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Abstract
The paper mainly deals with the optimization of synchronization for fractional-order mem-
ristive neural networks (FOMNNs) with a time delay. Based on synchronization conditions,
an optimization model for control parameters is designed and computed. It’s significative
to design an appropriate controller which can synchronize the drive FOMNNs and response
FOMNNs. Based on the proposed controller, some synchronization conditions of FOMNNS
can be obtained with the help of the linear matrix inequality, along with fractional-order
Lyapunov methods and matrix analysis. The optimal model of control parameters includes a
target function and some constraints. The target function is theminimal sum of control energy
and integral square error index. The constraint conditions choose the sufficient conditions
for synchronization of FOMNNs. The optimization model is difficult to compute but can be
solved by means of the stochastic inertia weight particle swarm optimization algorithm. A
simulation is provided to verify the validity of the proposed theoretical results.

Keywords Fractional-order · Memristive neural networks · Optimal control · SIWPSO
algorithm

1 Introduction

As the extension of the integer-order calculus,the basic theory of fractional differential and
integral calculuswere studied in early period.With the improvement of computing technology
and the realization of the analog circuit, the fractional calculus has been widely applied in
physics and engineering in recent years.One of the advantages of fractional calculus is that it’s
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an excellent mathematical tool for describing the memory and genetic characteristic of many
novel materials and special processes. Furthermore, compared to the integer-order model,
the fractional-order model has more degrees of freedom and infinite memories. Based on
the salient properties of fractional calculus, many practical systems described by fractional
order models could reflect the characteristics of the system more accurately than integer
order models. As a result, fractional calculus has been applied in many territories, such
as quantum mechanics [1], viscoelasticity [2], control engineering, robotics and chaotic
synchronization [3].

Neural network is an intricate system formed by high interconnection of a large number
of neurons originally. Scientists have constructed artificial neural networks (neural networks
for short) after understanding the biological neural networks. Neural networks [4–7] have
attracted wide interest in many domains, such as pattern recognition, artificial intelligence
and signal processing. Since the discovery of physical deviceswithmemristive characteristics
in HP LABS in 2008, the memristive neural networks (MNNs) model has become a new hot
topic [8,9]. A neural network consists of neurons (nodes) and synapses (connections between
nodes). In order to train the neural network to complete a task, it needs to be “fed” a large
number of questions and corresponding answers. Once trained, neural networks can be tested
without knowing the answer. The training process requires a lot of manpower, resources and
time. It is also very expensive. However, by using memristors, most of the expensive training
processes can be avoided. The memristors can provide memory ability to the networks as
well. The memory storage capacity will be significantly improved due to the application of
memrisive neural networks in associative memories. The memristors which have different
history-dependent resistors, make thememrisive neural networks havemore complicated and
fruitful dynamics than traditional neural networks.

Synchronization is a significative research subject of chaotic systems. MNN is one kind
of chaotic systems. Hence, many scholars from in and abroad pay attentions to the synchro-
nization of MNNs. Global anti-synchronization of MNNs was analyzed by Zhang et al. [10].
Exponential synchronization of Cohen−Grossberg neural networks with memristors was
analyzed by Yang et al. [11]. Robust synchronization of multiple MNNs was analyzed by
Yang et al. [12]. The MNNs cannot be spontaneously synchronized upon most occasions.
Thus, control schemes play an important role. There are many control strategies, such as
adaptive control [13], intermittent control [14], sampled-data control [15], event-trigger [16]
control and so on.

More and more attentions have been paid to the parameter optimization of synchroniza-
tion controller [17,18]. A particle swarm optimization (PSO) algorithm was exploited by
Kennedy and Eberhart. It is an evolutionary algorithm. The algorithm begins with some
random solutions, then searches the optimum solution through iterations, and estimates the
solution’s quality according to the fitness function in the PSO algorithm. The PSO algorithm
has more simply rule compared with the rule of a genetic algorithm (GA). The crossover and
mutation operation are needed in the GA, nevertheless, the PSO algorithm can do without
them. The PSO algorithm is based on the current optimal solution to find the location of
the global optimal solution. The algorithm has gained the attention of academia due to its
advantages such as easy implementation, high precision computation and rapid convergence,
which has already confirmed its advantages in dealing with real issues. The improved particle
swarm optimization algorithms [19,20] have attracted much interest in the area of artificial
intelligence. Stochastic inertia weight particle swarm optimization (SIWPSO) algorithm [21]
is one of them which can find optimal solutions effectively.

A timedelay [22] is inevitable in practical application.However, its existencewill affect the
networks to become unstable. Therefore, the discussion on the time delay is necessary when
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the synchronization of FOMNNs is studied. Many articles have analyzed the synchronization
of FOMNNs [23,24]. However, the optimization of controller parameters is not considered
in these articles. Many articles about PID controller have applied the PSO algorithm to
deal with the optimization problem [25,26]. The authors in [27] have analyzed the optimal
synchronization of complex networks via PSO algorithm. Try the best of the authors’ ablity,
there is no literature investigating the optimization of the FOMNNsby the SIWPSOalgorithm
before. In summary, the paper investigates the optimal synchronization of fractional-order
delayed memristive neural networks along with SIWPSO.

The main contributions of this paper include three aspects. (1) The drive-response syn-
chronization for fractional-order memristive neural networks with time delay is studied
in this paper. For convenience, the model is described in compact forms. (2) Based on
fractional-order Lyapunov methods and some inequations, synchronization conditions are
shown in linear matrix inequality’s (LMIs) form. The proposed methods apply equally to the
synchronization problem for fractional-order delayed neural networks and fractional-order
memristive neural networks. (3) To get a better controller with low control energy and integral
square error (ISE) index, an optimization model is established to solve the optimal control
parameters. The complicated model is solved by SIWPSO algorithm, which is an improved
intelligent algorithm.

The rest of this paper is arranged as follows: some definitions, lemmas and assumptions
are introduced in Sect. 2. The models of the FOMNNs are described comprehensively and
distinctly in this section as well. Section 3 presents some achievements about the synchro-
nization of the FOMNNs with a constant time delay. Simultaneously, two corollaries are also
given in this section. One is the synchronization without memristor, and the other is without
the time delay. Then, a parameter optimization of the controller is specifically designed in
Sect. 4, which includes the optimization model and the SIWPSO algorithm. Finally, numer-
ical examples and the conclusions are provided in Sects. 5 and 6 respectively.
Notations Let In represent the n × n identity matrix. Let T stand for matrix transposition.
Let R, Rn and Rm×n respectively denote the set of real numbers, n-dimensional vectors and
m × n real matrices. ‖x‖ is the Euclidean norm for a vector x ∈ R

n . ‖�‖ represents the
2-norm of � for a matrix � ∈ R

n×n . A diagonal matrix can be expressed by diag{...}. If
a matrix P is a symmetric positive (semi-positive) definite matrix, it will be expressed in
terms of P > 0(≥ 0). Finally, “�” are used to represent the omitted symmetry parts of the
symmetric block matrix.

2 Preliminary Knowledge andModel Description

This section gives some lemmas and definitions of fractional calculus which play important
roles in next parts. Besides, the mathematical models of FOMNNs with a time delay are
introduced.

2.1 Fractional Calculus

Definition 1 [28] When fractional order α ∈ R
+, the Caputo derivative with function ω(s)

is defined as:

Dα
t0,tω(s) = D−(n−α)

t0,t
dn

dtn
ω(s) = 1

�(n − α)

∫ t

t0
(s − τ)n−α−1ω(n)(τ )dτ,
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where t ≥ t0 and n − 1 < α < n ∈ Z
+, and �(·) is the Gamma function and �(α) =∫ ∞

0 tα−1e−t dt, t ≥ t0. Specifically, Dα
t0,tω(s) = 1

�(1−α)

∫ t
t0
(s − τ)−αω′(τ )dτ , when 0 <

α < 1.

Remark 1 TheCaputo derivative of constant functions is zero. Besides, the initial condition of
Caputo differential operator is in the same form as that of integer order differential equations
[29].The Caputo derivative is more appropriate for a realistic model and is chosen in this
paper.

Lemma 1 [30] Let f (t) ∈ R
n is a vector of differentiable function, for any time instant

t ≥ t0, the inequality holds

Dα[ f T (t)P f (t)] ≤ 2 f T (t)PDα f (t),∀α ∈ (0, 1],
where P is a symmetric positive definite constant matrix.

Lemma 2 [31] Let X , Z ∈ R
n, ε > 0 is a constant, then

XT Z + ZT X ≤ ε−1XT X + εZT Z .

Lemma 3 [32] The linear matrix inequality

S =
(
S11 S12
ST12 S22

)
< 0,

if and only if conditions (i) or (ii) holds:

(i)S11 < 0, S22 − ST12S
−1
11 S12 < 0,

(ii)S22 < 0, S11 − ST12S
−1
22 S12 < 0,

where S11 = ST11 and S22 = ST22.

Lemma 4 [33] Suppose that ω1, ω2 : R → R are continuous and strictly increasing. ω1(s)
and ω2(s) are positive for s > 0, and ω1(0) = ω2(0) = 0, ω1, ω2 strictly increasing. If
there exists a continuous and differentiable function V : R ×R

n → R so that ω1(‖x(t)‖) ≤
V (t, x(t)) ≤ ω2(‖x(t)‖) holds, and there exist two constants κ > β > 0 so that for any
given t0 ∈ R the Caputo system Dαx(t) = f (t, x(t), x(t − τ)) satisfies

DαV (t, x(t)) ≤ −κV (t, x(t)) + β sup
−τ≤θ≤0

V (t + θ, x(t + θ))

for t ≥ t0, then the Caputo system Dαx(t) = f (t, x(t), x(t − τ)) will achieve global
asymptotical stability.

Remark 2 It’s difficult to directly synchronize fractional-order neural networks(FONNs)
through common integer-order Lyapunov methods. However, Lemmas 1 and 4 are adopted
to synchronize the fractional-order ones.

2.2 Model Description

The FOMNNs with a constant time delay is considered as follows:

Dαx(t) = −Dx(t) + A(x(t)) f (x(t)) + Bτ (x(t)) f (x(t − τ)) + I (1)
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where 0 < α < 1, x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ R
n is the neuron’s state variable,

D = diag{d1, d2, . . . , dn}, di > 0(i = 1, 2, . . . , n) stands for the rate at which the i th
neuron returns to the resting state, f (x(t)) = ( f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))T is the
activation function of neurons without the time delay. f (x(t − τ)) is the activation function
with the time delay, τ represents the constant time delay. I = (I1(t), I2(t), . . . , In(t))T ∈ R

n

denotes an external input vector. A(x(t)) = [ai j (xi (t))]n×n, Bτ (x(t)) = [bτ
i j (xi (t))]n×n are

the connection memristive weight matrices at time t and t − τ :

ai j (xi (t)) = R̃1
i j

Ci
sgni j , bτ

i j (xi (t)) = R̃2
i j

Ci
sgni j ,

sgni j =
{

1, i 
= j,

−1, i = j .

where R̃1
i j and R̃2

i j denote the memductance of memristors R1
i j and R2

i j , respectively. R
1
i j

donates the memristor between f j (x j (t)) and xi (t), and R2
i j donates the memristor between

f j (x j (t − τ)) and xi (t − τ). On account of the current and voltage feature and the charac-
teristics of memristor, a general mathematical model with the memristance is established as
follows [34]:

ai j (xi (t)) =
{
ái j , |xi (t)| ≤ Ti ,

ài j , |xi (t)| > Ti ,
bτ
i j (xi (t)) =

{
b́τ
i j , |xi (t)| ≤ Ti ,

b̀τ
i j , |xi (t)| > Ti ,

where Ti > 0 are switching jumps, weights ái j , ài j , b́τ
i j and b̀τ

i j are all constants for 1 ≤
i, j ≤ n.

The Filippov solution [35] for all systems is considered on account of the discontinuity
of ai j (xi (t)) and bτ

i j (xi (t)) in this paper. Denote ai j = max{ái j , ài j }, ai j = min{ái j , ài j },
b

τ

i j = max{b́τ
i j , b̀

τ
i j }, bτ

i j = min{b́τ
i j , b̀

τ
i j }, ai j = 1

2 (ai j + ai j ), b
τ
i j = 1

2 (b
τ

i j + bτ
i j ), ãi j =

1
2 (ai j − ai j ) and b̃τ

i j = 1
2 (b

τ

i j − bτ
i j ). According to some equation transformations [36,37]

and the fractional differentialmethods [38], the FOMNNs (1) can be rewritten to the following
system:

Dαx(t) = −Dx(t) + (A + M�1(t)E) f (x(t)) + (Bτ + M̂�2(t)Ê) f (x(t − τ)) + I . (2)

Throughout this paper, the FOMNNs (2) is considered as the drive FOMNNs, the response
FOMNNs with control is as described by:

Dα y(t) = −Dy(t) + (A + M�3(t)E) f (y(t))

+(Bτ + M̂�4(t)Ê) f (y(t − τ)) + u(t) + I (3)

where u(t) = (u1(t), u2(t), . . . , un(t))T is the controller to be designed. A = (ai j )n×n ,

Bτ = (bτ
i j )n×n , M = (

√
ã11ξ1, . . . ,

√
ã1nξ1, . . . ,

√
ãn1ξn, . . . ,

√
ãnnξn)n×n2 , E =

(

√
ã11ξ1, . . . ,

√
ã1nξn, . . . ,

√
ãn1ξ1, . . . ,

√
ãnnξn)n2×n , M̂ = (

√
b̃τ
11ξ1, . . . ,

√
b̃τ
1nξ1, . . . ,√

b̃τ
n1ξn, . . . ,

√
b̃τ
nnξn)n×n2 , Ê = (

√
b̃τ
11ξ1, . . . ,

√
b̃τ
1nξn, . . . ,

√
b̃τ
n1ξ1, . . . ,

√
b̃τ
nnξn)n2×n ,

ξi ∈ R
n is the column vector which the i th element is 1 and others are all 0, {[�k(t)]n2×n2 =

diag{θk11(t), . . . , θk1n(t), . . . , θkn1(t), . . . , θknn(t)} : |θki j | ≤ 1, 1 ≤ i, j ≤ n, k = 1, 2, 3, 4}.
It’s easy to obtain that �T

k (t)�k(t) ≤ I (k = 1, 2, 3, 4).
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Let e(t) = y(t) − x(t), the error dynamical system is derived from (2) and (3):

Dαe(t) = −De(t) + (A + �A)g(e(t)) + (Bτ + �Bτ )g(e(t − τ)) + (t) + u(t) (4)

where �A = M�3(t)E , �B = M̂�4(t)Ê , g(e(t)) = f (y(t)) − f (x(t)), g(e(t − τ)) =
f (y(t − τ)) − f (x(t − τ)), (t) = [M(�3(t) − �1(t))E] f (x(t)) + [M̂(�4(t) −
�2(t))Ê] f (x(t − τ)). The initialization of (4) is e(s) = �(s) ∈ C([−τ, 0],Rn).

There are some assumptions required for the following research:

Assumption 1 The activation functions f j are Lipschitz continuous on R, i.e.,

| f j (u) − f j (v)| ≤ L j |u − v|
where u, v ∈ R, j = 1, 2, . . . , n and constant L j > 0.

Assumption 2 Constants Mj exist so that | f j (z)| ≤ Mj for ∀z ∈ R and j = 1, 2, . . . , n.

When |xi (t)| ≤ Ti at time t , the state yi (t) will not be confirmed whether |yi (t)| ≤ Ti or
|yi (t)| ≥ Ti due to their different initial value. As a result, it’s easy to realize that �3(t) 
=
�1(t), �4(t) 
= �2(t). Hence, the linear feedback controller such as those in [39,40] can not
be used to synchronize the FOMNNs firsthand. In addition, the term (t) of error system
(4) can be treated as an external perturbation under some assumption conditions. Based on
these, the following controller is designed:

u(t) = −Ke(t) − �sgn(e(t)), (5)

where K is a real matrix, � = diag{γ1, γ2, . . . , γn}, K and � are gain matrices to be
confirmed. e(t) = (e1(t), e2(t), . . . , en(t))T , sgn(·) is the standard sign function.

3 Main Result: Synchronization Criteria

Based on the proposed controller (5), some novel sufficient criteria are obtained to synchro-
nize the FOMNNs (2) and (3). The definition and theorems of synchronization are present
for FOMNNs in this section. Some corollaries are given as well.

Definition 2 The drive-response synchronization of the two FOMNNs (2) and (3) is said to
be achieved, if a suitable controller u(t) is designed,

lim
t→∞ ‖ y(t) − x(t) ‖= 0

holds for any initial values.

Theorem 1 Suppose that Assumptions 1 and 2 hold, for given constants 0 < β < κ , under
the proposed controller (5), with γi = ∑n

j=1(|ái j − ài j | + |b́τ
i j − b̀τ

i j |)Mj , the FOMNNs
(2) and (3) can reach global asymptotical synchronization, if there exists a matrix Y , some
positive constants ε, ρ1, ρ2 and a positive definite matrix Q so that the following LMIs (6)
and (7) are satisfied:

� =

⎛
⎜⎜⎝

�11 QB QM 0
∗ −ε In 0 QEM̂
∗ ∗ −ρ1 In2×n2 0
∗ ∗ ∗ −ρ2 In2×n2

⎞
⎟⎟⎠ < 0, (6)

εLT L − βQ < 0 (7)
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where �11 = −QD− DT Q−Y −Y T + QAL + LT AT Q+κQ+ρ1LT ET EL +ρ2 ÊT Ê ,
K = Q−1Y .

Proof Construct the Lyapunov function as follows:

V (t) = eT (t)Qe(t)

where Q = diag{q1, q2, . . . , qn}.
Taking the time derivative of V (t) along the error system and applying Lemma 1 and

Assumption 1, one can get

DαV (t) ≤ 2eT (t)QDαe(t)

= 2eT (t)Q[−De(t) + (A + �A)g(e(t)) + (Bτ + �Bτ )g(e(t − τ))

+ (t) − Ke(t) − �ω(t)]
≤ eT (t)[−QD − DT Q − QK − KT Q]e(t) + 2eT (t)Q(A + �A)g(e(t))

+ ‖2eT (t)Q(Bτ + �Bτ )g(e(t − τ))‖ + 2eT (t)Q[(t) − �ω(t)]
≤ eT (t)[−QD − DT Q − QK − KT Q]e(t)

+ eT (t)[Q(A + �A)L + LT (A + �A)T Q]e(t)
+ ‖eT (t)Q(Bτ + �Bτ )Le(t − τ) + eT (t − τ)LT (Bτ + �Bτ )T Qe(t)‖
+ 2eT (t)Q[(t) − �ω(t)]

where A + �A > 0, L = diag{L1, L2, . . . , Ln}, ω(t) = (ω1(t), ω2(t), . . . , ωn(t))T ,i =
1, 2, . . . , n,

ωi (t) =
{
sgn(ei (t)), i f ei (t) 
= 0,

0, i f ei (t) = 0.

According to Lemma 2, it holds for any t ∈ [0,∞) that

‖eT (t)Q(Bτ + �Bτ )Le(t − τ) + eT (t − τ)LT (Bτ + �Bτ )T Qe(t)‖
≤ 1

ε
eT (t)Q(Bτ + �Bτ )(Bτ + �Bτ )T Qe(t) + εeT (t − τ)LT Le(t − τ).

Noticing that 2̃ai j = |ái j − ài j |, 2b̃τ
i j = |b́τ

i j − b̀τ
i j |, γi = ∑n

j=1(|ái j − ài j | + |b́τ
i j −

b̀τ
i j |)Mj = ϕi , along with the Assumption 2, one can get that

2eT (t)Q[(t) − �ω(t)] ≤ 2
n∑

i=1

|ei (t)|qi (ϕi − γi ) = 0.

From the above, differentiating V (t) along the solutions of (4) becomes

DαV (t) ≤ eT (t)[−QD − DT Q − QK − KT Q + Q(A + �A)L + LT (A + �A)T Q

+ 1

ε
Q(Bτ + �Bτ )(Bτ + �Bτ )T Q]e(t) + εeT (t − τ)LT Le(t − τ)

= eT (t)�e(t) + εeT (t − τ)LT Le(t − τ),

(8)

where � = −QD− DT Q − QK − KT Q + Q(A+�A)L + LT (A+�A)T Q + 1
ε
Q(Bτ +

�Bτ )(Bτ + �Bτ )T Q.
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Let

� =
(

�11 Q(Bτ + �Bτ )

∗ −ε In

)
, �1 =

(
�11 QBτ

∗ −ε In

)
, �2 =

(
�

′
11 Q�Bτ

∗ 0n×n

)
,

where�11 = −QD−DT Q−QK−KT Q+Q(A+�A)L+LT (A+�A)T Q+κQ,�11 =
−QD− DT Q− QK − KT Q+ QAL + LT AT Q+ κQ, �

′
11 = Q‖�A‖L + LT ‖�AT ‖Q.

It’s easy to see that � ≤ �1 + �2.

�2 =
(
Q‖�A‖L + LT ‖�AT ‖Q Q�Bτ

∗ 0n×n

)

=
(
QM‖�3(t)‖EL + LT ET ‖�T

3 (t)‖MT Q QM̂‖�4(t)‖Ê
∗ 0n×n

)
,

Let

N1 = (QM, 0n×n2)
T , N2 = (0n×n2 , QM̂)T , F1 = (EL, 0n2×n), F2 = (Ê, 0n2×n),

and according to Lemma 2, �2 can be rewritten as follows:

�2 = N1‖�3(t)‖F1 + FT
1 ‖�T

3 (t)‖NT
1 + N2‖�4(t)‖F2 + FT

2 ‖�T
4 (t)‖NT

2

≤ ρ−1
1 N1N

T
1 + ρ1F

T
1 F1 + ρ−1

2 N2N
T
2 + ρ2F

T
2 F2.

By Lemma 3, the Theorem’s condition (6) � < 0 is equivalent to

�1 + ρ1F
T
1 F1 + ρ2F

T
2 F2 + ρ−1

1 N1N
T
1 + ρ−1

2 N2N
T
2 < 0,

which means � < 0. Based on Lemma 3 again, � < 0 means that

−QD − DT Q − QK − KT Q + Q(A + �A)L + LT (A + �A)T Q

+1

ε
Q(Bτ + �Bτ )(Bτ + �Bτ )T Q + κQ < 0,

that is

� < −κQ. (9)

Using (7) and (9), the derivative of V (t) (8) can be rewritten as:

Dα ≤ −κV (t) + βV (t − τ).

If the condition κ > β > 0 is combined, then the conditions of the Lemma 4 are all satisfied.
As a consequence, error system (4) is asymptotically stable. It’s not complicated to get
that e(t) → 0, when t → ∞, that is to say, limt→∞ ‖y(t) − x(t)‖ = 0. On the basis of
Definition 3, the drive FOMNNs (2) and response FOMNNs (3) can synchronize via the
designed controller (5). This completes the proof. �
Remark 3 The drive-response FOMNNs (2) and (3) can achieve synchronization by inge-
niously designed controller (5) with γi = ∑n

j=1(|ái j − ài j | + |b́τ
i j − b̀τ

i j |)Mj . Underlying
given constants κ , β and defined Y = QK , the synchronization criteria LMIs (6) and (7) are
easy to be solved by the matlab toolbox.

A fractional-order drive-response neural networkswith a constant time delay is established
as follows:

Dαx(t) = −Dx(t) + A f (x(t)) + Bτ f (x(t − τ)) + I (10)
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Dα y(t) = −Dy(t) + A f (y(t)) + Bτ f (y(t − τ)) + u
′
(t) + I (11)

The controller is reduced to

u
′
(t) = −Ke(t), (12)

then the error system is taken as follows:

Dαe(t) = −(D + K )e(t) + Ag(e(t)) + Bτ g(e(t − τ)) (13)

Based on controller (13), the synchronization criteria for fractional neural networks(FNNs)
is obtained in Corollary 1.

Corollary 1 Suppose that Assumption 1 holds, for given constants 0 < β < κ , under the
proposed controller (12), the FNNs (10) and (11) can globally and asymptotically syn-
chronize, if there exists a matrix Y , a positive constant ε and a positive definite matrix
Q = diag{q1, q2, . . . , qn} so that the following LMIs (14) and (15) are satisfied:

�
′ =

(
�

′
11 QBτ

∗ −ε In

)
< 0, (14)

εLT L − βQ < 0 (15)

where �
′
11 = −QD − DT Q − Y − Y T + QAL + LT AT Q + κQ, K = Q−1Y .

Remark 4 The model in Theorem 1 is FOMNNs, the memristive connection weights
ái j , ài j , b́τ

i j , b̀
τ
i j of (2) and (3) switch their values when their states change. If the connection

values are not changed, the model will become traditional FNNs. Then, the synchronization
criteria for FNNs can be obtained facilely.

Consider the following FOMNNs without time delays:

Dαx(t) = −Dx(t) + (A + M�1(t)E) f (x(t)) + I (16)

Dα y(t) = −Dy(t) + (A + M�3(t)E) f (y(t)) + u(t) + I (17)

Based on the controller (5), the error system is gotten as follows:

Dαe(t) = −(D + K )e(t) + (A + �A)g(e(t)) + 
′
(t) − �sgn(e(t)) (18)

where �A = M�3(t)E , 
′
(t) = [M(�3(t) − �1(t))E] f (x(t)). Based on controller (5),

the synchronization criteria for FOMNNs without time delays are obtained in Corollary 2.

Corollary 2 Suppose that Assumptions 1 and 2 hold, under the proposed controller (5) with
γi = ∑n

i=1(|ái j − ài j |)Mj , the FOMNNs (16) and (17) can reach global asymptotical
synchronization, if there exists a matrix Y , a positive constant ρ1 and a positive definite
matrix Q = diag{q1, q2, . . . , qn} so that the following LMI (19) is satisfied:

�
′′ =

(
�

′′
11 QM
∗ −ρ1 In

)
< 0, (19)

where �
′′
11 = −QD − DT Q − Y − Y T + QAL + LT AT Q + ρ1LT ET EL, K = Q−1Y .

Remark 5 If the communications among neural cells are without time delays, the model of
drive-response FOMNNs will be reduced to (16) and (17). Then, the synchronization criteria
for FMNNs with no delay can be obtained effortlessly.
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4 Parameters Optimization by SIWPSO

The optimization model of the controller parameters is provided in this section. In order
to get the optimal controller, the target function of the model is the sum of the control
energy index and the ISE index. To achieve the synchronization of the FOMNNs (2) and
(3), the criteria in Theorem 1 are chosen as the constraint conditions. However, the proposed
optimization model is not easy to solve. The SIWPSO algorithm is applied to find out the
optimal parameters.

4.1 The OptimizationModel

The following target function is chosen to obtain the optimal parameters of the controller.

J =
∫ ∞

0
(uT (t)u(t) + eT (t)e(t))dt . (20)

where
∫ ∞
0 (uT (t)u(t))dt is the control energy index,

∫ ∞
0 (eT (t)e(t))dt is the ISE index.

Moreover, the synchronization conditions of the FOMNNs need to be achieved, whichmeans
that the proposed Theorem 1 needs to be reached. This suggests that for given constants
0 < β < κ , there exists a matrix Y , some positive constants ε, ρ1, ρ2 and a positive definite
matrix Q so that the LMIs (6) and (7) are satisfied:

� =

⎛
⎜⎜⎝

�11 QBτ QM 0
∗ −ε In 0 QM̂
∗ ∗ −ρ1 In2×n2 0
∗ ∗ ∗ −ρ2 In2×n2

⎞
⎟⎟⎠ < 0,

εLT L − βQ < 0

where �11 = −QD− DT Q−Y −Y T + QAL + LT AT Q+κQ+ρ1LT ET EL +ρ2 ÊT Ê ,
K = Q−1Y .
In brief, the parameter optimization of the controller is as follows:

min J =
∫ ∞

0
(uT (t)u(t) + eT (t)e(t))dt,

s.t .

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

� < 0,
εLT L − βQ < 0,
Q > 0,
ε > 0,
ρ j > 0( j = 1, 2).

(21)

where �11 = −QD− DT Q−Y −Y T + QAL + LT AT Q+κQ+ρ1LT ET EL +ρ2 ÊT Ê ,
K = Q−1Y .

The parameter optimization of the controller is essentially to optimize the control gain
matrix K . The optimal gain matrix can minimize the target function which includes the
control energy index and ISE index. To solve the complicated calculation (21), the SIWPSO
algorithm is put into use.

Remark 6 The target function (20) cannot be directly evaluated. In order to facilitate calcula-
tion, the Riemann sum definition of integral

∫ b
a F(x)dx ∼= (b− a)F(c), c ∈ [a, b] is used to

obtain an approximated value of the target function. The SIWPSO algorithm is an improved

123



The Optimization of Synchronization Control Parameters for… 1551

intelligent algorithm to solve the optimization model (21). The better performance will be
presented in simulation part.

4.2 SIWPSO for the OptimizationModel

The SIWPSO algorithm requires each individual (particle) to maintain two vectors during
evolution, namely the velocity vector vi = (vi1, vi2, . . . , vi Dm) and the position vector xi =
(xi1, xi2, . . . , xi Dm), where i represents the number of particles, and Dm is the dimension of
solutions. The velocity of a particle determines the direction and speed. The position reflects
the position in the solution space. Both are the basis of evaluating the solution. The algorithm
also requires each particle to maintain its own historical optimal position vector (represented
by pBest = (pBest1i , pBest2i , . . . , pBest Dm

i )) and a global optimal vector (represented by
gBest = (gBest1i , gBest2i , . . . , gBest Dm

i )), which guides particles to approach the global
optimal region. The following are steps of the SIWPSO algorithm:
Step 1 Assign values to the parameters in the algorithm. For example, the particle swarm
size m, maximum number of iterations N , and acceleration coefficient ac1, ac2.
Step 2 Randomly initialize each particle.
Step 3 Evaluate each particle and get the global optimum.
Step 4 Evaluate the current solution with the consistent conditions (21). If they can synchro-
nize the FOMNNs, go to the next step, whereas, go to the Step 7.
Step 5 Update (22) the velocity and position of every particle.
Step 6 Evaluate the fitness function (20) of each particle.
Step 7 Recalculate the historical optimum position pBesti of each particle.
Step 8 Recalculate the global optimal position gBestg of the group.
Step 9 Repeat steps 4-8 before reaching the maximum number of iterations.
Step 10 The optimal control gain is the latest gBestg .
The update rules of position and velocity are as follows:

vid(t + 1) = �(t)vid(t) + ac1γ1(pBestid(t) − xid(t)) + ac2γ2(gBestgd(t) − xid(t)),

xid(t + 1) = xid(t) + vid(t + 1),
(22)

where i represents the i th particle and d is on behalf of the dth dimension in the search space.
Usually, the inertia weight �(t) is chosen in (0.5, 1) randomly. Let ac1 = ac2 = 2. γ1 and
γ2 are random numbers which are uniformly distributed at (0, 1).

Remark 7 The main difference between PSO and SIWPSO algorithm is the inertia weight.
In PSO algorithm, the value of the inertia weight is usually set as 0.9, while in SIWPSO
algorithm, it is randomly selected in (0.5, 1).

5 Simulation

A complete simulation is presented to exhibit the proposed theoretical approach and the
optimization.

Consider the FOMNNs(1) with the following parameters: α = 0.98, τ = 1, I = (0, 0)T ,
fi (xi ) = tanh(xi )(i = 1, 2), D = diag{1, 1},

A(x(t)) =
(
a11(x1(t)) a12(x1(t))
a21(x2(t)) a22(x2(t))

)
, Bτ (x(t)) =

(
bτ
11(x1(t)) b

τ
12(x1(t))

bτ
21(x2(t)) b

τ
22(x2(t))

)
,
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Fig. 1 Phase portrait of the drive-FOMNNs

where

a11(x1) =
{
1.75, |x1| ≤ 3,

2.1, |x1| > 3,
a12(x1) =

{
−0.1, |x1| ≤ 3,

−0.12, |x1| > 3,

a21(x2) =
{

−4.7, |x2| ≤ 3,

−5.1, |x2| > 3,
a22(x2) =

{
2.85, |x2| ≤ 3,

3.2, |x2| > 3,

bτ
11(x1) =

{
−1.7, |x1| ≤ 3,

−1.6, |x1| > 3,
bτ
12(x1) =

{
−0.08, |x1| ≤ 3,

−0.11, |x1| > 3,

bτ
21(x2) =

{
−0.3, |x2| ≤ 3,

−0.2, |x2| > 3,
bτ
22(x2) =

{
−2.5, |x2| ≤ 3,

−2.38, |x2| > 3.

It’s easy to verify that L1 = L2 = 1, M1 = M2 = 1, γ1 = 0.5, γ2 = 0.97,

A =
(
1.925 − 0.11
− 4.9 3.025

)
, Bτ =

( − 1.65 − 0.095
− 0.25 − 2.44

)
,

M =
( √

0.175
√
0.01 0 0

0 0
√
0.2

√
0.175

)
, E =

( √
0.175 0

√
0.2 0

0
√
0.01 0

√
0.175

)T

,

M̂ =
( √

0.05
√
0.015 0 0

0 0
√
0.05

√
0.06

)
, Ê =

( √
0.05 0

√
0.05 0

0
√
0.015 0

√
0.06

)T

.

The phase portrait of the drive-FOMNNs is shown in Fig. 1 with initial conditions x =
(−0.5, 0.4)T for t ∈ [−1, 0].
Take κ = 1.5, β = 0.8. By solving the LMIs (6) and (7) via the matlab toolbox, the feasible
solutions are ε = 0.1494, ρ1 = 1.1800, ρ2 = 1.2099, Q = diag{0.2541, 0.2541},

Y =
(

1.6864 − 0.6069
− 0.6069 2.2883

)
, K = Q−1Y =

(
6.6358 − 2.3883

− 2.3883 9.0042

)
.
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Fig. 2 State trajectories of the drive-response FOMNNs under the controller

0 2 4 6 8 10 12 14 16 18 20
t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x 1,y
1

x1 & y1

x1
y1

0 2 4 6 8 10 12 14 16 18 20
t

-5

-4

-3

-2

-1

0

1

2

3

4

5
x 2,y

2
x2 & y2

x2
y2

Fig. 3 State trajectories of the drive-response FOMNNs without controller

Based on Theorem 1, the driven-FOMNNs (2) can synchronize the response-FOMNNs
(3) under the controller (5) for any initial values, which is verified by Figs. 2, 3 and 4.
Figure 2 presents the state trajectories of the drive-response FOMNNs under the controller
with initial values x = (− 0.5, 0.4)T , y = (1, 0.5)T for t ∈ [−1, 0]. Figure 3 presents the
state trajectories of the drive-response FOMNNs without controller and the initial values are
same with the Fig. 2. In Fig. 4, the left one describes the error trajectories of the FOMNNs
with the controller and the right one without controller. It’s obvious that the drive-response
FOMNNs can be synchronized by the proposed controller. As time approaches infinity, the
error system tends to zero.

The scale of the particle swarm is chosen as m = 20. The maximum iterations is chosen
as N = 30. The unknown matrix

K =
(
k11 k12
k21 k22

)
,

the initial values of position are selected in [− 20, 20] randomly. The initial values of velocity
are selected in [− 0.1, 0.1] randomly. After the performance of SIWPSO algorithm, the
optimal solutions are presented in Table 1. As comparison groups, the optimal solutions
by PSO and the solutions without optimizing process are presented in Table 1 as well. It’s
evident that the solutions searched by SIWPSO algorithm can realize the minimum of the
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Fig. 4 Error trajectories with (left) and without (right) the controller

Table 1 Fitness function values
for different values with K

Method k11 k12 k21 k22 J value

LMI 6.6358 −2.3883 −2.3883 9.0042 6384.4

PSO 4.4182 −2.0266 −6.7339 16.2050 5567.9

SIWPSO 4.3560 −1.9227 −6.3219 16.8323 5552.3
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Fig. 5 The evolution of SIWPSO algorithm

fitness function . The solutions searched by PSO algorithm are also feasible, but they are not
better than those searched by the SIWPSO algorithm.

Figure 5 illustrates the evolution process of the fitness function via SIWPSO algorithm.
The conclusion can be drawn from the Fig. 5 that when the number of iterations increases,
the value of J decreases from near 7400 to 5552.3, and at last, it does not change any more.
In other word, the solutions which can minimize the value of J and let the value stable are
the optimal control gains. The stable solution that minimizes the J value is the desirable
optimization gain matrix of the controller.
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6 Conclusion

In the paper, the synchronization of delayed memristive neural networks via optimal control
using SIWPSO is studied. The networks are in fractional-order. First, a valid controller is
designed, then based on some analytical methods, the drive-response synchronization results
are received. Two corollaries without memristor and without time delays are provided at the
same time. Second, this paper describes the optimization model of control paraments and the
optimization process according to the SIWPSO algorithm. The optimization solutions can
achieve the minimum target function, meanwhile, synchronize the drive-response FOMNNs.
Finally, the proposed results can be confirmed by the simulations. Notably, a constant time
delay is considered in this paper. If time delays are variant, maybe the delay partitioning
approach can solve this problem. Besides, only the SIWPSO algorithm is considered in this
paper. The genetic algorithm possibly has better effect, which will be studied in the future
study.
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