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Abstract

The finite-time Mittag-Leffler stability for fractional-order quaternion-valued memristive
neural networks (FQMNNs) with impulsive effect is studied here. A new mathematical
expression of the quaternion-value memductance (memristance) is proposed according to
the feature of the quaternion-valued memristive and a new class of FQMNN:Ss is designed. In
quaternion field, by using the framework of Filippov solutions as well as differential inclusion
theoretical analysis, suitable Lyapunov-functional and some fractional inequality techniques,
the existence of unique equilibrium point and Mittag-Leffler stability in finite time analysis
for considered impulsive FQMNNs have been established with the order 0 < § < 1. Then,
for the fractional order B satisfying 1 < B < 2 and by ignoring the impulsive effects,
a new sufficient criterion are given to ensure the finite time stability of considered new
FQMNNSs system by the employment of Laplace transform, Mittag-Leffler function and
generalized Gronwall inequality. Furthermore, the asymptotic stability of such system with
order 1 < B < 2 have been investigated. Ultimately, the accuracy and validity of obtained
finite time stability criteria are supported by two numerical examples.
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1 Introduction

In 1695, the foundation of non-integer order calculus, which is a generalization integer
order differential and integrals was first of all discussed through Guillaume de Leibnitz and
Gottfried Wilhelm Leibnitz, and its development were inch by inch for long period. Until
recently, it has been a great research topic due to the fact many fractional order models play
a crucial role in many real world objects. Comparing to an integer order dynamical model,
fractional order dynamical model is more accuracy, non-local and has weakly singular kernels
but integer order dynamical behavior fails in this aspect. From the application perspective,
an electronic implementation of an artificial neural network model, many researchers have
combined the fractional order calculus into neural networks to look at the fractional order
neural network model (FONNSs). Currently, fractional order calculus has been very promising
areas of research and thus successfully applied in both theoretical and applicable manners
[1-4]. It is well known that stability is the primary condition of the several systems [5-8]. At
present, the stability analysis of neural networks and differential equations models become a
hot topic and some excellent has been reported, see [9-16]. In [14], the authors investigated
the stability criteria of Riemann-Liouville sense fractional order impulsive fuzzy neural
networks with delay, and proposed the global asymptotic stability analysis by using fractional
Barbalat’s lemma and Lyapunov stability theory. In [17], the author researched stability
analysis of fractional order delayed neural networks and several conditions to ensure the
existence, uniqueness and finite time stability were established based Gronwall’s inequality,
method of iteration and contraction mapping principle. In [18], the authors demonstrated the
finite time stability analysis of fractional order neural networks by means of estimates of
Mittag-Leffler functions, generalized Gronwall’s inequality and Laplace transform.

The idea of memristor has been analyzed thinking about that 1971, at the same time as Leon
Chua has proposed for the first time in a properly-organized and mathematically described
manner [19]. Despite the fact that, the concept of memristor-like gadgets has been counseled
in advance in 1960 by way of Bernard [20], Leon Chua changed into the primary one not
simplest to offer a possible foundation for memristor existence, however also to estimate and
mathematically describe its meant conduct and residences. Almost after 40 years for mem-
ristor to change from a definitely theoretic idea into workable usage. In 2008 a gathering of
researchers from Hewlett-Packard Labs lead through Stan Williams has finally formulated by
means of practically working memristor [21]. In [22], Kim et al., was successfully initiated by
Memristor bridge synapse architecture and resolve the difficulty of the problem of nonvolatile
synaptic weight garage and put in force a recently proposed hardware learning techniques.
After this memristor has found various applications in numerous interdisciplinary field [23—
25]. In general, fractional order memristor based neural networks model (FMBNNSs) is an
improved fractional order neural networks model by traditional resistor replaced by mem-
ristors. Many authors have investigated the several dynamical behaviors of fractional-order
memristor based neural networks. In [26], the authors applied a Holder inequality to analyze
the finite stability of fractional order delayed memristive complex-valued neural networks
with order, both0 < 8 < 0.5and 0.5 < B8 < 1, respectively. In [27], Rakkiyappan et al. has
deliberated the finite time stability of fractional order complex valued neural networks with
fractional order 1 < 8 < 2 by using generalized Gronwall inequality and Holder inequality.

Quaternion algebra is a standout amongst the most renowned type and its universal exten-
sion case of real-valued and complex-valued numbers, which became first of all originated
by means of Hamilton in 1843 [28]. Recently, Quaternion-valued neural networks (QVNNs)
has attracted considerable attention owing to its widespread applications in various dis-
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ciplines in attitude control, satellite tracking, image processing, computer graphics, three
dimensional modelling, four dimensional modelling and extensively investigated by many
researchers, see [29-35] for instance. Comparing to real-valued MNNs and complex-valued
MNNS, Quaternion-valued memristive neural networks (QVMNN5s) is more storage capacity
and complicated properties and it consists quaternion memristive connection weights, system
state, and neuron activation functions. In color image compression, real-valued MNNs and
complex-valued MNNs may be likewise used to transmit the colour signals yet with moder-
ately poor impact. Truth be told, by means of three primary colours red, green and blue can be
changed over into three signals about the three essential colors with certain proportion which
may be transmitted by means of three channels i, j and k of the QVMNNSs, and afterward
changed over into the colour images too. However, real-valued MNNs and complex-valued
MNNSs can’t understand this ideal impact. As a result of the non-commutativity, conventional
techniques used to investigate the stability of real-valued MNNs and complex-valued MNN’s
cannot be directly applied to the similar problems of QVMNN:S. In this manner, the investiga-
tion on the fractional order QVMNNSs dynamical behaviors in both theory and applications
has turned out to be urgent and mandatory. Consequently, the dynamics of integer order
QVNNSs have been taken into consideration by means of many research scholars and a large
number of great outcomes has been gained in the existing literature [36—39]. But there is
little attention about the dynamics of FQNNSs have been found in the existing literatures. For
example, the authors in [40] presented the global Mittag-Leffler stability and global Mittag-
Leffer synchronization analysis of FQNNs with linear threshold neurons by using matrix
eigenvalue, M-matrix theory and Lyapunov method. In [41], the robust asymptotical stabil-
ity and robust asymptotical synchronization of memristor based fractional order QVMNN’s
with time delays and parameter uncertainties by using nonsmooth analysis, fractional order
comparison principle and Lyapunov direct method.

On the other hand, many physical processes are distinguished by abrupt changes at cer-
tain moments of time in the real-world problems. These abrupt changes were mentioned as
impulsive phenomena. These impulses can influence the dynamical performance of the sys-
tem trajectory from original direction in a moment [42—44]. Hence, the dynamical behaviours
of FONNs might be described more accurately by considering the impulse. Moreover, the
impulsive fractional-order neural networks showed more advanced in describing the heredi-
tary and memory properties for various materials and processes comparing to the impulsive
integer order neural networks. Along these lines, the investigation on the dynamic behavior
of FONNs with impulsive effects becomes more essential ones and some excellent results
have been devoted in more as of late [45—47]. For example in [45], the authors gave some
existence, uniqueness and Mittag-Leffler stability criteria for impulsive FONNs in terms of
linear matrix inequality based on topological degree properties and positive definite quadratic
Lyapunov function. In [46], by using contraction mapping principle, the linear growth condi-
tion of activation function and positive definite quadratic Lyapunov function, the author have
investigated about the global Mittag-Leffler stability of FONNs with one side Lipschitz con-
dition and impulsive effects. In [47], by means of contraction mapping principle, fractional
order comparison principle and fractional order absolute valued Lyapunov functional with
one norm, the global asymptotical stability of a class of impulsive FONNs in complex field
was demonstrated. Limin et al. [47] investigated the asymptotic stability of impulsive delayed
fractional order complex valued neural networks with order 0 < 8 < 1 by fractional order
comparison principle and Lyapunov functional. However, there are few articles focused on
the stability analysis of memristor based neural networks with impulsive effects. To the best
of author’s knowledge, nevertheless, Mittag-Leffler finite time stability analysis of fractional
order impulsive QVMNNs dynamical behaviours has not been investigated yet.
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Sparked by the above reason and discussion, we try to investigate the finite-time Mittag-
Leffler stability of fractional-order quaternion-valued memristive neural networks with order
0 < B <land1 < B < 2, the problem remains open, and is no article in existing literature.
Consequently, we can try to remedy this hard and essential problem. The main challenge and
contribution of this work are highlighted in the following aspects:

1. A new mathematical expression of the quaternion-value memductance (memristance) is
proposed according to the feature of the quaternion-valued memristive and a new class
of FQMNN s is designed.

2. The new brand of novel sufficient criterion proposed first to ensure the existence and finite
time Mittag-Leffler stability of impulsive FQMNNs with order 0 < 8 < 1 by means of
Banach contraction mapping principle and fractional order Lyapunov functional.

3. When g satisfying 1 < B < 2 and the model at the absence of impulsive effects, the
finite time stability criteria are introduced by using Laplace transform, Mittag-Leffler
function and generalized Gronwall inequality.

4. As some special cases of proposed results, we also investigate the asymptotic stability
of FQMNNSs with fractional order 1 < 8 < 2.

5. Most of the FNNs have not now taken into consideration quaternion memristive connec-
tion weights, system state, and neuron activation, especially FNNs model, however, our
results make it up.

The rest of the proposed work is furnished as follows: In Sect. 2, the basic concepts of
quaternion algebra, some necessary definitions about fractional order calculus are listed. Fur-
ther, some necessary assumptions and finite-time Mittag-Leffler stability definitions together
with a few beneficial lemmas needed in this paper are given. The main results with order
0 < pB <land1 < B < 2 are established in Sect. 3. Two numerical examples and their
computer simulations are provided to illustrate the effectiveness of the acquired results in
Sect. 4. At last, Sect. 5 ends with conclusions.

2 Preliminaries
In this section, we will recall some basic knowledge of quaternion algebraic concepts and

fractional order calculus. In addition, some lemmas and problem statement are presented,
which serve for the following sections.

2.1 Quaternion Algebra

As a type of super complex number, quaternion consists a real part and three imaginary parts,
and a real quaternion or quaternion y can be expressed as:

y=h+iqg+ jw+kz,

where 4, g, w,z € R, and the imaginary roots i, j, k satisfy the Hamilton multiplication
rules:

ijk=i>=j>=k*=-1
M
ij=k=—ji, jk=i=—kj, ki =j=—ik
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From the above Hamilton rules, the quaternion multiplication is non commutative. The quater-
nion set is denoted by:

Q=f{h+ig+ jw+kz/h,q, w,z € R}

Q™ signify the set of all m dimensional quaternion space. The operation of addition and
subtraction in quaternion field are similar as those in complex numbers or vectors, by

ytz=(h+h) +ilg+§) +jwEd) +k(z+32),

where y = h+ig+ jw+kzandz = h+i§+ j—+kZ. According to Hamilton multiplication
rules (1), the product of yz is described as:
yz = (yRZR N 0 G yKZK) +l-(yRZI N S o yKZJ)
+j(yRZJ N N 7 _|_sz1) +k(yRZK Kl oyl yJZI).
The absolute values of y is described by:
Iylt = 1l + lq| + [w] + |z].

For a quaternion valued function x(¢) is denoted by y(¢) = h(t) +iq(t) + jw(t) + kz(¢),
where h(t), q(t), w(t), z(t) are all real-valued function. Furthermore, the norm of y of

vector quaternion y = (yi, ..., ym)T € Q™ is given by
4dm m m m m
Iyl =D ypl =D lhpl+ Y lapl+ Y lwpl+ Y Izpl-
p=1 p=1 p=1 p=1 p=1

2.2 Basic Tools of Fractional Calculus
Definition 2.1 [48] The Riemann-Liouville fractional integral of y(¢) is defined as:
Dy = — fta )~y d
y(t) = — — o)’ y(w) do,
o I'(B) Jy

where 8 € RT.

Definition 2.2 [48] The Caputo-type fractional integral of y(r) is defined as:

DY P& @),  ifBe(m—1,m)

10,1 drm
Dl yiy={"™ f .
(L (1)), if g =m.

where B € RY, m e Z+.
Proposition 1 [48] The linearity of Caputo-type fractional derivation is defined by
D) [en® + e2020)] = 1D 11 (0) + £2D)y 320,

Definition 2.3 [48] The Mittag-Leffler function with two parameter is defined as

+00 P
Ego(2) = pZ:(:) TBp+o)

where 8, 0 e R*, z € C.
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Definition 2.4 [48] Form —1 < 8 < m, the Laplace transform of the Mittag-Leffler function
with two parameter:

B—o
el Epo et | = S (Re(s) > {lel),
sP—e
where s and ¢ are both variables in Laplace domain and time domain, respectively.

Lemma 2.5 [48] When 8 € (0,2), 0 > Oand w € (ﬂ—", min{fm, w}), then there exist two
known positive scalars A1 > 0, A> > 0, such that

AL re(r) A2

|Epo(2)] < _ .
(1+12)7 T4zl

where |arg(z)| < o, |z] = 0.

Lemma 2.6 [49] Let g(t) and u(t) are locally integrable and non negative function on the
interval [0, b) and d(t) < F defined on [0, b), where F > 0 is a constant. If B > 0 and the
following relationships hold:

t
g(t) < u(r) +d() / (t — ) u(w)do
0

then we have

gt) <u() +d(t)/ [Z d(;)(l‘(g)) a))mﬂ_lu(a))]dw

if u(t) is non decreasing on [0, b), then g(t) satisfies
8() = dEg1[d0T (B,

Lemma 2.7 [50] If y(t) is the continuously derivable function, the following relationship
true almost everywhere:

DPly(n)| < sen(y())DPy(r), 0 < < 1.

Lemma 2.8 [51] When B € [0,2), o > 0 and matrix A is diagonal stable, then there exist
greatest eigenvalues of A, namely ¢, such that

1Ep.o(AsP)I| < le™").
Ifo =1,2,8and0 < B, then
| Ep.o (AP < 1.
Lemma 2.9 [52] Let H(t) be a continuous derivable function on [0, +00) satisfying
DPH(t) < —etH(t) +e, 0<B <1,
for constants €1, € > 0, then

H(t) < H(O)Eﬁ,l(—allﬂ) +€2[ﬁE'g,ﬁ+1(—81tﬁ), t > 0.
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2.3 Problem Statement

In this paper, we consider a class of fractional-order quaternion-valued memristive neural
networks (FQMNNs) with impulsive effects described by:

{D'Byl)(t) = _apyP(t) + Z;nzl ups(ys(t))fY(YS(t)) + Lp(t)s t#£ 1

(2)
Ayp(tr) = yp(tj) - yp(t;) = Spt(yp(tr)), t=12,...,

where p,s € {1,2,...,m}, t >0, DP# is the Caputo fractional derivative of order 8 (0 <
B < 1), y,() € Q signifies the state vector of the pth neuron at time ¢, g; signifies the
self feedback connection weights of pth neurons, L ,(¢) € Q is time-varying external inputs,
fs ( Vs (t)) stands for nonlinear quaternion-valued activation function of the s/ neurons at time
U ps (ys (t)) is quaternion-valued memristive connection strengths, that can be discontinuous.
The impulsive moment 7, 7 = 1,2,...satisfy 0 < 11 < fp,..., im0ty = 400,
y,,(t;r) = limt_)ti yp(t)and y,(t;) = limt_”; vp(t) are the right and left limits of y, (¢;),
respectively. Without loss of generality we assume that, y, (#;) = y,(¢;), which implies the
solution of FQMNNSs (2) is left continuous at time 7, the initial states of FQMNNs (2) is
describes as y,(0) = y,0.

Let

Y7 = {ys = s +iqs + jwy +kzs € Q/ [hy| < FR qs < FL, wy| < FY, |zs|<FsK}
3)

and 0 stands for the boundary of domain (3). The memristive connection weight is defined
by:

o T
Ups, ys € T
U ps (ys) = Junsureness, Vs € 8TST 4)
y — AT
Ups, ys € Yy,
for p,s € {1,2,...,m},where FR, F!, F/  FK areknown positive constants, i s, it 55 €

Q.

Since, the memristive connection strength of FQMNNSs (2) is the sense of discontinuity
form. As a result, the traditional solution for fractional order differential equations does not
suitable to FQMNNS (2). In this case, we need to study the concept of Filippov solutions of
considering the fractional order discontinuous right-hand side system.

By means of set valued mapping analysis and differential inclusion theory [53], FQMNNs
(2) can be written as follows:

{Dﬂyp(t) € —apy,t) + ZTzl a{ups}(ys(t))fs(ys(l)) + Ly, t #1;
Ayp(tr) = yp () = yp(t7) = Spe(ypt)), T=1,2,...

Let ys = hs +iqs + jws + kzg € Q and f(yy) can be expressed by splitting into its a real
part and three imaginary parts as follows:

L) = fRG) +ifl 0o + i o) + kK ). (©6)

Moreover, let u g (ys) = ul (vo) + iuh (ve) + jul (ys) + kub (35, dps (vs) = 4% (vs) +

iﬁf;s(yx) + Jﬁljm (ys) + kﬁgs(ny lips()’s) = ’/Vtgs(ys) + il}és (ys) + ]ﬁlj;s(yv) + klfvtlly(s (s)-
Then, we have

(&)
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ﬁllfs, ys € 1T ﬁfm, ys € 1T
uﬁs (ys) = Junsureness, Vs € 3TsT fm, (ys) = { unsureness, Vs € BTJT
itﬁs, ys € 1T, it;s, ys € 1T,
hd T
e ¥ €, ik | wexT
ués (vs) = {unsureness,  ys; € 37T fs (vs) = {unsureness, y; € dYI (1)
¥ K = T
s, » €/, “ps: o € X5
forp,s =1,2...,n.Lety, =h,+iq,+ jw, +kz, € Q, FQMNNs (2) can be expressed
as follows:

DFh,(1) = —aph,(t) + ; ups (ys @) 8 (vs (1) = glu;s(ysm)ﬁ(ys(r))

= L up ) (350) = e sV (5 0) + L0, 1 # 1
Ahp(te) = hp(t) = hp(t7) = SR (hp(t), T=1,2,...,
®)

DFPqy(1) = —apqp(t) + ;1 ul (vs @) £l (vs @) + ; b (vs ) £E (s )

+ Z:] M[Jgs(ys(t))fsl{(ys(t)) - Z:l uﬁy(ys(t))fyj()’s(t)) + L;;(t)v t# 1t

Agp(te) = qp(t) — qp(t7) = Spe(ap(t), T=1,2,...,

)
Dﬁwp(t) = _apwp(t) + ; Mﬁ_y(ys(t))fyj (ys(t)) - Z:I u:m(ys(t))fyk(ys(z))

+ ; wl (vs @) fE (vs @) + ; ul (v ) £l (ys @) + L), t # 1,

Awy(tr) = wy (i) —w, ;) = S5 (wy (), T=1,2,...,
(10)

DFz,(1) = —apzp(0) + ; ups (vs @) 5 (vs ) + ; whs (ys ) £ (s (1)

- iu,’,s (s ®) £ (35 (0) + éu,’; (@) fR (s @)+ LE@), t # 1

Azp(ty) = 2p(t) — 2, (7)) = Sk (2, (1)), T=1,2,...,
(11)

By using differential inclusion of (8)—(11), one has

m

DFh (1) € —aph, (1) + il coluf (v ) £ (35 0) = X colug, (v ) £ (vs0)

s=1

- ; ol ) (3 0) £7 (35 (0) — ﬁ (S} (3 (0) £K (35 0) + LR, £ £ 1,

Ahp(tr) = hyp(tF) = hp(t;) = SR (hp(t)), T=1,2,...,
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Dﬂqp(t) € _apr(l) + Z CO{UP;}()’A (t))fsl(YS(l)) + Z CO{MPY}()’J(t))f (yy(t))
+ ; co{u,,s}(yx ) 5 (350 Z co{ups}(ys(t))f’(ys ®)+ L@, 1 #1;

) -
Aqp(t) = qp(t) = qpt7) = S} (qp(12)), T := .....
DPuw, (1) € —apu, (1) + é R ) (v ) £ (3 (0) — ; Golul, ) (v 0) £X (35 (1))
+ f coluy (s ) fF (3s0) + é cotup I (vs) ] (3s@) + L), t # 1,
Awp(tr) = wy () —wy () = S (wp(1r)), T=1,2,...,
DPzy(1) € —apzy(t) + Z cofuf }(ye0) 1K (v (1)) + i cotul }(ys ) £ (5 (1))
- Z cofu) Hys ) £ (vs () + Z colul Hys ) fR (s @) + LE @), 1t # 11

Azp(tf)_zp(ﬁ) ) =Sh(zp(), T=1,2,..., .

Equivalently, there exist AR () € co{uR}(+), A () € cofub}(-), A () € coful}(+)
and Afs( . ) € E{ufs}( . ) such that

DPhy (1) = — aphy(t) + i AR (3, 00) £R (35 (1)) — é A (v ) £ (55 )

_ é)\is(ys(t))fsj(ys(l)) i (ys (t))fs (ys(t)) + LR(t) ¢ # t

Ahp(tr) = hp(tj_) - hp(tf_) = SPR‘[( p(tr))
12)

DPq,(t) = —apq,(t) + 3 R (s @) £ (35 0) + > AL (s ) £R (35 ()

+ é)\-ﬁs(yr(t))fsl((yy([)) Z )\. (yy([))fs ()’s([)) + Ll(t) t 7& t-;

Aqgp(ty) = qp(tF) — qp(t7) = S;,(qp(tf)), t=12,...,
(13)

DPw,(t) = —apwy(t) + é M5OV (@) = L g (350) £ (50)

+ il AL (55 (0) £R (v 0) + Z 3K (3 0) £ (35 0)) + L), £ # 12

Awy(tr) = w, (i) —w, () = 87 (wytr), T=1,2,...,
(14)

DPz,(t) = —apzp(1) + i AR (s ) £ (vs@) + éxfm (s ) £ (35 @)

- éx (s 0) £ (00) + Z 3K (3o 0) FR (3 0) + LE @), 1 £10

Azp(ty) = 2p(t]) — 2,(t7) = SK (2, (1)), T=1,2,...,.
(15)
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In order to prove our stability results, for FQMNNS5 (2), we need the following assumptions
and Lemma.

Assumption [A;] For any y; € 97, fs(ys) = 0.

Assumption [A>]Forany y; = hi+iqi+jwi+kz1, y2 = hao+iga+jwa+kzr € Qands €
{1,2,...,m}, there exist positive scalars ®R! ®R2 ®R3 @R @Il @2 o3 @4

s s 0 s s 0 s 0

o/, @2, @3, o/4 oK1 ok2 oK3 K4 such that
| f Ry — fRG0)| < @8 Ay — ha| + ©F%|q1 — qo| + @83 |wi — wo| + @42y — 25|
LA = fLoo)| < @ hi — ha| + 912 {q1 — g2] + @1 |wi — wa| + D! |z1 — 22
|70 = £ o] = @]k — ha| + 07%|q1 — 2] + @3 w1 — wa| + @] |21 — 2
KD = (O] < 0K hy — ho|+ 0K |q1 — g2 |+ K3 w1 — wa |+ K421 — 22|
Remark2.10 Let fR(y) = ff(hs.q5. ws.25) £ () = fl (5. a5, w5, 25). £ (09) =
F (hs. g5, ws, z5) and fKX () = fK(hs. g5, ws, z5). Assumption [A;] holds if and

only if fR( + FR gy, wy.z5) = fl(hs, £F  wy zs) = fl(hs g5 £F), 2) =
& (hs. g5, ws, £FX) = 0, for any hy, g5, ws, 25 € R.

Remark 2.11 The first order partial derivatives of f;R(-, ) fl (i) 1! (),
sz(-, e ) with respect to h,q,w,z exists and are continuous and bounded, that
is, there exist positive constants ®&!, ®k2 @R @R @Il @2 @3 @l
o/, @)% o3, o4 oKl oK2 K3 K4 guch that

3 ff < ok ’ast < pk2 aff < pR3 affk < pR4 aff < @l!
oh 1= 71 9g 1= 7 low!l— 7 1azl= " lonl— *"
afsl < d)lz afS[ < CDI3 afSl < d>14 afSJ < d)Jl 8fSJ < ®12
dg 1= S dow!l ™ ezl T Sl an T S Tl ag T
afsl < @3 afsJ < /4 3sz < pK! asz’ < pk2 asz‘ < ok3
dw !l =™ ozl = 7l l— Sl agl— F T low !~ %7

asz‘ < q)K4

az | — %

Therefore, Assumption [A>] satisfied by means of mean value theorem for multi-variable
functions.

Lemma 2.12 Under Assumptions [A1] and [Az], for any y1 = hi +iq1 + jwi +kzi, y2 =
hy+iqy+ jwy +kzy € Q, there is fSR( + FSR, gs, Wy, zx) =0, then

ok () £ (1) — ol (12) £ (32)| = b [@F |y = ho| + 0|1 = g
| ae)
[cotul (1) £ (31) = Tluh ) (12) £ (32)] = wh [ @111 = ha| + @21 — 2]
|- an

co{u) Y(v1) £ (1) — colud Y (v2) (yz)‘ <uj, [d>s“ |hi — ha| + ®7*|q1 — ¢o|

+<I>f3‘w1 — w2| + ®§4|Z1 - 22

+<I>§3|w1 —wy| + <1>§4|Zl - 22
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+<I>!3|w1 — w2| + @{4]11 —22

| as
(ol (1) £5 (1) = @0t} (32) £5 (32) | = ek [ @K 1y = o] + @52q1 — o]
+ 083wy — wa| + @42y - 2o]] (19)

where p,s € {1,2,...,m}, ul = max{[aX|, (@R[}, ub = max{|al |, (il ]}, ul =
max{|dy, |, |y}, and uf, = max{lig|, |if|}.

Proof From (16) is equivalent to prove
R ) 1R (1) = 2R (2) £R (02)| = wli [ @8 [y = o] + ©F2]g) — g
+ 0P w) — | + 08z —nf ] 0)
The proof of (16) will be splitted into the following two cases.
Case 1. y1, y2€ TPT. Then Aﬁs (1) = kﬁs (12). hence

18 00) £5 00) = 35, 02) £7 )| = MR 01) = £ ()]
< ul [@F |y = ha| + ©F|g1 — |
+ 0wy —wa| + &2y —zZ|]. 1)

Case 2. y; € T; and y; € T; <0r € T; and yj € T;. The Proof of the case 2 can be
dived into two subcases, which is followed by

Subcase (i) FX < hy. Since fR(FR, g1, w1, 21) = fR(FR. g2, w2, 22) = 0, one has
M) 1R (1) = 25 02) £5 (02)| = [ 00) £2 () = i (02) £ (02)|
ﬁgs(f;R(hl,m, wi,z1) — fR(ER g1, wi, zl)>
+ft,’fs (st(FsRy @ w2, 22) — [ (h2, g2, wa, zz))‘

< g, [ @ — FF| ] + [ [ @F![FE — o

< max{laF,|, |ﬁ§s|}d>§1[\h1 — FR| 4+ |FR - hz\]
< ul ORI FF —hy + by — FE]
< uf @8 |h — ha|
< uB [OR 1y = ho| + ©R|g) - o]
+ 0w — w2l + 0 — 22|

Subcase (i) —FR < hy. Since f;R( —FR g1 w1, 21) = fSR( — FR. g2, w5, 22) = 0, one
has

1B ) AR (1) = 25 02) £7 ()| =

iy (1) £ (1) = ity (32) £ (yz)‘

i (78w z) = 7R (= FR g1 v 2)
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1496 A.Pratap et al.

iy (FR (= FR g2 w2 22) = R (12, 42, w2, 22))|
< [af [ ®F 1+ FF|] + lif [0 [FR + ha ]
< max(jify . i, VoK [ + FX| + | FR + o
< u§S®§l[h1 + FR — (FR +h2)]
< ups[®F 1y = o] + @821 — oo

+ 08wy — wy| + @Rz —22|]-

From the above two cases, inequality (16) holds, thus the proof of (20) is finished. The rest
of the proof of (17)—(19) are similar to the proof of (16). Hence, it is omitted here. O

Corollary 2.13 Under Assumptions [A1] and [Az], forany y1 = hi+iq1+ jwi+kzi, y2 =
hy +iqy + jws + kzo € Q there is fR( £ FR, g5, wy.z5) = fl(hs, £F], wy, z5) =
£ (hs, a5, £F]  25) = X (s, g5, ws, £FK) = 0, then
[t ) (0) £ (1) = olf ) (02) £ (32)] = [ @ i = | + ©]g1 = g
+ &P |w — wa| + @4z - zz]]
‘E{u{,s}(yl)ff(yl) —@{uf,s}(n)st(yz)‘ <uly [©51|h1 — |+ ®Rg1 — g
+ & |w) —wo| + @Mz — zzl]
[Glup ) () £5 (31) = @l (32) £5 (32) | = wp, [ @8 1 = o] + 5% a1 — g
+ 0w — wof + &z —z2|]
‘@{ugs}(yl)ﬁj(yl) —%{ufs}(yz)fsj(yz)‘ <up [cbs“]hl |+ ©2|g1 — g
+ @ wy — wa| + @7z — z2|]
‘w{uzlfs}(yl)fsj(yl) - %{uﬁs}(yz)fs’(yz)‘ < uk [cb{l|h1 ~ |+ g1 — o]
+ 03wy — wa| + @4z - 12|]
‘ﬁ{”;)s}(yl)ka (1) —E{Mf,s}(yz)ff (yz)‘ < uf,s [<bfl |h1 — ho| + ¢fz|q1 — |
+ 053wy — wo| + 0Kz - zz\]
‘@{Mfm}(yl)ff()’l) —@{M,J;s}(yz)ff(m)’ < uj, [bel |y = ha| + R (g1 — ¢o
+ 0P —wa| + 0z - zz|]
‘ﬁ{ufs}(yl)fsl(yl) _m{ugs}(n)fsl(ﬂ)‘ = uﬁfs[d%”!hl — ho| + g1 — g2
+ 8wy — wa| + @4z - Z2|]

colup Y () £K (1) —E{uﬁs}(yz)ff(yz)’ <up [<I>§“!h1 — ha| + @K2|q1 — ¢
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+ 08wy — | + 0Kz - 2o
‘E{Mf,s}(yl)fsj(yl) — coful, (yz)fsj(yz)‘ <ul, [d>s“|h1 — ha| + ®)%|q1 — qo|
+ & wy = wa| + &z -
[Glup () £ (1) = ol ) (02) £ (32)| = wps[ @2 11 = ha| + @01 = g
+ 8w — wa| + 4z - z2|]
‘@{u,lfs}(yl)ﬁR(yl) —@{u,’fs}(yz)ﬁR(yz)‘ <ub [¢§”|h1 — | + @8 |q1 — g2
+ 0P —wa| + 0z —z2|]
R 1 J

where p,s € {1,2,...,m}, up, uy, uy, and u,’fs are already defined in Lemma 2.12.

Considering y;,(t) = (@, ...,y (t)) and y (1) = (yi’(t), R (Z))T are any two
solutions of FQMNNS (2) with different initial condltlon yp(0) =y, , and ¥y (0) = yg , for
pefl,2,...,m}

Lety,,(t)—h/ (1) +ig, (1) + jw),(t) + kz),(t) and y (1) = W}y (1) +iq, (1) + jw, () +
kzly (), then

DI, (1) = = aphy ) + XA (0 0) £ (5 0) = L 45, (50) £ (740)

3

- ikﬁs(yé(t))ff(yé(t)) YA (L) K (i) + LR (). 1 # 10 @2)

s=1
AR (1) = B, (15) — 1), (57) = SR (W), (1)), T=1,2,...,
DPql (1) = —apql () + > AR (L) £ (i) + ) hps (v O) £ (v (1)

+§ M OOV F (@) = A (0O (L 0) + L4 0, 1 1

Ad) (i) = 4, (1) — g (7)) = S,’,T(qp(tf)), t=1,2,...,
(23)

Dy @) = —apw ) + X A5 (3(0) £ (50) = 2 s (5 0) £ (34 0)
+ gk S5 0) £ (@) + Z WD) A (@) + L@, 1 # 1

Awl (1) = w), (1) —w), ;) = ST (w), (1)), T=1,2,...,
(24)

DFZ (1) = —ap2,(0) + i AR (5 0)) £K () + il A (L) £ (51 0)

- ; 3 (0) £ (0) + Z A () FR(L0) + LE @), 1 £1,

AZ) () = 2,(t) — 2, (17) = SK (2,), t=1.2,...
(25)
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1498 A.Pratap et al.

almost everywhere ¢ > 79 and

DP (1) = —aphl) () + Z AR @) fR (v @) — ;Xfm (/@) £l (vl @)

—kas(ys o) £ (yv/ @) - % KOro) 8l o)+ L@, 1 # 1.

AR (te) = () — (i) = SR (1)) (n)) :
(26)

DFq)(t) = —apq)(t) + Z AR (L 0) f (3 ) + Z ML) FR (v )
+ X ALOIO) L) - i K OLO) ! (L 0) + LE0), 1 # 1

qyt) = gyt —qp;7) = Sh (g, @), T = :
27

m

3

=1
Awi(tr) = wy (i) —w(1;) = S) (wh(t), :

N
AZ)(t) = 2y — Z5(t7) = ST (). T =12,

where )‘Ilfs(')’ Xﬁs() E@{uﬁx (')’}‘;S(.)’ 5‘;7?() € a{M;s}(')’

coful }(-) and 2K (), 2K () e cotuk}(-).

Definition 2.14 [18] Let y'(1) = (¥} (1), ..., y,’n(t))T and y'(t) = (y/ (@), ...

DPwy(t) = —apwy(0) + 3 A (3 0) £ (@) = Z I () £ (v ()

+ kas(ys ) RO @) + Z MOTO) AL 0) + L), 1 # 1,

(28)

Dz (1) = —apzy (1) + Z MR (@) K (@) + Z K (0 O) £ (v @)

- S AL O@) A (10) + ﬁ £ OIO)RGL@) +LE@. 1 A1,

(29)

NORARE

@) ar

any solutions of FQMNNSs (2) is said to be Mittag-Leffler stable in finite time with respectmg

to {p, o, T}, if there exist constants p > o > 0 such that
1Y@ =yl < p, 1 €lto, 10+ T)
when
1y (0) —y"(0) < e,

where 7 is starting time.

Definition 2.15 Let y'(t) = (y{(©). ..., y;,,(z))T and y'(1) = (y{ (@), ...

solutions of FQMNNSs (2) is said to be asymptotically stable, if

1Y () =y ()| = 0ast — +oo0.
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Letx, (1) = y}, (1) = yj (1), where x, (1) = x (1) +ix},(6) + joxp (1) +-kx [} (1), thatis x (1) =

1 _ J _ K —
Ry (0) = (1), x, (1) = ), (1) = g, (1), x), (1) = w), (1) — w (1) and x,, (1) = 2,(1) = 2, (1),
then the error system is

DFxR(t) = —apxR @) + % WER (xR0, x (1), x] (1), xK (1))
s=1

-y W (R @), x] (@), ] (1), xX 1) - ) Wl (xR @), <l @), x] @), x K @)
s=1 s=1

-y L N O O OB Q) R

s=1

AxR(t) =xfah) —x X)) =S (xfan), t=1,2,...,

(30)
DFxl(t) = —apxl (1) + ilq/;f; (k@) xl@).x] @), xX D)
+ f WIR(eR@), x! (), x] 1), xK (1) + f WK @, xl @), x] @), xX )
s=1 s=1
s wkJ
s=1

Axh(tr) = x) () —x)7) = S (x)(t)), T=1,2,...,

(S @, 0, x] 0,2 0), 1 # 1

(G

DFx) (1) = —apx) (1) + % WRI (xR @), x] (), x] 1), xX (1))
s=1

= S WK (R x5 0. 5K 0) + 3 WIRER @) 5 0. 5 0. 5K 1)
s=1 s=1

+ Y WA (xR @), xl(0), x] (1), xK @), 1 # 1,
s=1

Ax)(tr) = x) (1) = x) (17) = Sp (%7 (1), T=1,2,...,
(32)

DPxK(t) = —apxk () + i WEK (xB(0), x! (1), x] (1), xK (1))
s=1

+ f W (@), xl @), 5] @), xX 1) - i Wl (k). x @), x] 1), xX @)
s=1 s=1

+ f WER(R@), x! (1), x] 1), xK @), 1 # 1,
s=1
AxN () =xf () —xf 17) = S5 (2K (1), t=1,2,...,
(33)
where

iR (xR @), x[ @), x] 0, xF @) <28 (i) LR (@) = A8, (07 @) £F (v @)
VK@), x] 0. x] 0. xF @) < 1L (i) £ (@) = K (67 @) £ (v) @)
W (X0, x 0, x] 0, x5 0) < 20, @) ] (50 @) = 2,07 D) £ (0] )
WK (@), xl @), x] @), xF @) < a5 00@) 15 i) = 25,07 @0) 15 (07 @)
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1500 A.Pratap et al.

Wl (xR xl @), x] 0. xK0) <28 (i) £ (i) = K5 (60 ) £ (v )
IR, xl @), x] 0, xK0) <20, (i) £F (ve @) = M (3! ) LR (L @)
WK (xR @), x[ 0. x] @), xK@©) = 2 (0@) £F (i) = A7, (v ) £E (7 @)
W (X @), x] @), x] 0, x5 @) < 2K (00) £ (0L 0) = A5 (3 ) £ (v )
i (e f @), xl @), x] @), xF @) < a5 (000) £ (v50) = A8 (57 ) £ (3 )
(S @), x @), 5] @, xF0) <25, (000) £ (@) = 20,07 ) £ (v @)
WIRE @0, x] @), x] ). xK0) < 1,00 @) £E (i) = 1 (5! 0) LR (v )
W (xR0, x] @), x] (1), xK0) < A5, (00 @) £ (i @) = 25 (3 ) £ (v )
WRK (xR @), x] ). x] 0. x K 0) <28 (i) 15 (i) = KB (6 0) 15 (v @)
W (k@) @), x] @, xF @) < 2L (000) £ (000) = Ao (3 ) £ (v )
W (xf o), xl @0, x] @, xF @) < M (i) £ (i) = 2 07 @) AL (v @)
WER(R @), x] @), x] 0. xF ) < 25, (v @) 1R (i) = 1K, (07 ©) £ (7 @)).

Remark 2.16 In FQMNNs (2), if y,(t) = h,(t) +iq,(t), and all the coefficients of (2) are
assumed to complex coefficients, at that point FQMNNs (2) will turn to impulsive finite-
time stability of fractional order memristive neural networks in complex field; If all the
coefficients of (2) are assumed to real coefficients, at that point FQMNNs (2) will turn to
impulsive finite-time stability of fractional order memristive neural networks in real field.

3 Main Results

In this section, we will present the finite time stability results for FQMNNs (2) with fractional
order0 < B <landl < B < 2.

3.1 Fractional-Order0 < B < 1

In this subsection, we studies some novel sufficient conditions to guarantee the finite time
stability of the solutions of impulsive FQMNNs (2) by using Lyapunov function, Mittag-
Leffler function and fractional-order differential inequalities.

Theorem 3.1 Under Assumptions [A1] — [A2], FOMNNs (2) is finite-time Mittag-Leffler
stable if the following relationship holds:

(i) There exists constants Opr, €pc, Npr, Opr, the functions S (), S HON S;T(J and

pt( ) satisfies

SE (1) = W) (1) = — 0,0 (W), (1) — B (1)), 0 < 0 <2,
Sy (@p(0) = gy (1) = —&pe(q,(D) — g 1), 0 < gpr <2,
8y (W), (1) = wi () = = npe (W), (1) —wh(@), 0 < npr <2,
SE (2, (1) = 2(1) = = 0pe (2, (1) = 2y (1)), 0 < 0pr < 2.
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(ii) If there are m positive constants &, {p Vp, op, p=1,2,..., m such that

Fip =

Fp =

F3p =

m
—&pap + Z uf}[ésfb,’f] + {s‘bzl + )/sCD;] + a, ®K1]
s=1
m
+ 3wl [0 + g R 4y 0K a0
s=1
m
+ 3wl [600 + ¢ @K 4y @R 4o 0!1]
s=1
m

+ > ul[6 08 + @)t + 0l 4,08 <0
s=1

m
—fpap + Z “st [fsq),lfz + & ‘1’;,2 + Vs <I>f,2 + o, ®K?]

s=1

m
I jp) R2 K2 72
+ Zusp[ssq)p &P, @, Hap®; ]

s=1

m
T Zusjp[sé‘q)éz + §s¢§2 + Vsq>§2 + o, @17
s=1
m
+ Y uf (60K 4 102 4y 02 40, 08 <0
s=1
m
—Vpap + Y up[E PR + 50 + 1) + o, 0]

s=1
m

b Yl 608+ 608 1y a0

s=1

m
+ > ul (500 + 48 + o 4 o 0]

s=1

m
+ Y ul[608 + 4@ + ol + 0] <0

s=1

m
—apap + Z ufp [SS(D? + §Sd>f,4 s d)1174 T ®§4]
s=1
m
b3l 60l + 60l ok +a,0l
s=1
m
+ Y ul [ 00 + L OF 4y of 4 ag0l]

s=1
m

+ ) ul[6 0k + @)t + 0l + 08 <0,

s=1
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(iii) Furthermore,

Eﬂ’l(—wtﬁ) <§

where —w = maxi<p<m {Flp, sz, F3p, F4p} > 0.

Proof Consider the following Lyapunov functional

4m m

V(x®) = 8y =D &R+ ¢plxs )]
p=1 p=1 p=1

m m
+ Y vl O+ > aplxX @) (34)
p=1 p=1
where
&, p=12....m
5 Cps p=m+1,m+2...,2m
b=
Yp, P=2m+1,2m+2...,3m
ap, p=3m+1,3m+2...,4m.
Firstly, we consider the case of t =1, T =1, 2, ..., from condition (i) of Theorem 3.1, one
has

V(xth) = Zg,,|x§(rk) + S8 (xfw)| + Z Cplxf ) + She (x), )|
p=1 p=1

m m
+ D Vel 0 + Sy (6 )|+ D erplxy (1) + Sy (v (1)
p=1 p=1

= EpxR ) — Opex R @)+ ¢p|xh 1) — eprx ) (10)|

p=1 p=1

m m
+ Y vplg @) = npexy )| + D aplxK () — opex K @)

p=1 p=l1
m m
= pr“ = Ope | )| + Z§p|1 — &pe |, @)
p=1 p=1
m m
+ ZVP|1 — e ¥ @] + Z“ﬁ“ — e xp @)
p=1 p=1

<D &R+ D Il + D vl )l + D aplxh (@)l

p=1 p=1 p=1 p=1
= V(x(®)) (35)
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Secondly, we consider the case of t # t;, T = 1,2, .... Taking the fractional-order time
derivative of V (¢) along the trajectories of (30)—(33) and, based on Lemma 2.7, one can get

EDP IR+ ¢, DP IS )1+ Y vpDP1x) )] + Y e, DPxK (1))

p=1 p=1 p=1

M=

DPV(x(1) =

=
Il

gpsen (xf0)DP (xR0} + > ¢ sen (x) (1) DP (x] (1))

1 p=1

M=

=

=
Il
3

Z sgn (x; (1)) DP {x J(t)}—l—Za,, sgn (xX (1) DP{x K (1)}

p=1 p=1

Il
Ms

&psgn (xl’f(z))[ apxy (z)+Z\I/RR xR0, xl @), x] ). xK 1)

1

=
Il

=D W (S @k 05 0, xf ) Zw;{ <R (o), xL @), x! (1), xK 1))

s=1

Z\y“ xRy, x! @), x! (1), x! (z)} Z;,, sgn (x (1) [ apx}(t)

+ ZW,’;’ CHORHORHORNG) Zw’R xRy xl @), x! 0, xK @)

s=1
+ Z\IJ’K xRy, xL @), x] (1), xK 1)) Zqﬂ” xRy, xl @), x! @), x"(z))]
+ Zyp sgn (x7 (1)) [ apx;, (z)+Z\pRJ R, xl o), x] ), xK 1)
p=1
—Z\I/’K xRy, xl @), x! (0), xK @) +Z\I/JR Ry, xl o). x] 0, xK @)
+ Z\Iﬂ” xRy, xI @), x! (0), xK @) i|+2a,, sgn (x,’f(z))[—a,,x,’f(z)
p=1

+ Z\PRK (0, 2 (0, x] 0, xF 1) + Z\D,’,{ (.5 0, 5] 0, x5 ©)

Zw” Ry, xl @, x] @), <X @) +Z\p“ xRy, x1 @), x! (1), x! (t))i|
(36)
By virtue of Assumption [A;] and Lemma 2.12, one gets

spaplx o] - ngaplx @] - Zypap|x£<r>| =2 apap|ef @)
p=1 p=1 p=1

DPV(x(0) < -

s 11

pups [ R F 01+ 2 [x] 0] + o8] 0] + o f 5K 0]

4
M=

spu;s[azs e o1+ o2[xl 0] + 0! 0] + @ xf 0]

M= ;M§

1

S|
Il
w
I
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Ms
Ms

,,upé [@/' xR o1+ 02l 0] + o)) 0] + o *|xF ]

S
I

+
M=
M§ i

Epuﬁfs[<l>fl ef @1+ 82|l 0] + @3 | 0] + 84 xK )]

<
Il
o
I

3

cpults [ @2 [xf 01 + 2|l 0] + &P 5] 0] + o4 F ]

+
-

S|
I
-
w
I
_

T
B
M=

cpuhs [ @F![xf 0+ o2l 0] + o] 0] + o8| K 1]

S|
I
—
©
I
-

T
B
M=

tpups| @ xf 01 + @2 x] 0] + 0 0] + oK 0]

=
I
-
©
I
-

T
NE
NE

cpulss [ @7 [ R 01 + 02|l 0] + &3 |x] 0] + &K )]

<
Il
—_
o
I
-

T
M=
W

ypufs[ @7 [ F 01+ 02 0] + o] 0] + o x 0]

<
I
—_
o
I
-

4
M=
M=

vpieps [ @8 5 01+ @ 0] + @] 0] + @ )]

bS]
I
o
Il

3

pips| F 01+ 02l 0] + o] )] + @B o)

S|
Il
_
w
I
-

+ +
M= ]
B Pjs

ypups| @8 [xF 01+ P 0] + 0|5 0] + @f* 5 ]

<
I
-
©
I
-

T
M=
Ms

apufi [ X [ 01+ 0F2x] 0] + 0X7[x] )] + F 4 F ]

<
Il
_
©
I
-

T
M=
Ms

apub [0 xR W]+ @2 [xl 0] + &[] 0] + )4 xF 0]

<
Il
—_
o
I
-

4
NE
M§

apups [ @ xR 01+ @12 [l 0] + &P |x] 0] + oK ]

bS]
I
o
Il

3

pups[¢Rl|x 0|+ <I>R2|xs (t)! + <I>R3|x (t)| + (I>R4}x (t)}]

S

]

@

[}

+
'M§

Epaplep O] = Y tpaplp O] =Y vpaplxy O] = Y apaplxy @)
p=1 p=1 p=1

I
Ms

S|
Il
—

T
M=
B

[, (50l 4 0l 43001 o)

=
_
“
Il
_

\‘"“ I

o(6p®!! +5pof! 4y, 08! 4oyt

@ Springer



Finite-Time Mittag-Leffler Stability of Fractional-Order... 1505

uhs (6p@]" +6p@F ! + v 0! +ap0l!)

+uls (60K + gpoft +yp0l! +oz,,<1>§’“)]|xS o)

m m
+ [uﬁfs <‘§pq>§2 +2p @ +yp®)? +0‘p‘bsl-(2>
p=1s=1
'H‘f;s <€p¢§2 +¢p @K% 4y, K2 +°‘17<Ds12)
+ups (8p®L% + 502 +ypof? +0‘p¢f~2>

ulls (& d>§2+cp<b{2+ypd>£2+apd>§2)}|x§<r>|

m m
Z Z [ R (6p®F + 5yl + 7,00 + o, 0K7)

3

;’,( g0+ 50 4 o3 4 ap0ld)
+upy (69 @0 + 6,083 1,08 + 0y 007)
+ull (6083 + 5, 0] + 00 +otpd>R3):||x1(t)|
m m
#3203 (50t ot p0l gl

(E <I>’4+{pd>R4+yp<DK4+ap<I>J4)
+ups<€ d>’4+§pq>K4+ypch4+apq>’4)

K (5p0K* 4 ¢p0f* +yp 0!t +ap¢R4)]|xs )|

==Y &paplxy | = Y tpaplxp | = Y vpaply 0] = Y apaplx) )]
p=1

p=1 p=I1 p=1

m m
Z Z ; (ugp[ssqﬂ“ + & 0p! + @) + oy 0K
—1s=1"°P

L6 0p + a0t 4 ol 4+ apo!!]

{p[g o)l + ¢ oK 4 0!+ ay0l!]

ul | & oK1+ o 01+ y 0] +apd>§‘])sp|x,’5<r>|

m
Z ( s,,[é‘sq)m+§s<1>12+ys<1>12+0ts<1>m]

m
=ls
[ d>12+§s<DR2+ys<I>K2+apd>sjz]
+u5p[§s<1>12+§s<I>K2+Vs¢R2+%<D12]
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fp[swb’“ + 4002 + @l 4+ apd>R2])<;p|xp(r>|

m m
1
£ 0 (sl v aop e vaol]
p=ls= 1

I{Q¢B_FQ¢RS+%¢K3+ap¢p]

+”sp [S ¢J3 + §€¢K3 + )’9¢R3 + Olvd>]3]

508 46907 + 0 +apd>53]>yp|x,{<r)|

+ZZ (uﬁ,[&s¢§4+gs¢§4+ys¢§4+asq>§4]
p=1ls= 1

+ I/l_;-p I:ES‘ (Dgl + gsq)éM + Vs CDII,{4 + (qu):vhl]

+ul, [sscbf + 40K 4y 0Rt 4 as<b§4]

uﬁi,[m’;“ + 400 + ol +apd>§4])ap|x,’f 0]

== Y Fipbplxf 01 = Y Faptplxp )]

p=1 p=1
m m
K
=Y Fapyplay Ol = Y Fapaplxy @)
p=1 p=1
< — min {Fyp,, Fp,, F3,, F.
= ISpSm{ lp- £2p- F3p 4p}

[Z Eplep 1+ D Cplx, 1+ Y vplxy I+ Y oep|x,’f(z)|]
p=1 p=1 p=1 p=1

= —w[ Y Eplp I+ D Gy 1+ Y vplxy 0+ Y aplxp ()]

p=1 p=1 p=1 p=1

Then, we have
DPV(x(1)) < —o V(x(1)).
Then by virtue of Lemma 2.9, it is easy to get

V(x(®) < V(x(0)Ep1(— otP).

That is,
4m 4m
D plxp <D 8plxpO0)Ep (— wtP),
p=1 p=1
then
4m 4m
D 8plxp0)] <  max Z|xp(z)|

p=1
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4m
< max {8,} Y 8,lx,(0)|Eg1(—wiF). (39)
p=1
By using the definition of ||(-)||; and from (39), it can get
xIx® < xIx O Ep1 ( — @tf).
where x = max<p<4m {8, }. According to condition (iii) in Theorem 3.1, it is easily to get,
Ix()ll < 0Ep1(— @) < p. (40)

By utilizing Definition 2.14 and inequality (40), the FQMNNSs (2) is finite-time Mittag-
Leffler stable with respect to {0, p, T} if there exists ||y'(0) — y”(0)|| < o then it implies
Iy (£) — y”(2)|| < p. The proof is accomplished. O

Now we prove that the existence, uniqueness and global Mittag-Leffler stability of equilibrium
point for FQMNNS (2).

Theorem 3.2 Under Assumptions [A1] — [Az] and let L,(t) = L, € Q, FOMNNs (2)
admits a unique equilibrium point which is finite time Mittag-Leffler stable if the following
relationship holds:

(i) If there exist a m positive constants 8,,, p = 1,2, ..., m such that the following condi-
tions hold:

8pap — Zs[ (@81 + oF2 4 R 4 @k 1] (@!! 4 912 1 I3 1 0l¥)

Ful (@) + @72+ &+ oI +uf (®K1+¢1’§2+¢1’f3+¢§4)]>0, (41)
8paty — Z‘S[ (@11 + &2 4 ®3 4 &14) 4 ul (SR 4 BF2 4 R | R4

+ul (@5 + @5 + of% + oK) 4+ uf (o) +<1>,’,2+d>f,3+<1>;4)] >0, (42)
Spapy — Za[ (@7 + @2+ 7% + &) +ul (05! + 0K2 1 K3 4 0k
+ul,(OF + @R+ o + &F) +uf (q>”+q>;2+q>f,3+d>j,4)] >0, (43)
Spap — Zs[ (05 + @F% + @K + oK)+ ul (@)1 + 77 + @73 + @7

Proof Given any A ps(-) € cofu ps}(-), construct a contraction mapping A Q" - Q™
T
AG) = (A1), -, An(y))" and

A(y)_apz)\pb - ﬂ( )+5L,,,p_12 (45)

Then

m m
Y. Y. Y. Y.
Ap0) =8 2 G ) =0 s G (G5
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y
_(SPZ)L’” a5 astS)

Y Y.
I

asds

)+ 8pLN. p=1.2,....m. (46)

A’(y)—apzx (= fs(ys +apzx

+6PZA yv)

—51,2%’;( y; V() 4e,Lh p=1,2,.m. @7
—l As0g agds
m
A;(y):8pz)‘§s( ys A )’s _SPZ)“ ys )
asss ax s s

—(SI,ZA (-2 =)

S S
K (Vs I/ Vs 7
—apZAm( () 8Ly, p=1,2,.m. (48)
S=1 sYs
- y y y
Ay =5 AR (= ) -4 A u
P(y) pZ Ps(asgs Z I" aS asgs)
Vs
) A
pz ps ag 8 asﬁs)
Vs K _
iy ZAPS a(S = )+8,Ly, p=1,2,..., m. (49)
For any two quaternion vectors v; = (vi, vi2, ..., vlm)T, v = (v21,v22, ..., vzm)T €

Q™. Letvig = hig +iqis + jwis + kzis, Vas = hos + iqas + jwas + kzog € Q. By virtue
of Lemma 2.12, one has

AR @) — AR @)

m
1
=< 5]7 ZMIR;S avas I:d>§l|hlx - hZS‘ + ¢§2|Q1s - q2s’ + (D§3|w1x - wZ‘Y‘
s=1 oo

1
+<I>R4|le — 22s ] +4p ZMPS I:@I |hls - h23| + q> |CJ1: q25|
s=1

1
CDI |wls—w23|—|—cb |zls—z2s]+5p2um [¢J1|h1s—h2s|
s=1

+<D |q1v q2€|+d> |wlv_w2v|+d) |Zly_22v:|+8pzupéi
s=1
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Xl:q>5(1|hlx - h2s| + q>51<(2’q1s - fI2s‘ + ¢§(3|wls - w2s| + ¢§4|le - 12s|:|

m
1
=5, [uﬁsobfl ul @l @) 4 ufs¢51]|hlx — hay|

=1
m
I
+6, ) [u§s¢§2+u§m<l>§2+u{”d>sjz+M§S<I>fz]‘qls — ]

8say
s=1
m 1
R &R3 I 513 J xJ3 K xK3
8y 20 5[ @ b up @l +ug o+ uf 0w, — |
s=1
N L T R aRE 1 lh oy glh s K KA
+8p28a I:MPSCDS Fup @ up P+ Py ]|le—22s| (50)
s=1 ss

A - AL

m
1
= 81’ Zu;@[q};] |hls - h2s| + CD§2|611s - q23| + q)!3|wls - w2s|
s=1

m
1

s=1
m
1

+ 08wy — was| + @82y — zzs]] +3, Z”;Sg[q’fl|hls — hy|

—1 sUs

' m
+¢§(2’C]ls - q2s’ + q)sKS‘wls — wzx‘ + d)sKﬂzls — ZZS‘] +8P Zu{;a P

s=1 sty

X[CDS“|h1s - h2s| + <I>!2|q1‘Y - qzs| + <I>§3|w1x - wzs‘ + d>sj4|11s - sz|]

m
1
=6y —[uk @I+ uh OF ) OKV K @ [y — oy

=1
m
1
+6, [u§s¢’312+ui,s<l>fz+uljnd>§2+u§s<l>f2]’qls — ]

8say
s=1
m 1
Rad3 1 oR3 . J K3 | K aJ3
8y 20 5[ @ +uf o +ug @l 0l i, —
s=1
ol
b3 ettt et of el a6
s=1 ss

1
= 811 ZMR 7[¢§”}hls - h2s| + q>!2|q15 - q25| + ®!3|wls - w2s|

m
1
+ @74z - Z2s|] +8p Z“fmr - ss[cbfl|hls — |+ ®K2 g1y — o
sHs

s=1
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m
1
+ &5 wiy — wag| + K215 - Z2s|] +38, Zu,’,sﬁ[d}fl}hls — hay|
s=1 sHs

1

m
+(b§2|q15 - q2S| + q>§3|wl.v - w2S| + q>§4|le - Z2$|:| + Sp ZMII;W
—l ss

X[q)!] |hls - h2s| + ¢§2|Q1s - q2s| + q)£3|wls - w23| + ¢!4|le - ZZS[I

m

1 1 1 1
[k @]+ ®F ! 8 4w D1 [y — oy

ps

1
m
1
+5,) [ullfSCDSJz +ul K2 4yt OR? 4 M§Y®§2]|q15 — 2]

i1 dsas
+p i: 551615 [uﬁSQDSM +ul O +ul of + uﬁpg“] 215 — 225 (52)
p
[AK @) = A @)
= 5pilbt§55vl%[¢flfh1s — ho| + q>§2|511s — | + ¢f3’w15 — woy
- 5

m
1
+q)sK4’le — 125‘] +3p Zuésﬁ[cbgl‘hls - hZS‘ + q):vlzqu - 612s’
1 sls

m
1
+CI)XJ3|w1S — w2S| + @:4|le - zzs|] +4p Zu;sﬁ[q)!l |hls - h25|
sHs

s=1

1

m
+ ¢f2|611s - q2s| + (D§3|wls - w2s| + (D§4|le - 22s|:| + 8p Zu;iﬁ
s=1 ST
XI:CDSR] |hls - h2s| + <I>52|Q1s - 42s| + ®‘§3|w15 — wzs| + ®‘§4|le - Z2s|]

m
1 R #K1 1 J1 J 11 K Rl
=8p25sas [”psq)s +upsq)s —|—upSCI)S +upsq)s i||hls_h23}
=1

m

I

+6p ) 5[ uh @ ) @ +ul 0 +uf 0 |1 — 2
s=1 ss

I

+4
b ds

o[:ﬂs

R K3 1 J3 J 513 K £R3
I:upquS +upsq>s —i—upsd)s +upS(I>S :I’wls_w2s|
1 )

©
Il

1

dsa

M=

+38, [u§S®SK4+uf,S<I>SJ4+u£s¢§4+ufs®§4]|21s — 224 (53)

1

“
Il

By using Definition of | - ||1, and from (50)—(53), we have

la@n =A@
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4m

=" |A, ) = Ap(2)|

p=l

=Y (AR = ARwy)|+ Y [Abw) — AL

p=1 p=1

+Z|A (1) — A (vz>|+Z|A (1) — AK ()]

pP=
m m 1
= Z(Sp Z [u§5¢51 +u57S<D§1 + u;]mq)sjl + ugsq)slﬂ]vlls - hZS}

p=1 s=I 8sas
m moy

+Zsl’ Z S.a I:uIIquDARZ + u§75q>§2 +u;sq>!2 + “§s¢§2]|‘11x - CI25|
p=1  s=1 7
m m o

R 4 R3 1 13 J J3 K K3

+28P28a I:upscbs +upx<bs +upscbs —|—MPSCDX ]|wls_w2s|

s s

m m
1
+ Z 61’ Z i [”§s¢§4 + u2s¢§4 + M;Sq)sj“ + u;fs@SK“] |le - 225|

p=1  s=1 8sa
m m 1

+Z§”Za - [uffs@ﬁl +ul OF ! oK +u§s<bs“]]hls — h|
p=1  s=1 7
m m 1

R 412 I mR2 J xK2 K g R2

+28‘D25a I:Mpscbs +upx<bs —l—upSCI)S +ups<bx ]|q1s—q2s|

sHs

m m
1
+3 08 3 [k @l @ w0 4 uK @ wn, — wn

p=1  s=1 8sas
m m 1

+Y s [ o4yl @R T KA LK T4 |7 —
Z PZSMS u Up up up |z1s — 225

m m
1
D0 2[RI ®F ) OB 4w Dl [y — oy

m m
UVl Rgi2 1 ok2 ] gR2 ., K gI2
200 2 5[l @ ) @ ]
)

8sa |QI5 q25
p=l1 s=1
m mo
£330 3 [uR O O ) O + 0, —
p=1  s=1 7
m m
R 5J/4 1 K4 J R4 K 514
+28P28a I:upscbs +upscbs +Mpx(bs +MPSCDS ]|Z]s_22s|
s s

m m
1
+2 5D 5 [uffsﬂbfl +ul @l 4 ul ol + ugsd)fl]{hls — hay|

@ Springer



1512 A.Pratap et al.

m m
1
+25”Zasas[” O 4 ul &) + uf O+ uf 8|, — ]
p=1 s=1
S — 1 R #K3 I /3 J &3 K & R3
+28p28a upsdi's +u[JSq>S +Mpsq>s +upsq>s ’wls_wZ.y’
p=1 s=1 7%

_J’_
M§
100

=7

[uf @F b ol O uf o8|z — 22| (54

p=1 s=1 sGs
Let
1 m
R R1 R2 R3 R4 11 12 13 14
upzapaPZ[ (@8 + o824 o + of4) 1 u! (0I! + 012 + o3 + 0l
s=1

J1 J2 J3 J4 K1 K2 K3 K4
g, (@5 + B + 073 + &%) 4 uk (0F! + OK2 4 983 1 oY) s,
m

1

s=1

K1 K2 K3 K4 J1 J2 J3 J4
+ul (OK1 4+ 0K2 4 oK 4 oK) LUK (07 4 972 4 o) +q>p)]85

1 m
wy = papZ[ (@) + @2+ @ + &7 +ul (@F! + oK% 4 oFF 4+ ofF)
s=1

=2

e
<

+ul (@R + 082 & 4 kY 4 f (0l + @I + o7 4 q>§,4)]85

1

pap

~
Il
[«9)
Ms

K1 K2 K3 K4 J1 J2 J3 J4
(8 (PR + 52 4+ & + 0K o ul (@) + 017 + 77 + @)

s=1
T
Forany y = (yl,...,ym) € Q" let [yl = Zf,";] lypl = Z’Z,’Zl [Iy,’fl +lypl+ Iyl +
ylf |]. From (47), one has
A1) — A2l < pllvr — vzl (55)

where M = max { maxlgpgm{ﬂg}’ maxlgpgm{ﬂé}v maxlgpgm{ﬂz}v maX1§p§m{M§}}.
From (34)—(37), it follows that i € (0, 1). According to (55), the mapping A : Q" — Q™
is a contraction mapping on Q™. Therefore there exist a unique fixed point A (v*) = v*, i.e.,

Y 5
vt _aprm s, ) fs asav)w,,Lp, p=12,...,m. (56)
Lety) = g it can obtain
m
0=—apyy+ > dpsODLOD+Lp, p=1.2,....m,
s=1
that is

m
0€—apyy+ Y colup N LGN+ Ly, p=1,2,...,m,
s=1
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forp =1,2,..., m,whichimplies that y* is an unique solution of FQMNNS5s (2). In addition,
condition (41)—(44) imply conditions (ii) of Theorem 3.1 holds. By virtue of Theorem 3.1,
if there exist a constant & such that

ly(t) — y*Il < 0Ep1(— wtP) < p.

Therefore, unique solution of FQMNNSs (2) is finite-time Mittag-Leffler stable with respect
to {o, p, T} if there exists [|y(0) — y*|| < o then it implies || y(#) — y*|| < p, and the proof
of Theorem is completed. O

Remark 3.3 When 8 = 1, model (2) degenerates into integer order finite time stability of
QVMNNS.

Remark 3.4 When the state vector y,(¢), the memristive connection weight u s (ys(7)), the
nonlinear activation fs(y,(t)) and external input L ,(¢) are all in complex domain (or real
domain), model (2) can be reduced into finite time stability of complex (or real) valued
memristive neural networks. So proposed in this model is more advanced.

Remark 3.5 The impulsive FQMNNs (2) is the corresponding closed-loop system to the
control system

m

DﬂYp(t) = _ap)’p(t) + Zups(y‘r(t))fs(ys(t)) + Lp(t) + Ap(t)a t >0,

s=1

where A, (1) = Zjﬁ‘l’ §(t —t7), p e {l,2,...,m} is the control inputs, §(¢) is the Dirac
impulsive function. The impulsive controller has an effect on abrupt change of the states of
(2) att = t; due to which the states of units change from the position y, (¢;") into the position
Yp (¢, the function S pr characterize the magnitudes of the impulse effects on the units y,
att = t;.1i.e., A, (¢) is an impulsive controller of the FQMNNSs

DPy, (1) = —apyp (1) + Y ups (s (1)) fs (35 (0) + L (), £ > 0. (57)

s=1

Therefore, Theorem 3.1 represents the general method of impulsive control law (3.3) for
FQMNNSs (57). The constants 6, &z, pr and o, in condition (i) in Theorem 3.1 charac-
terize the stabilizing impulses. Therefore, our obtained results in Theorem 3.1 can be used
to design impulsive control law under the controlled FQMNNS (2) are finite time stabilized
onto FQMNNSs (57).

3.2 Fractional-order1 < B < 2

When the impulses are not taken into consideration, FQMNNs (2) degenerates into the
following expression:

Dﬁy;)(t) = _apyp(t) + Zups(ys(t))fs(ys(t)) + Lp(t)' (58)

s=1

or equivalently,

DPy(t) = — Ay(t) + Uy(0) f(y()) + L(0). (59)
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Where A = diag{al7 "-7am}s )’(f) = (yl(t)7 -'-7ym(t))T’ U(}’(t)) = (”ps(yp(t)))nxna
FO@) =@, ..., ym®) L) = L1@0), ..., Ln@)T.

For the sake of convenience, we define UR = (u® LU = (ul , Ul =
PS/mxm PSS/ mxm
K K R1 R1 R2 R2
(M,J”)mxm, U = (MP‘Y)mxm’ @ = maxj<s<m{Pg ), P = maxi<s<m{P; 7},
PR3 = maxlsxSm{q)_gn}, PR = maxlg&fm{qD_gM}, o/l = maxlfsgm{qD_{l}: o2 =

max| <<, {®?}, @73 = max) <y<n {7}, @ =maxi ;< {®]*}, D71 =max; <, (P]'},
®/2 = maxlisim{d}{z}, o3 = maxlgsim{dDP}, o/t = maxlgsgm{¢!4}, oKl =
maxlsssm{dDSKl}, k2 = maxlsxsm{dﬁ(z}, k3 — maxlgsgm{de{S} and K4 =
max s < {®X4}.

Then, we state the finite time stability results of FQMNNs (59) as the following theorem.

Theorem 3.6 Under Assumptions [A1] — [Az], FOMNNs (59) is finite-time stable if the
following relationship holds:

(A +0e " Eg (YT ()P} < g, 0<i<T.

where 6 = minj<p<m{ap), T(t) = max{gi(t), g2(t), g3(1), g4(1)},

a1 = (JURI+ 1071+ 1071+ 1UE ) (@8 + 0! + @7 4 o
R

g2 = (IR + 1071+ 107+ UK ) (982 + 072 + @72 4 0F2)
g3 = (JURI+ U7+ 107+ (UK (95 + 072 + 7 4 o)
ga) = (JURI+ U7+ 1071+ (UK (@8 + @ + 74 4+ oY),

Proof Let y'(t) = h'(t) +iq'(t) + jw'(t) + kz'(¢) and y"(t) = h"(¢) +iq"(t) + jw" (1) +
kz"(t) are any two solutions of FQMNNs (59) with initial values y'(0) = y;, ¥"(0) = y;
and x(¢) = y"(tr) — y'(¢), n(0) = y'(0) — y”(0), it can be obtained that
DPxR(1) = —AxR (@) + WRR (xR (1), x" (1), x” (1), x % (1)) — W (xR (1), x" (1), x7 (1), x5 (1))
—W (xR (), x (1), x7 (1), XK (1)) = WEK (xR0, x (1), 7 (1), XK 1)).
DPx! (1) = —AxT (t) + W (xR (), x" (1), x7 (1), xX @) + WIR (xR (1), x" (1), x7 (1), x K (1)
+ WK (xR @), x (@0), xT @), X (@0)) — K (xR @), X (1), xT (1), XK (1)).
DPx! (1) = —AxT (1) + WR (xR (@), x" (1), 7 (1), x5 (1)) — WK (xR (@0), x" (1), x7 (1), xK (1))
+ W R xR @), x @), xT ), K ) + K (xR0, x @), x7 (1), xK 1)),
DPxX (1) = —AxX (1) + WK (xR (), x (1), 7 (), XK () + 9 (xR (0), 2" (0), 5T (1), K (1)
=W (xR @y, x @), x7 (1), XK @) + WER (xR @), x" (1), x” (), K (0)). (60)
where WRR (), WH (), w9 (JWKK () WY (1), WIR(), 07K () W (), wh/ (),
WK, WIRC), WKL), wRE (L) w7 (), W/l () and WER () are already defined

in Sect. 2.
By virtue of Lemma 2.12 and, from [4;] — [Az2], it can be followed that

DP xR )| = —A|xR@®)| + UR[d>R1 xR0 + @R x" ()] + %3 |x7 (1)] + <1>R4yx’<(t)y]
+UI[<I>“|xR(t)| + <I>’2|x1(t)| + @13}x1(t)| + ¢14|xk(t)}]

+ Uf[q>“yxR(r)y + &2 ()] + o7 ()] + d>J4|xK(t)|]
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+UK[OF R 0] + &2 x (0] + 53! (0] + &¥4xK ()] | (61
DA (0] = —Alx! 0] + UR[@/ xR ()] + 72[x (0] + @3 [x! ()] + @T*x¥ o)
+ U [OF [ R 0] + SRt ()] + 955! ()] + SR o)
+ 07 [@F xR 0] + &2 x (1] + 55! (0] + &K [xK (1)
+UK[O xR 0] + &2[x 0] + o7’ (0] + &7 (0)]] (62)
DP|x! ()] = =l 0] + UR[@7 xR )] + &72[x 0] + 7’ (0] + &K 1)
+U oK R ()] + K2l (0] + 0K/ ()] + 9K K (1]
+U7 [OR R 0] + @R [x (0] + R (0] + @R xK (1]
+ UK[oD“ XR()| + 02! ()| + 8|’ ()] + q>’4|xK(z)\]. (63)
DE[xK ()] = =A% 0]+ UR[@F [xR ()] + &2 |x! (1) + &5 (1) |+ K4 (1)
+U [T R 0] + @72 )] + S5 )] + & xK )]
+U7 [01 R )] + 12 [x (0] + @ [x! ()] + 1K o)
+UK[OR xR (0] + R |x (0] + oF | 0] + oF K 0] (64
Use Laplace transform and inverse Laplace transform of both sides of (61)~(64), one has
[xR0)] < Eg1(— AP )ng 0) + tEp o (— AP )nff (0)) + fot(z — o) Egp(— At — )f)
[UR[@R1 R @) + &2 |x (@) + 7|2 (@)] + &R xK ()]
+U [0/ R @) + &2 3! ()] + P (@) + &K ()]
+U7 [0 xR @)] + 0725 @] + &3 @)] + &7 [xK ()]
+UK[0F R ()] + 02! (@) + &5 [x! ()] + 04| xK @[]} dw. (65
Ix' 0] < Epi(— AP )ng(0)) + 1Epa(— AP )n{ (0)) + /Ota — o) Eg p(— AGC - w)F)
[UR[0/" xR @)] + 02| @)] + ©[x! @) + & [x ()]
+u! [cb’“ xR (@)] + &R (@)] + &R |x ()] + c1>R4}xK(w)|]
+U7 [0F xR ()] + 0K (@)] + & |x ()] + 0K [xF (@)]]
+UK[07! xR )] + 0724 @) + 07| @)] + 0K @) [} dw. (66)
Ix/ ()] < Eg1(— AtP)nd (0)) + tEgo( — AtP)y{ (0)) + /Of(z — o) Egp(— At — w)P)
[UR[07! xR @)] + 072! @)] + @72 @)] + &7 [xK (@)

+ U’[cb’“ xR (@)] + ©52|x ()| + @53 |x” ()] + q>’(4{x’((w)|]
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+ U7 [OR! xR @) + 972! (@) + R’ (@) + 74K (@)]]

+ UK[q>” xR (@)] + ®"2|x! (@)] + &3 |x ()] + CI>14|xK(a))|]} do. (67)
0] < Epi( = AP)ug ) + 1Ep2( = AP)nff (0)) + /Ot(z ~ o) Egp(— AG ~ 0)F)

[UR[@F 1| @)] + 0F2x! @)] + 053 (@)] + 054 ()]

+U [0 xR )] + 072! )] + 0 @)] + 07K ()]

+U' [0 xR )] + 7[5 @)] + &7 [+ ()] + ™ ]xK (@)]]

+UK[0R xR @) + 0 [x @)] + OB |5 @] + oK @]} do.  (©8)

By application of Lemma 2.8, and from (65), we have

0] < (I +af @) + [« - -1eseo
[R5 xR @)] + R x @)] + 5 [x’ @) + SR [+F (@] ]
+1u 1" xR @)] + &2 [x @] + & x! @) + 0| +F @)]]
U7 1[0 4R @] + 72| @) + 07 @] + 7K )] ]

FNUEI[ @K R @) |+ 52+ @) + 52 7 (@) + 54+ @) ]} d o

t
= (H 0y O) | + ¢ 0 0) ||)e‘6’ +e / (t —w)Plebo
0
[(UFIR U o™ + U107 + [UK 05 [* (@)
+(IUR @R + U@ + (U7 |72 + UK | 0K?)||x! ()
+(IURN® + Ut e" + U |72 + UK 1053 |+ ()|
+(IUFIOR 4 U [0 + U707 + UK 054 K @) }do. ©9)

Similarly,

t
I+ O1 = (Jab)] +elaf @) + e [ @ —w=tee

(Iuke™ + oo + o’ %" + 1u X 07") | x" ()|
+IUR " + Ut 105> + | U7 052 + (UK [07%) | x" (@) |
+(IUR7 + U105 + U7 |05 + UK 107%) |27 () |
+IUFIO" + U @R + U7 10K + UK 074 K )]} doo.

(70)
[+ 1 = (g @] + ] @ )= + = /Ota — W)l

[(UR107t + U 10Xt + U ok + UX o) [x* @)
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+(IURN072 + U052 + IU” @72 + [UF 1 9"%) |x' ()]
+(IUk@e”? + U105 + (U7 105 + UK |07) |x7 ()|
+(IUR @ + U 105 + U |0k + UK 0M) [+F @) | do.
(71)
501 < (IO +elf @)+ [0 a e

(uRje®t + vl e’ + ju’ e + Uk ek || <k (o)

—m,

+(IUR %2 + U072 + U7 102 + UK | 052 | x! ()|
+(IUR %2 + Ut 1073 + U7 107 + 1UK |05 | x7 () |
+(IUR % + Ut 0’ + U7 0" + UK | @R ||xK(w>||}dw.
(72)

Adding (69)—(72), it can get
BN+ 1" O + IIx Ol + IxX @)l

< (It @1 + IO + [ ] + 1§ O]

[t O]+ [nf @] + [t @] + [f @] )

ot /(;t(t _ w)ﬁ—leﬁw{”UR” (qDRl + @yl 4 q)Kl)
+||UI||<d>“ 4+ Rl 4 pKI +q)Jl) T ”UJ”<®11 + oK1 4 kI +q>11)
HIUK (@K + &1 4 oF 4+ qD“)}“xR(a))H do

61 /Ot(t _ w)ﬁ’lee‘”{ ”UR” ((sz + 24 2 4 q>1<2>

—|—||U’||<<I>’2 + oR2 4 pK2 4 (bn) + ”UJ”((DJZ + dK2 4 pR2 4 CI>12>
+||UK||(CI>K2 + o/ 4 oR2 4 ¢’2)} |+ (@] de

o1 /(;t(, _w)ﬁ—leﬁw{”UR” (¢R3 I Y KR N q>1<3>
+||U1||<d>13 1+ R 4 pK3 4 ¢J3) T ”UJ”<¢13 T+ K3 4 pR3 4 q>13)
+|IUK||<4>K3 + o + o 4 ®I3)}||xj(w) |do

o1 /Ot(t _ w)ﬁ*leﬁw{”UR” (q)m + o4 /44 q>1<4>
_I_“Ul”<¢,14 + R4 4 pK4 4 ¢J4> + ”UJ”((DJ4 + K4 4 pR4 4 ®14)

+||UK||(CI>K4+<I>J4+¢>R4+CD”)}||xK(w)||dw. (73)
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Wedenoteg,(t) — ||UR||(@RT—{—(DIT—}—CD‘]T—|—CDKI)+||UI||<®IT+Q)RT+(I)KT—}—q)‘]r)—}—
1071 (D77 4K LR 41T ) 4 UK (@KT4TT+DRT1OIT), T =1,2,3,4, £(1) =
[ O |+ )|+ [ )+ [ )|+ [ 2 @ |+ | O [ +[nf O+ K O3] =
110 (0) || + ¢]In1(0)]|, from inequality (73), we have

)] < () + /Ot(z — o) g1 0| @) + 20 @] + 30| @)
+4 0K @)} do
<ew+ | P max 50 do
In light of famous generalized Gronwall Lemma 2.6, it follows that
M x@)l < e(Ep (T (T (B}, (714)
Let ||n(0)]| < o, then we have

Ix@)] < o1 +0e™ Eg 1 {X (T (B}

Hence, if the condition of Theorem 3.5 hold, we gain ||x(#)|| < p, 0 <t < T, where
T (1) = maxi<r<4{g: (t)}. It means FQMNNSs (59) is finite-time stable via Definition 2.14.
Proof completed. O

Corollary 3.7 Under Assumptions [A1] — [A2], FOMNNs (59) is asymptotically stable if the
following relationship holds:

0> YT P,

where Y (t) and 0 both respectively, are defined in Theorem 3.5.

Proof According to the proof Theorem 3.5, from (74), we can get
x| < e Eg 1 {X(OT(B)P}.
By means of Lemma 2.5, there exists two positive constants A1, Ay > 0 such that
B Aoe(t
Mx@)] = Ae(nye VIPTOTEN | 2280
14+ Y@ (B)th
That is
(U} lﬁJT(r)r(m—e)t Are(t)e 0"
L+YOC(B)F

Hence, if the condition of Corollary 3.6 hold, from (75), x(¢) — 0, as t — +oo, which
implies FQMNNSs (59) is asymptotically stable based on Definition 2.15. Proof completed.
]

[x(O]l = Are)e (75)

Remark 3.8 If the memristive connection weights of FQMNNs (2) is invariable,i.e.,
Ups (ys (t)) is constant, then FQMNNSs (2) degenerates into finite-time stability of fractional
order quaternion-valued neural networks.
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4 Numerical Examples

To verify the advantage of the above theoretical results, two numerical computer simulations
are performed in the following few lines.

Example 4.1 Consider the following two dimensional FQMNNs:
2
DPy,(t) = —apyp() + X ups (ys(0)) fs (s (1)) + Lp(0), t # 1
s=1

(76)
Ayp(lr) = )’p(t;_) - )’p(tf_) = Spr(yp(tr)), t=12,...,

forp=1,2, t > 0,where B = 091,01, = 0 = 1.7,1r = €2 = 1.65, 1 = m2r = 1.5,
o1r = 03 = 1.65, a1 = ay = 6, L1(t) = La(t) = 0, the activation function f;(y;) =
tanh(ys), s = 1, 2, and the memristive connection weights as follows:

0.640.35 +0.32j 4045, y €Y

0.4+ 0.15{ — 0.6 — 0.8k, yi €7,

0.6 -0.5i+0.65j — 0.6k, y,eT

0.7+0.75{ +0.48j +- 0.8k, y» € T,

—04+0.5{ +0.65j + 0.6k, y1 €T

0.3+0.35 —0.8j +0.52k, y1 € 7T,

0.45—-0.2i +0.2j — 0.3k, ywevY

—0.5+0.45i —0.15j + 0.6k, y, € T,

ur(y1) =

un(y2) =

uz(y1) =

un(y2) =

here

T:{ye@:|yR]<l,

y1|<1, yj|<1,

yK| < 1}.

It is obvious that the assumption [A1] — [A2] holds with &g, = 0.1, &;, = 0.15, 5, = 0.2,
®g, =0.25fort =1,2,3,4. By Theorem 3.1, we select{, =1, £, =15, yp =2, ap =
1.5 and by using of above values, and from conditions of Theorem 3.1, we have Fj; =
—1.605, Fjp = —1.405, F>; = —3.105, Fy = —2.905, F31 = —4.605, F3 = —7.605,
Fy1 = —1.605, Fi = —7.405. Obviously, the conditions of Theorem 3.1 holds, and ¢ is
replaced by 7. Let from p =9, ¢ = 0.9, Eg 1 ( — wt’) < g. Therefore, FQMNNs (76) is
stable in finite time, that is 7 = 0.7339. From the Numerical simulations, the initial values
of (76) are selected as: y(0) = (1.4 —1.5+15j —1.6k,—1.24+045i — 1.2 + k)T. In
Figs. 1, 2, 3 and 4 presents the state trajectories of a real part /(¢) and three imaginary parts
q(t), w(t), z(t) of system (76), which confirms the validity of Theorem 3.1.

Example 4.2 Consider the following two dimensional FQMNNSs:

2
DPy,(t) = —apyp () + Y ups(3:(0) f5(3:(0) + Lp(0), (77)

s=1
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—_—f)

— 0| |

Fig.1 The state trajectory of real parts le (1), yf (1)

—_—\0

et AU

0.5 ]

q(t)

0 0.5 1 1.5
t

Fig.2 The state trajectory of imaginary parts yl] (1), yé (1)

for p =1,2, t > 0, where § = 1.75, a1 = a» = 8, L1(t) = L»(t) = 0, the activation
function f; (ys) = tanh(yy), s = 1, 2, and the memristive connection weights as follows:

—0.14+0.4i +0.48j —0.32k, y €Y
0.25+0.35i4+0.6j + 0.4k, y € Y,
0.08+0.15i —0.3j — 0.7k, y2 €Y
0.14025 —04j+02k, y; €T,

un () = [

upa(y2) = [
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2

et 1)
8 — 0]

1F ]

_2 L L
0 0.5 t 1 1.5

Fig.3 The state trajectory of imaginary parts ylj (1), yzj (1)

2

151 K

L[ — 4

05 b

T 0f

-05} ]

0 0.5 1 1.5
t

Fig.4 The state trajectory of imaginary parts le (1), yf )

—0.340.2i —0.25j +0.35k, y1 €Y
uzi(y1) =

0.5—-0.18; —0.16j +0.55k, y; € 7T,
—03+0.57 -0.3j —0.55, y,eX
0.24 4+ 0.46i +0.25j +0.75k, y» € T,

un(y2) = {

here

y1‘<1, yJ’<1,

T:{ye@:‘yR|<l, yK|<1].

Itis obvious that the assumption [A;] —[.A2] holds with @ gy = 0.1, Do = 0.05, g3z = 0.2,
Dra =0.15, P, =02, 05, =03, Dy =04, Dyj3 =0.1 = &jy = 0.25, &g, =0.35
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3
yRo
2t YACIE
; |
= ot
e
_1 4
_2 L -
-3

Fig.5 The state trajectory of real parts yfe (1), yf ()

1

v | |
yh(t)

08|

0.6

0.4

0.2

Fig.6 The state trajectory of imaginary parts yll (1), y{ (]

fort =1, 2, 3, 4. The initial values of FQMNNs (76) are chosen as: y(0) = (— 1.54+0.7i +
1.5/ + 2.4k, 13 —0.8i +2.4; — 2.5k)T. Now, |[UR| = U = 0.75, |U’|| = 0.85,
UK = 1.45,0 = 6, I'(1.75) = 0.919, then Y (1)['(1.75) = 5.3302. Let ¢ = 0.5 and
p =5, from

(1+0e " Eg 1 (YOT (B)F) < 2.
o
Therefore, FQMNNS (77) is stable in finite time, that is 7 = 1.984. Furthermore,

6=0> "YT@®Tr(B) =2.5999,
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3
v
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-1k 4
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0 2 4 6 8 10 12 14 16 18 20

Fig.7 The state trajectory of imaginary parts ylj (1), yzj (1)

3

-3 . . . . . . . . .

Fig.8 The state trajectory of imaginary parts le (1), y2K )

then FQMNNSs (77) is globally asymptotically stable based on Corollary 3.6. In Figs. 5, 6, 7
and 8 depicts the state curves of a real part 4(¢) and three imaginary parts g (¢), w(z), z(t)
of system (77), which also assure the effectiveness of Theorem 3.5.

5 Conclusion
Hereof, the finite time stability of fractional order quaternion-valued memristor-based neural

networks with order 0 < 8 < 1 and 1 < B < 2 has been studied. First of all, A new
mathematical expression of the quaternion-value memductance (memristance) is proposed
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according to the feature of the quaternion-valued memristive and a new class of FQMNN:Ss is
designed. Secondly, via differential inclusion theory, Filippov’s solution, contraction map-
ping principle, Lyapunov function, and concept of quaternion algebra, the existence and
finite time Mittag-Leffler stability criteria of FQMNNs with impulses have obtained when
fractional order satisfying 0 < B < 1. Moreover, when impulsive effects are not taken into
consideration, the finite-time stability and asymptotic stability conditions of FQMNNs with
order 1 < B < 2 was established with the aid of Mittag-Leffler function and the gener-
alized Gronwall-inequality. Finally, we provide two numerical simulations to illustrate the
correctness of the proposed main consequences.
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