeB = (−1)n[A·B]eC .

Remark 1 If x = (x01 , x
1
1 , . . . , x

1·2····m
1 , x02 , x

1
2 , . . . , x

1·2····m
2 , . . . , x0n , x

1
n , . . . , x

1·2····m
n )T :=

{x A
i } is a solution to system (2), then x = (x1, . . . , xn)T must be a solution to (1), where

xi = ∑
A∈Λ

x A
i e

A, i = 1, 2, . . . , n, and vise versa.

Let (X, ‖ · ‖) be a Banach space and BC(R,X) be the set of all bounded continuous
functions from R to X.

Definition 1 [53] A function f ∈ BC(R,X) is said to be almost periodic if for every ε > 0
there exists a positive number 
 such that every interval of length 
 contains a number τ such
that

‖ f (t + τ) − f (t)‖ < ε, t ∈ R.

The τ is called the ε-almost period of f . Denote by AP(R,X) the set of all such functions.
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Lemma 1 [53] For each ε > 0, a finite family of almost periodic functions has a common
set of ε-almost periods.

Definition 2 [53] Let p ∈ [1,∞). Denote by L p
loc(R,X) the space of all functions from R

into X which are locally p-integrable in the sense of Bochner-Lebesgue. A function f ∈
L p
loc(R,X) is called S p-bounded if

‖ f ‖S p = sup
t∈R

( ∫ t+1

t
‖ f (s)‖pds

) 1
p

< ∞.

We denote by L p
s (R,X) the set of all such functions.

Definition 3 [53] A function f ∈ L p
s (R,X) is said to be S p-almost periodic, if for every

ε > 0 there exists 
 > 0 such that every interval of length 
 contains a number τ such that

sup
t∈R

[ ∫ t+1

t
‖ f (s + τ) − f (s)‖pds

] 1
p

< ε.

We denote by S p AP(R,X) the set of all such functions.

Definition 4 A function f = ∑n
i=1 f AeA : R → A is said to be S p-almost periodic, if

f A ∈ S p AP(R,R) for all A ∈ Λ.

Lemma 2 [53] S p AP(R,X) is a Banach space with the norm

‖ f ‖S p = sup
t∈R

( ∫ t+1

t
‖ f (s)‖pds

) 1
p

.

Lemma 3 [54] If a ∈ AP(R,R), and f ∈ S p AP(R,X), then a f ∈ S p AP(R,X).

Lemma 4 [53] If x ∈ S p AP(R,X) and τ ∈ AP(R,R), then x(· − τ(·)) ∈ S p AP(R,X).

Similar to the proof of Lemma 3.7 in [53], one can prove

Lemma 5 Let f ∈ C(X,X) and satisfy the Lipschiz condition. If g ∈ S p AP(R,X), then
f (g(·)) ∈ S p AP(R,X).

From the relevant results of [55], one can easily obtain that

Lemma 6 For i = 1, 2, . . . , n, ai ∈ BC(R,R) with inf t∈R ai (t) > 0. If f ∈ BC(R,Rn),
then the linear system

x ′(t) = A(t)x(t) + f (t)

has a unique bounded solution

x(t) =
∫ t

−∞
e
∫ t
s A(u)du f (s)ds,

where A(t) = diag(−a1(t),−a2(t), . . . , −an(t)).

Throughout the rest of this paper. For convenience, for a bounded and continuous function
f : R → R, we denote f = inf

t∈R | f (t)| and f = sup
t∈R

| f (t)|.
Before ending this section, we introduce the following lemma.

123



Sp-Almost Periodic Solutions of Clifford-Valued Fuzzy… 1755

Lemma 7 [56] Suppose x and y are two states of system (2). Then we have

∣∣∣
n∧

j=1

αi j (t) f j (x) −
n∧

j=1

αi j (t) f j (y)
∣∣∣ ≤

n∑

j=1

|αi j (t)|| f j (x) − f j (y)|, i ∈ I ,

∣∣∣
n∨

j=1

βi j (t) f j (x) −
n∨

j=1

βi j (t) f j (y)
∣∣∣ ≤

n∑

j=1

|βi j (t)|| f j (x) − f j (y)|, i ∈ I .

3 Main Results

In this section, we will establish some results for the existence, the uniqueness and the global
exponential stability of S p-almost periodic solutions of system (2).

Now, we let D = {x |x = {x A
i } ∈ S p AP(R,R2m ·n)} and equip it with the

norm ‖x‖S p = max
i∈I

{
max
A∈Λ

|x A
i |S p

}
, where |x A

i |S p = supt∈R
( ∫ t+1

t |x A
i (s)|pds

) 1
p
.

Then, we know that D is a Banach space. Let ϕ0 = {(ϕ0)
A
i }, where (ϕ0)

A
i (t) =

∫ t
−∞ e− ∫ t

s ai (u)du
( ∑n

j=1
∑

B∈Λ d A·B
lh (s)μB

j (s)

+
n∧

h=1

∑
B∈Λ

T A·B
i j (s)μB

j (s) +
n∨

h=1

∑
B∈Λ

SA·B
i j (s)μB

j (s) + I Ai (s)
)
ds, i ∈ I , A ∈ Λ and r be

a constant satisfying r ≥ ‖ϕ0‖S p .
Throughout this paper, we assume that the following conditions hold:

(H1) Functions ai ∈ AP(R,R+), τi j ∈ AP(R,R+), bA·B
i j , αA·B

i j , β A·B
i j , μB

j ∈ AP(R,R)

and d A·B
i j , I Ai , T A·B

i j , SA·B
i j ∈ S p AP(R,R), where i, j ∈ I , A, B ∈ Λ.

(H2) There exist positive constants L f
j , L

g
j such that for any u, v ∈ A, functions f Bj , gBj ∈

C(A,R) satisfying

| f Bj (u) − f Bj (v)| ≤ L f
j

∑

C∈Λ

|uC − vC |,

|gBj (u) − gBj (v)| ≤ Lg
j

∑

C∈Λ

|uC − vC |

and f Bj (0) = gBj (0) = 0, where j ∈ I , A, B ∈ Λ.

(H3) max
i∈I ,A∈Λ

{(
1
pai

)1/p
QA

i

}
=: ρ < 1, where QA

i =
n∑
j=1

2m
( ∑

B∈Λ

b
A·B
i j L f

j +
∑
B∈Λ

αA·B
i j Lg

j + ∑
B∈Λ

β
A·B
i j Lg

j

)
.

Lemma 8 If b j ∈ S p AP(R,R) and ai j ∈ AP(R,R), then
∧n

j=1 ai j (·)b j (·), ∨n
j=1 ai j (·)

b j (·) ∈ S p AP(R,R), i ∈ I .

Proof Since ai j ∈ AP(R,R) and b j ∈ S p AP(R,R), we have

sup
t∈R

|ai j (t)| := Ki j < ∞ and |b j |S p := K j < ∞.
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Now, for given any εi j , ε j > 0, let τ be a common almost period of ai j and b j . By using
Minkowski’s inequality, we have

sup
t∈R

( ∫ t+1

t

∣∣∣
n∧

j=1

ai j (s + τ)b j (s + τ) −
n∧

j=1

ai j (s)b j (s)
∣∣∣
p
ds

)1/p

≤ sup
t∈R

( ∫ t+1

t

∣∣∣
n∧

j=1

ai j (s + τ)b j (s + τ) −
n∧

j=1

ai j (s)b j (s + τ)

∣∣∣
p
ds

)1/p

+ sup
t∈R

( ∫ t+1

t

∣∣∣
n∧

j=1

ai j (s)b j (s + τ) −
n∧

j=1

ai j (s)b j (s)
∣∣∣
p
ds

)1/p

≤ sup
t∈R

[ ∫ t+1

t

n∑

j=1

|b j (s + τ)|p|ai j (s + τ) − ai j (s)|pds
]1/p

+ sup
t∈R

[ ∫ t+1

t

n∑

j=1

|ai j (s)|p|b j (s + τ) − b j (s)|pds
]1/p

≤
n∑

j=1

(
K jεi j + Ki jε j

)
, i ∈ I ,

which implies

n∧

j=1

bi j (·)a j (·) ∈ S p AP(R,R), i ∈ I .

Similarly, we can get

n∨

j=1

bi j (·)a j (·) ∈ S p AP(R,R), i ∈ I .

�

Theorem 1 Assume that (H1)-(H3) hold, then system (2) has a unique S p-almost periodic
solution in the region D∗ = {ϕ|ϕ ∈ D, ‖ϕ − ϕ0‖S p ≤ ρr

1−ρ
}.

Proof For every ϕ ∈ D, we consider the linear differential equation system

ẋ A
i (t) = −ai (t)x

A
i (t) +

n∑

j=1

∑

B∈Λ

bA·B
i j (t) f Bj

(
ϕ j (t)

) +
n∑

j=1

∑

B∈Λ

d A·B
i j (t)μB

j (t)

+
n∧

j=1

∑

B∈Λ

αA·B
i j (t)gBj (ϕ j (t − τi j (t))) +

n∨

j=1

∑

B∈Λ

β A·B
i j (t)

×gBj (ϕ j (t − τi j (t))) +
n∧

j=1

∑

B∈Λ

T A·B
i j (t)μB

j (t)

+
n∨

j=1

∑

B∈Λ

SA·B
i j (t)μB

j (t) + I Ai (t), i ∈ I . (3)
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Combining (H1) and Lemma 6, we deduce that system (3) has a unique bounded solution

(xϕ)Ai (t) =
∫ t

−∞
e− ∫ t

s ai (u)du
[ n∑

j=1

∑

B∈Λ

bA·B
i j (s) f Bj

(
ϕ j (s)

)

+
n∑

j=1

∑

B∈Λ

d A·B
i j (s)μB

j (s) +
n∧

j=1

∑

B∈Λ

αA·B
i j (s)gBj (ϕ j (s − τi j (s)))

+
n∨

j=1

∑

B∈Λ

β A·B
i j (s)gBj (ϕ j (s − τi j (s)))

+
n∧

j=1

∑

B∈Λ

T A·B
i j (s)μB

j (s) +
n∨

j=1

∑

B∈Λ

SA·B
i j (s)μB

j (s) + I Ai (s)

]
ds

:=
∫ t

−∞
e− ∫ t

s ai (u)du(ζϕ)Ai (s)ds, i ∈ I , A ∈ Λ. (4)

Now, we define a mapping Φ : D∗ → D by setting (Φϕ)(t) = {(xϕ)Ai (t)}, ∀ϕ ∈ D∗. First,
we show that the mapping Φ is a self-mapping from D∗ to D∗. By (H1) and Lemmas 3-5,
we have (ζϕ)Ai (t) ∈ S p AP(R,R). Let εi > 0, there exist Gi > 0 and 
 > 0 such that every
interval of length 
 contains a number τ such that

sup
t∈R

[ ∫ t+1

t
|(ζϕ)Ai (s)|pds

] 1
p

< Gi , (5)

sup
t∈R

[ ∫ t+1

t
|(ζϕ)Ai (s + τ) − (ζϕ)Ai (s)|pds

] 1
p

< εi (6)

and

|ai (t + τ) − ai (t)| < εi , i ∈ I .

By the Minkowski’s inequality and (4)–(6), we obtain

sup
t∈R

[ ∫ t+1

t

∣∣∣
∫ w+τ

−∞
e− ∫ w+τ

s ai (u)du(ζϕ)Ai (s)ds

−
∫ w

−∞
e− ∫ w

s ai (u)du(ζϕ)Ai (s)ds
∣∣∣
p
dw

] 1
p

= sup
t∈R

[ ∫ t+1

t

∣∣∣
∫ w

−∞
e− ∫ w

s ai (u+τ)du(ζϕ)Ai (s + τ)ds

−
∫ w

−∞
e− ∫ w

s ai (u)du(ζϕ)Ai (s)ds
∣∣∣
p
dw

] 1
p

≤ sup
t∈R

[ ∫ t+1

t

∣∣∣
∫ w

−∞
e− ∫ w

s ai (u)du((ζϕ)Ai (s + τ) − (ζϕ)Ai (s)
)
ds

∣∣∣
p
dw

] 1
p

+ sup
t∈R

[ ∫ t+1

t

∣∣∣
∫ w

−∞
e− ∫ w

s ai (u+τ)du(ζϕ)Ai (s + τ)ds

−
∫ w

−∞
e− ∫ w

s ai (u)du(ζϕ)Ai (s + τ)ds
∣∣∣
p
dw

] 1
p
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≤ sup
t∈R

[ ∫ t+1

t

∫ w

−∞
e− ∫ w

s pai (u)du
∣∣(ζϕ)Ai (s + τ) − (ζϕ)Ai (s)

∣∣pdsdw
] 1

p

+ sup
t∈R

[ ∫ t+1

t

∣∣∣
∫ w

−∞

(
e− ∫ w

s ai (u+τ)du

−e− ∫ w
s ai (u)du

)
(ζϕ)Ai (s + τ)ds

∣∣∣
p
dw

] 1
p

≤ sup
t∈R

[ ∫ t+1

t

∫ w

−∞
e− ∫ w

s pai (u)du
∣∣(ζϕ)Ai (s + τ) − (ζϕ)Ai (s)

∣∣pdsdw
] 1

p

+ sup
t∈R

[ ∫ t+1

t

∣∣∣
∫ w

−∞
e−ai (w−s)

( ∫ w

s
|ai (u + τ)

−ai (u)|du
)
(ζϕ)Ai (s + τ)ds

∣∣∣
p
dw

] 1
p

≤ sup
t∈R

[ ∫ ∞

0
e−paiσ

∫ t+1

t

∣∣(ζϕ)Ai (w − σ + τ) − (ζϕ)Ai (w − σ)
∣∣pdwdσ

] 1
p

+ εi sup
t∈R

[ ∫ t+1

t

∫ ∞

0
e−paiσ σ p|(ζϕ)Ai (w − σ + τ)|pdσdw

] 1
p

< εi (
1

pai
)1/p + εi Gi

[ ∫ ∞

0
e−paiσ σ pdσ

]1/p
,

where σ = w − s, i ∈ I , which implies that (xϕ)Ai ∈ S p AP(R,R), i ∈ I , A ∈ Λ. Hence,
ΦD ⊂ S p AP(R,R2m ·n). In addition, for any ϕ ∈ D∗, we have

‖ϕ‖S p ≤ ‖ϕ − ϕ0‖S p + ‖ϕ0‖S p ≤ ρr

1 − ρ
+ r = r

1 − ρ

and by the Minkowski’s inequality, we have

|(Φϕ)Ai − (ϕ0)
A
i |S p

≤ sup
t∈R

{[∫ t+1

t

∣∣∣∣
∫ w

−∞
e− ∫ w

s ai (u)du
( n∑

j=1

∑

B∈Λ

bA·B
i j (s)

× f Bj
(
ϕ j (s)

))
ds

∣∣∣∣
p

dw

]1/p}
+

[ ∫ t+1

t

∣∣∣∣
∫ w

−∞
e− ∫ w

s ai (u)du
( n∧

j=1

∑

B∈Λ

αA·B
i j (s)

×gBj (ϕ j (s − τi j (s)))

)
ds

∣∣∣∣
p

dw

]1/p
+

[ ∫ t+1

t

∣∣∣∣
∫ w

−∞
e− ∫ w

s ai (u)du

×
( n∨

j=1

∑

B∈Λ

β A·B
i j (s)gBj (ϕ j (s − τi j (s)))

)
ds

∣∣∣∣
p

dw

]1/p}

≤ sup
t∈R

n∑

j=1

{[ ∫ t+1

t

∣∣∣∣
∫ w

−∞
e− ∫ w

s ai (u)du
( ∑

B∈Λ

b
A·B
i j

× f Bj
(
ϕ j (s)

))
ds

∣∣∣∣
p

dw

]1/p}
+

[ ∫ t+1

t

∣∣∣∣
∫ w

−∞
e− ∫ w

s ai (u)du
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×
( ∑

B∈Λ

αA·B
i j |gBj (ϕ j (s − τi j (s)))|

)
ds

∣∣∣∣
p

dw

]1/p
+

[ ∫ t+1

t

∣∣∣∣
∫ w

−∞

×e− ∫ w
s ai (u)du

( ∑

B∈Λ

β
A·B
i j |gBj (ϕ j (s − τi j (s)))|

)
ds

∣∣∣∣
p

dw

]1/p}

≤ sup
t∈R

n∑

j=1

[ ∑

B∈Λ

b
A·B
i j L f

j

∑

C∈Λ

( ∫ t+1

t

∫ ∞

0
e−paiσ |ϕC

j (w − σ)|pdσdw
)1/p

+
∑

B∈Λ

αA·B
i j Lg

j

∑

C∈Λ

( ∫ t+1

t

∫ ∞

0
e−paiσ |ϕC

j (w − σ

−τi j (w − σ))|pdσdw
)1/p

+
∑

B∈Λ

β
A·B
i j Lg

j

∑

C∈Λ

( ∫ t+1

t

∫ ∞

0
e−paiσ

×|ϕC
j (w − σ − τi j (w − σ)))|pdσdw

)1/p]

≤
( 1

pai

)1/p
2m

n∑

j=1

( ∑

B∈Λ

b
A·B
i j L f

j +
∑

B∈Λ

αA·B
i j Lg

j +
∑

B∈Λ

β
A·B
i j Lg

j

)
‖ϕ‖S p

≤ ρr

1 − ρ
,

which implies that Φϕ ∈ D∗, so the mapping Φ is a self-mapping from D∗ to D∗.
Next, we shall prove that Φ is a contraction mapping. In fact, for any ϕ, ψ ∈ D∗, i ∈ I ,

we have

|(Φϕ)Ai − (Φψ)Ai |S p

= sup
t∈R

{[∫ t+1

t

∣∣∣∣
∫ w

−∞
e− ∫ w

s ai (u)du
( n∑

j=1

∑

B∈Λ

bA·B
i j (s)

[
f Bj

(
ϕ j (s)

) − f Bj
(
ψ j (s)

])

+
n∧

j=1

∑

B∈Λ

αA·B
i j (s) × [

gBj (ϕ j (s − τi j (s))) − gBj (ψ j (s − τi j (s)))
]

+
n∨

j=1

∑

B∈Λ

β A·B
i j (s)

[
gBj (ϕ j (s − τi j (s))) − gBj (ψ j (s − τi j (s)))

])
ds

∣∣∣∣
p

dw

]1/p}

≤ sup
t∈R

{[ ∫ t+1

t

∣∣∣∣
∫ w

−∞
e− ∫ w

s ai (u)du
( n∑

j=1

∑

B∈Λ

bA·B
i j (s)

[
f Bj

(
ϕ j (s)

)

− f Bj
(
ψ j (s)

)])
ds

∣∣∣∣
p

dw

]1/p}
+

[ ∫ t+1

t

∣∣∣∣
∫ w

−∞
e− ∫ w

s ai (u)du

×
( n∧

j=1

∑

B∈Λ

αA·B
i j (s)

[
gBj (ϕ j (s − τi j (s))) − gBj (ψ j (s − τi j (s)))

])
ds

∣∣∣∣
p

dw

]1/p

+
[ ∫ t+1

t

∣∣∣∣
∫ w

−∞
e− ∫ w

s ai (u)du
( n∨

j=1

∑

B∈Λ

β A·B
i j (s)

[
gBj (ϕ j (s − τi j (s)))
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−gBj (ψ j (s − τi j (s)))
])

ds

∣∣∣∣
p

dw

]1/p}

≤ sup
t∈R

n∑

j=1

( ∑

B∈Λ

b
A·B
i j L f

j

∑

C∈Λ

( ∫ t+1

t

∫ ∞

0
e−paiσ |ϕC

j (w − σ)

−ψC
j (w − σ)|pdσdw

)1/p

+
∑

B∈Λ

αA·B
i j Lg

j

∑

C∈Λ

( ∫ t+1

t

∫ ∞

0
e−paiσ |ϕC

j (w − σ − τi j (w − σ))

−ψC
j (w − σ − τi j (w − σ))|pdσdw

)1/p

+
∑

B∈Λ

β
A·B
i j Lg

j

×
∑

C∈Λ

( ∫ t+1

t

∫ ∞

0
e−paiσ × |ϕC

j (w − σ − τi j (w − σ)))

−ψC
j (w − σ − τi j (w − σ)))|pdσdw

)1/p]

≤
( 1

pai

)1/p
2m

n∑

j=1

( ∑

B∈Λ

b
A·B
i j L f

j +
∑

B∈Λ

αA·B
i j Lg

j +
∑

B∈Λ

β
A·B
i j Lg

j

)
‖ϕ − ψ‖S p ,

that is, we have

max
A∈Λ

|(Φϕ)Ai − (Φψ)Ai |S p

≤
( 1

pai

)1/p
2m max

A∈Λ

n∑

j=1

( ∑

B∈Λ

b
A·B
i j L f

j

+
∑

B∈Λ

αA·B
i j Lg

j +
∑

B∈Λ

β
A·B
i j Lg

j

)
‖ϕ − ψ‖S p .

Therefore,

‖Φϕ − Φψ‖S p ≤ ρ‖ϕ − ψ‖S p .

Hence,Φ is a contractionmapping. Thus, system (2) has a unique S p-almost periodic solution
in the region D∗ = {ϕ ∈ D|‖ϕ − ϕ0‖S p ≤ ρr

1−ρ
}. This completes the proof of Theorem 1. �

Similar to the definitions about the global exponential stability of solutions given in [11,
12,14,20], we give the following definition.

Definition 5 Let x = {x A
i } be a S p-almost periodic solution of system (2) with the initial

value x = {x A
i }. If there exist constants ω > 0 and M > 0, for any solution ϕ = {ϕA

i } of
system (2) with initial value ϕ = {ϕA

i } such that
‖x(t) − ϕ(t)‖ ≤ M‖�‖0e−ωt , ∀t > 0,

where

‖x(t) − ϕ(t)‖ = max
i∈I

{
max
A∈Λ

|x A
i (t) − ϕA

i (t)|
}
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and

‖�‖0 = max
i∈I

{
max
A∈Λ

{
sup

s∈[−τ,0]
|x A

i (s) − ϕA
i (s)|

}}
.

Then, x is said to be globally exponential stable.

Theorem 2 Assume that (H1)-(H3) hold. Suppose further that

(H4) max
i∈I ,A∈Λ

{
QA
i

ai

}
< 1,

then system (2) has a unique S p-almost periodic solution x̄(t)which is globally exponentially
stable.

Proof From Theorem 1, we see that system (2) has an S p-almost periodic solution x = {x A
i }

with initial value ϕ = {ϕA
i }. Suppose that x = {x A

i } is an arbitrary solution of system (2)
with initial value ϕ = {ϕA

i }. Set X = x − x , then, according to (2), we have

Ẋ A
i (t) = −ai (t)X

A
i (t) +

n∑

j=1

∑

B∈Λ

bA·B
i j (t)

[
f Bj

(
x j (t)

) − f Bj
(
x j (t)

])

+
n∧

j=1

∑

B∈Λ

αA·B
i j (t) × [

gBj (x j (t − τi j (t))) − gBj (x j (t − τi j (t)))
]

+
n∨

j=1

∑

B∈Λ

β A·B
i j (t)

[
gBj (x j (t − τi j (t)))

−gBj (x j (s − τi j (t)))
]
, i ∈ I , A ∈ Λ. (7)

For i ∈ I , we define functions Θi (θ) as follows:

Θi (θ) = ai − θ − 2m
n∑

j=1

( ∑

B∈Λ

b
A·B
i j L f

j +
∑

B∈Λ

αA·B
i j Lg

j e
θτ i j

+
∑

B∈Λ

β
A·B
i j Lg

j e
θτ i j

)
, i ∈ I .

By (H4), for i ∈ I , we get

Θi (0) = ai − Qi > 0.

Since Θi is continuous on [0,+∞) and Θi (θ) → −∞, as θ → +∞, so there exist ζi such
that Θi (ζi ) = 0 and Θi (θ) > 0 for θ ∈ (0, ζi ), i ∈ I . By choosing c = mini∈I {ζi }, we have
Θi (c) ≥ 0, i ∈ I . So, we can choose a positive constant 0 < λ < min

{
c,mini∈I {ai }

}
such

that

Θi (λ) > 0, i ∈ I ,

which imply that

2m

ai − λ

n∑

j=1

( ∑

B∈Λ

b
A·B
i j L f

j +
∑

B∈Λ

αA·B
i j Lg

j e
λτ i j +

∑

B∈Λ

β
A·B
i j Lg

j e
λτ i j

)
< 1,

where i ∈ I .
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Set M = max
i∈I { ai

Qi
}, then by (H3), we have M > 1. Thus,

1

M
− 1

ai − λ
2m

n∑

j=1

( ∑

B∈Λ

b
A·B
i j L f

j +
∑

B∈Λ

αA·B
i j Lg

j e
λτ i j +

∑

B∈Λ

β
A·B
i j Lg

j e
λτ i j

)
< 0, i ∈ I .

Obviously, for any ε > 0,

‖X(0)‖ < ‖�‖0 + ε (8)

and

‖X(t)‖ < (‖�‖0 + ε)e−λt < M(‖�‖0 + ε)e−λt , ∀ t ∈ [−τ, 0). (9)

We claim that

‖X(t)‖ < M(‖�‖0 + ε)e−λt , ∀ t > 0. (10)

If (10) is not true, then there must be some t1 > 0 such that

{ ‖X(t1)‖ = M(‖�‖0 + ε)e−λt1 ,

‖X(t)‖ < M(‖�‖0 + ε)e−λt , 0 < t < t1.
(11)

Multiplying the both sides of (7) by e
∫ t
0 ai (u)du and integrating over [0, t], we get

X A
i (t) = X A

i (0)e− ∫ t
0 ai (u)du +

∫ t

0
e− ∫ t

s ai (u)du
( n∑

j=1

∑

B∈Λ

bA·B
i j (s)

[
f Bj

(
x j (s)

)

− f Bj
(
x j (s)

)] +
n∧

j=1

∑

B∈Λ

αA·B
i j (s)

[
gBj (x j (s − τi j (s)))

−gBj (x j (s − τi j (s)))
] +

n∨

j=1

∑

B∈Λ

β A·B
i j (s)

[
gBj (x j (s − τi j (s)))

−gBj (x j (s − τi j (s)))
])

ds, i ∈ I , A ∈ Λ.

Thus, by M > 1, (8), (9) and (11), we obtain

|X A
i (t1)|

≤
∣∣∣∣X

A
i (0)e− ∫ t1

0 ai (u)du
∣∣∣∣ +

∣∣∣∣
∫ t1

0
e− ∫ t1

s ai (u)du
( n∑

j=1

∑

B∈Λ

b
A·B
i j L f

j

×
∑

C∈Λ

|xCj (s) − xCj (s)| +
n∑

j=1

∑

B∈Λ

αA·B
i j Lg

j

∑

C∈Λ

|xCj (s − τi j (s))

−xCj (s − τi j (s))| +
n∑

j=1

∑

B∈Λ

β
A·B
i j Lg

j

×
∑

C∈Λ

|xCj (s − τi j (s)) − xCj (s − τi j (s))|
)
ds

∣∣∣∣
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≤ (‖�‖0 + ε)e−ai t1 +
∫ t1

0
e− ∫ t1

s ai (u)du2m
( n∑

j=1

∑

B∈Λ

b
A·B
i j L f

j

+
n∑

j=1

∑

B∈Λ

αA·B
i j Lg

j e
λτ i j +

n∑

j=1

∑

B∈Λ

β
A·B
i j Lg

j e
λτ i j

)
M(‖�‖0 + ε)e−λsds

≤ M(‖�‖0 + ε)

{
e−ai t1

M
+

∫ t1

0
e− ∫ t1

s (ai (u)−λ)du2me−λt1

( n∑

j=1

∑

B∈Λ

×b
A·B
i j L f

j +
n∑

j=1

∑

B∈Λ

αA·B
i j Lg

j e
λτ i j +

n∑

j=1

∑

B∈Λ

β
A·B
i j Lg

j e
λτ i j

)
ds

}

≤ M(‖�‖0 + ε)e−λt1

{
e(λ−ai )t1

M
+ 1 − e(λ−ai )t1

ai − λ
2m

( n∑

j=1

∑

B∈Λ

b
A·B
i j L f

j

+
n∑

j=1

∑

B∈Λ

αA·B
i j Lg

j e
λτ i j +

n∑

j=1

∑

B∈Λ

β
A·B
i j Lg

j e
λτ i j

)}

≤ M(‖�‖0 + ε)e−λt1

{[
1

M
− 1

ai − λ
2m

( n∑

j=1

∑

B∈Λ

b
A·B
i j L f

j

+
n∑

j=1

∑

B∈Λ

αA·B
i j Lg

j e
λτ i j +

n∑

j=1

∑

B∈Λ

β
A·B
i j Lg

j e
λτ i j

)]
e(λ−ai )t1

+ 1

ai − λ
2m ×

( n∑

j=1

∑

B∈Λ

b
A·B
i j L f

j +
n∑

j=1

∑

B∈Λ

αA·B
i j Lg

j e
λτ i j

+
n∑

j=1

∑

B∈Λ

β
A·B
i j Lg

j e
λτ i j

)}

< M(‖�‖0 + ε)e−λt1 , i ∈ I , A ∈ Λ,

that is,

‖X(t1)‖ < M(‖�‖0 + ε)e−λt1 ,

which contradicts the first equation (11). Therefore, (10) holds. Letting ε → 0+ leads to

‖X(t)‖ ≤ M‖�‖0e−λt , ∀ t ∈ (0,+∞).

Hence, the S p-almost periodic solution of system (2) is globally exponentially stable. The
proof of Theorem 2 is completed. �

4 An Example

In this section, we give an example to illustrate the feasibility and effectiveness of our results
obtained in Sects. 3 and 4.

Example 1 In System (1), let n = m = 2. The coefficients are taken as follows:
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a1(t) = 0.1 + 0.2| cos√
3t |, a2(t) = 0.8 + 0.8| sin 6t |, f1(x) = g1(x) =

0.0025
((|x0 + 1| − |x2 − 1|)e0 + e1 sin

√
2

2

(
x1 + x12

) − e2 sin x
2

+ e12 tanh
(
x2 + x12 + x0

))
, f2(x) = g2(x) =

0.0025
(1
2

(|x0 + 1| − |x2 − 1|)e0 + e1 sin

√
2

2

(
x1 + x12

) − e2 sin x
2

+ 2e12 tanh
(
x2 + x12 + x0

))
,

I1(t) = 0.2e0 cos 9t + (0.1 + 0.2 sin
√
2t)e1 + 0.2e2 sin 2t + 0.1e12 cos 4t,

I2(t) = 0.4e0 cos 9t + (0.1 + 0.2 sin
√
2t)e1 + 0.2e2 sin 2t + 0.1e12 cos 4t,

b11(t) = 0.4e0 sin 2t + 0.1e1 cos 3t + 0.1e2 cos 6t + 0.3e12 sin
2 7t,

b12(t) = 0.4e0 sin 2t + 0.2e1 cos 3t + 0.1e2 cos 6t + 0.3e12 sin
2 7t,

b21(t) = 0.4e0 sin 2t + 0.1e1 cos 3t + 0.2e2 cos 6t + 0.3e12 sin
2 7t,

b22(t) = 0.4e0 sin 2t + 0.2e1 cos 3t + 0.2e2 cos 6t + 0.3e12 sin
2 7t,

d11(t) = 0.1e0 cos 3
√
2t + 0.3e1 sin

√
7t + 0.1e2 cos 2t + 0.1e12 sin

√
2t,

d12(t) = 0.1e0 cos 3
√
2t + 0.3e1 sin

√
7t + 0.2e2 cos 2t + 0.1e12 sin

√
2t,

d21(t) = 0.2e0 cos 3
√
2t + 0.3e1 sin

√
7t + 0.1e2 cos 2t + 0.1e12 sin

√
2t,

d22(t) = 0.2e0 cos 3
√
2t + 0.3e1 sin

√
7t + 0.2e2 cos 2t + 0.1e12 sin

√
2t,

α11(t) = 0.1e0 cos 3t + 0.2e1 sin 2t + 0.2e2 sin 8t + 0.1e12 sin
2 2t,

α12(t) = 0.2e0 cos 3t + 0.4e1 sin 2t + 0.2e2 sin 8t + 0.1e12 sin
2 2t,

α21(t) = 0.1e0 cos 3t + 0.2e1 sin 2t + 0.2e2 sin 8t + 0.1e12 sin
2 2t,

α22(t) = 0.2e0 cos 3t + 0.4e1 sin 2t + 0.2e2 sin 8t + 0.1e12 sin
2 2t,

β11(t) = 0.3e0 sin t + 0.1e1 cos 2t + 0.2e2 cos
√
6t + 0.2e12 sin 3t,

β12(t) = 0.3e0 sin t + 0.1e1 cos 2t + 0.4e2 cos
√
6t + 0.2e12 sin 3t,

β21(t) = 0.3e0 sin t + 0.1e1 cos 2t + 0.2e2 cos
√
6t + 0.2e12 sin 3t,

β22(t) = 0.3e0 sin t + 0.1e1 cos 2t + 0.4e2 cos
√
6t + 0.2e12 sin 3t,

T11(t) = (0.2 + 0.1 sin 2t)e0 + 0.1e1 cos
2 2t + 0.1e2 sin 5t + 0.1e12 cos t,

T12(t) = (0.2 + 0.2 sin 2t)e0 + 0.1e1 cos
2 2t + 0.1e2 sin 5t + 0.1e12 cos t,

T21(t) = (0.2 + 0.1 sin 2t)e0 + 0.1e1 cos
2 2t + 0.2e2 sin 5t + 0.2e12 cos t,

T22(t) = (0.2 + 0.2 sin 2t)e0 + 0.1e1 cos
2 2t + 0.2e2 sin 5t + 0.2e12 cos t,

S11(t) = 0.1e0 cos 5t + 0.1e1 sin t + 0.1e22 cos 9t + 0.2e12 sin t,

S12(t) = 0.1e0 cos 5t + 0.2e1 sin t + 0.1e22 cos 9t + 0.2e12 sin t,

S21(t) = 0.1e0 cos 5t + 0.1e1 sin t + 0.1e22 cos 9t + 0.4e12 sin t,

S22(t) = 0.1e0 cos 5t + 0.2e1 sin t + 0.1e22 cos 9t + 0.4e12 sin t,

μ1(t) = 0.1e0 sin t + 0.2e1 cos
2 t + 0.2e2 cos 5t + 0.1e12 sin

√
3t,

μ2(t) = 0.1e0 sin t + 0.4e1 cos
2 t + 0.2e2 cos 5t + 0.1e12 sin

√
3t,

τ11(t) = τ12(t) = τ21(t) = τ22(t) = cos2
√
3t .
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Fig. 1 Curves of x0i (t) and x1i (t), i = 1, 2

By calculating, we have

L f
1 = Lg

1 = 0.0025, L f
2 = Lg

2 = 0.005, a1 = 0.3, a2 = 1.6,

a1 = 0.1, a2 = 0.8, b
0
11 = 0.4, b

1
11 = b

2
11 = b

2
12 = 0.1, b

12
11 = 0.3,

b
0
12 = b

0
21 = 0.4, b

12
12 = b

12
21 = 0.3, b

1
21 = 0.1, b

2
21 = b

1
22 = b

2
22 = 0.2,

b
0
22 = 0.4, b

12
22 = d

1
11 = 0.3, d

1
12 = 0.3, d

2
12 = d

0
21 = b

1
12 = 0.2,

d
0
11 = d

2
11 = d

12
11 = d

0
12 = d

12
12 = d

1
21 = d

2
21 = d

12
21 = 0.1,

d
0
22 = d

2
22 = 0.2, d

1
22 = 0.3, d

12
22 = 0.1, τ 11 = τ 12 = τ 21 = τ 22 = 1,

α0
11 = α12

11 = α12
12 = 0.1, α2

11 = α1
11 = α0

12 = α2
12 = 0.2, α1

12 = 0.4,

α0
21 = 0.1, α1

21 = α2
21 = α2

22 = α0
22 = 0.2, α12

21 = α12
22 = 0.1, α1

22 = 0.4,

β
0
11 = β

0
21 = β

0
12 = β

0
22 = 0.3, β

1
11 = β

1
12 = β

1
21 = β

1
22 = 0.1,

β
2
12 = β

2
22 = 0.4, β

2
11 = β

2
21 = β

12
12 = β

12
11 = β

12
21 = β

12
22 = 0.2.

Take p = 3, it is easy to verify that condition (H1) and (H2) are satisfied. By a simple
calculation, we have

Q0
1 = Q1

1 = Q2
1 = Q12

1 = 0.056, Q0
2 = Q1

2 = Q2
2 = Q12

2 = 0.106,

max
A∈Λ

{( 1

3a1

)1/3
QA

1 ,
( 1

3a2

)1/3
QA

2

}
= 0.0792 < 1,

max
A∈Λ

{
1

a1
QA

1 ,
1

a2
QA

2

}
= 0.56 < 1,

which implies that conditions (H3) and (H4) are also satisfied. Therefore, according to
Theorem 2, (1) has a unique S3-almost periodic solution, which is globally exponentially
stable (see Figs. 1, 2, 3).
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Fig. 2 Curves of x2i (t) and x12i (t), i = 1, 2
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Fig. 3 Curves of x0(t), x1(t), x2(t) and x12(t) in 3-dimensional space for stable case

Remark 2 For all we know, this is the first paper to study the existence and global exponential
stability of S p-almost periodic solutions for Clifford-valued fuzzy cellular neural networks
with time-varying delays. No known results can lead to the conclusion of Example 1.

5 Conclusion

In this paper, we have investigated the existence and exponential stability of S p-almost
periodic solutions for a class of Clifford-valued neural networks with time-varying delays.
As far as we know, this is the first time to study the S p-almost periodicity for Clifford-valued
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neural networks with time-varying delays. Our results are new even when the considered
neural networks degenerates to real-valued, complex-valued and quaternion-valued neural
networks. Our method of this paper can be applied to study other types of Clifford-valued
neural networks, such as recurrent neural networks, BAM neural networks, SICNNs, Cohen–
Grossberg neural networks and so on.
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