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Abstract

Minimal-redundancy—maximal-relevance (mRMR) algorithm is a typical feature selection
algorithm. To select the feature which has minimal redundancy with the selected features
and maximal relevance with the class label, the objective function of mRMR subtracts the
average value of mutual information between features from mutual information between
features and the class label, and selects the feature with the maximum difference. However,
the problem is that the feature with the maximum difference is not always the feature with
minimal redundancy maximal relevance. To solve the problem, the objective function of
mRMR is first analyzed and a constraint condition that determines whether the objective
function can guarantee the effectiveness of the selected features is achieved. Then, for the
case where the objective function is not accurate, an idea of equal interval division is pro-
posed and combined with ranking to process the interval of mutual information between
features and the class label, and that of the average value of mutual information between
features. Finally, a feature selection algorithm based on equal interval division and minimal-
redundancy—maximal-relevance (EID-mRMR) is proposed. To validate the performance of
EID-mRMR, we compare it with several incremental feature selection algorithms based on
mutual information and other feature selection algorithms. Experimental results demonstrate
that the EID-mRMR algorithm can achieve better feature selection performance.

Keywords Minimal-redundancy—maximal-relevance - Equal interval division - Mutual
information - Feature selection

1 Introduction

With the explosive growth of information, dimension of feature set increases and it can cause
the curse of dimensionality. Therefore, it is necessary to reduce the dimension of feature
set [1-3]. Dimensionality reduction methods involve feature extraction and feature selec-
tion [4]. Feature extraction is a way that transforms the original features into a new space and
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takes the transformed features as the final features, while feature selection selects a subset of
the original features. Compared with feature extraction, feature selection has advantages in
the interpretation of data [5]. Therefore, feature selection has a wide range of applications,
such as text processing [6,7], underwater objects recognition and classification [8,9],network
anomaly detecting [10], information retrieval [11], image classification [12,13] and microar-
ray data classification [14].

The metrics adopted in feature selection include distance, mutual information and con-
sistency. Compared with other metrics, mutual information can measure the relationship
between variables and it has the invariance under space transformations [15]. Hence, many
feature selection algorithms based on mutual information are proposed, such as [16,17].
Among these algorithms, mutual information maximisation (MIM) algorithm [18] is a basic
algorithm. However, it does not perform well due to only considering mutual information
between features and the class label.

To overcome the shortcoming of MIM, some algorithms that employ mutual information
between features and the class label to describe relevance and adopt mutual information
between features to describe redundancy are proposed. Among them, minimal-redundancy—
maximal-relevance (mRMR) algorithm [19] is a typical algorithm. In order to select the
feature that has minimal redundancy with the selected features and maximal relevance with
the class label, the average value of mutual information between each candidate feature
and all the selected features is subtracted from mutual information between each candidate
feature and the class label, and the feature with the maximum difference is selected. Since the
feature with the maximum difference does not mean that the feature has minimal redundancy
maximal relevance, the objective function of mRMR has a limitation.

Aiming at solving the existing problems of mRMR, some feature selection algorithms
have been proposed. Since mRMR had the problem that mutual information biases toward
multivalued features, normalization operation was used. Ultimately, NMIFS algorithm was
proposed in [15]. Mutual information between each candidate feature and the class label, and
the average value of mutual information between each candidate feature and all the selected
features were processed by an optimization algorithm known as NSGA-II. Finally, MIFS-ND
algorithm was presented in [20]. Combining mRMR with the idea of optimization, feature
selection was investigated in [21]. mRMR was combined with ReliefF algorithm, and a two-
stage feature selection algorithm was proposed in [22]. Combining mRMR with a particle
swarm optimization algorithm, a maximum relevance minimum redundancy PSO algorithm
was presented in [23]. In [15,20-23], the aforementioned limitation of the objective function
of mRMR has not been handled properly.

In view of the problem that the objective function of mRMR has a limitation, this paper
first analyzes the objective function of mRMR and achieves a condition that the objective
function can guarantee the effectiveness of selected features. Then, for the case where the
objective function cannot guarantee the effectiveness of selected features, the interval of
mutual information between each candidate feature and the class label, and that of the average
value of mutual information between each candidate feature and all the selected features are
divided equally, and then the subintervals are ranked. Finally, a feature selection algorithm
based on equal interval division and minimal-redundancy—-maximal-relevance (EID-mRMR)
is proposed.

The rest of this paper is organized as follows. Section 2 analyzes some feature selection
algorithms based on mutual information. The EID-mRMR algorithm is proposed in Sect. 3.
Section 4 presents and discusses experimental results. Conclusions and future work are
presented in Sect. 5.
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2 Related Work

In this paper, we only analyze mutual information of discrete random variables. Assuming Y
and Z are two discrete random variables, p(y) is the probability density function of Y, p(z) is
the probability density function of Z, and p(y, z) is the joint probability density function of ¥
and Z. Mutual information is utilized to quantify the information that two random variables
share. Mutual information /(Y; Z) can be defined as

p(y, 2)
1(Y:Z) = § § 1 1
( ) yeyzszp(y 2 log ——— 2 p@) ey

The higher mutual information values means that the two random variables share more
information.

MIM is a feature selection algorithm based on mutual information, and its objective
function is expressed as

MIM = argmax [I (c; fi)] 2)
fieX

where X is the candidate features set, f; is a candidate feature and c is the class label. MIM
calculates mutual information between each candidate feature and the class label. Then, it
ranks features in descending order according to the values, and selects some features with
larger values. The algorithm does not yield good results due to ignoring feature interactions.

To overcome the shortcoming of MIM, some feature selection algorithms based on rel-
evance and redundancy are proposed [19,24]. Objective functions of these algorithms are
different, while their feature selection processes are same. The process is presented as fol-
lows. It first calculates mutual information between features and the class label, and selects
the feature that has the maximum value. Then, it loops to select the feature that complies
with the objective function in a forward search way. The loop ends when a specified num-
ber of features are selected. Obviously, objective functions are the key of these algorithms.
Combined with the objective functions, these algorithms are analyzed.

MIFS—argI}la§ I (c; f,)—ﬁfXE:SI(fJ,f, . 3)

Equation (3) is the objective function of mutual information based feature selection (MIFS)
algorithm [24]. S is the selected feature set and f; is a selected feature. MIFS uses a parameter
B to adjust mutual information / (c; f;) and mutual information between all the selected
features and f;. When 8 is set to zero, this algorithm is MIM.

mRMR [19] uses the reciprocal of the number of selected features to replace the parameter
B, solving the problem of uncertain parameter. For selecting the feature that has minimal
redundancy with the selected features and maximal relevance with the class label, mRMR
subtracts the average value of mutual information between all the selected features and f;
from 1 (c; fi), and selects the feature with the maximum difference. The objective function
of mRMR is expressed as

mRMR = argmmax | I (e; fi) = o Ejsl (fsi £i) @
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where |S| is the number of selected features. However, the feature satisfying Eq. (4) is not
always the feature with minimal redundancy maximal relevance. Therefore, the objective
function of mRMR has a limitation.

MIFS-ND = argmax [Cy — Fy]. (5)
fieX

Combining mRMR with an optimization algorithm NSGA-II, MIFS-ND algorithm [20]
was proposed. MIFS-ND first selects the feature that has the maximum mutual information
value with the class label. Then, it calculates / (c; f;) and the average value of mutual
information between all the selected features and each candidate feature. Following that,
it processes them by NSGA-II and achieves the domination count C,; and the dominated
count F; for each feature. As shown in [20], the domination count of a candidate feature
represents the number of features that it dominates for mutual information between the
candidate feature and the class label. The dominated count of a candidate feature represents
the number of features that it dominates for the average value of mutual information between
the candidate feature and all the selected features. Finally, the feature satistfying Eq. (5) is
selected. Following the above steps, it loops to select features until a specified number of
features are selected. Compared with the range of I (c; f;) and that of the average value
of mutual information between all the selected features and f;, the range of C; and that
of F, are greater. However, since Cy and F; are not correlated to the difference between
mutual information between the class label and different candidate features, and the difference
between the average values of mutual information between the selected features and different
candidate features, MIFS-ND cannot effectively handle the problem that the limitation existed
in the objective function of mRMR.

3 The Proposed Feature Selection Algorithm

This section first achieves a condition that tests whether the objective function can guarantee
the performance of selected features. Then, equal interval division is proposed and combined
with ranking to deal with the case where the objective function cannot guarantee the perfor-
mance of selected features. Following that, the proposed algorithm EID-mRMR is presented.
Finally, an example is adopted to analyze the first two features selected by mRMR, MIFS-ND
and EID-mRMR.

3.1 A Validation Condition

mRMR is a feature selection algorithm based on relevance and redundancy. Flow chart of
mRMR is presented in Fig. 1. In the flow chart, the candidate feature set X and the selected
feature set S are initialized. Then, mutual information between features and the class label is
calculated, and the feature with the maximum value is selected; it loops to select the feature
that complies with Eq. (4) in a forward search way until a specified number of features N are
selected.

The objective function presented in Eq. (4) is the key of mRMR. mRMR utilizes 7 (c; f;)
to describe relevance and adopts I (f;; fi) to describe redundancy. In order to select the
feature that has minimal redundancy with the selected features and maximal relevance with
the class label, mRMR subtracts the average value of mutual information between all the
selected features and each candidate feature from I (c; f;), and selects the feature with the
maximum difference. The feature that has minimal redundancy with the selected features
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Fig. 1 Flow chart of mRMR ]
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End

and maximal relevance with the class label can satisfy Eq. (4), not vice versa. Therefore, Eq.
(4) has a limitation. The feature selected by Eq. (4) is analyzed. It is necessary to present Eq.
(6) at first.

1
J(ﬁ)=1(c;ﬁ)—mzl(fs;ﬁ) ©!

fs€S

Equation (4) is a special case of Eq. (6) attaining the maximum value. Calculate Eq. (6),
if the maximum value is far greater than the secondary maximum value, and then select the
feature with the maximum value. If not, the advantage of using Eq. (4) to select features is not
obvious. To simplify the calculation, a condition that the difference between the maximum
value and the secondary maximum value of Eq. (6) is greater than a fixed value P is adopted to
test whether using Eq. (4) to select features. If the difference between the maximum value and
the secondary maximum value is greater than P, Eq. (4) is used to select features; otherwise,
an idea of equal interval division and ranking is adopted to select features. We will give a
detailed description of the idea of equal interval division and ranking in the next section.
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3.2 Equal Interval Division and Ranking

For the situation where Eq. (4) cannot guarantee the effectiveness of selected features, to
guarantee the feature with minimal redundancy maximal relevance being selected, the interval
of I (c; fi) and that of the average value of mutual information between all the selected
features and f; are divided equally, and then the subintervals are ranked. The number of
dataset’s features is taken as the number of subintervals. The concrete practices are presented
as follows: determine the maximum value and the minimum value of / (c; f;) and the average
value of mutual information between all the selected features and f; as interval values, and
then the interval values are divided equally. Following that, the subintervals are numbered
from 1 to the number of dataset’s features, and the numbers are taken as the ordinal values
of the values in the subintervals.

FFMI ( fs; fi) is the value that the interval of ijes I (fs; fi)/|S] is processed by equal
division and ranking. CFMI (c; f;) is the value that the interval of I (c; f;) is processed by
equal division and ranking. The process of computing FFMI ( f;; f;) is shown in Algorithm 1
and that of computing CFMI (c; f;) is shown in Algorithm 2.

Algorithm 1 Compute FFMI ( fs; fi);

Input: M : the number of dataset’s features, |S| : the number of features in S, Y~ 1 (fs; fi)/ISI.
fs€S

Output: FEMI (f5; fi)-
Ira=min[ Y I(fs; fi)/IS]], b=max [ Z I (fs; fi)/1S11;

fs€S fs€S

2: ¢ =(b-a)/ (M-1);

3: for f; € X do

4: forj=1:Mdo

5: if Y I(fs;f;)/IS]>a-c+j*cthen
fs€S

6: it > I(fs; fi)/IS| <a+j*cthen

fseS

7 FFML (fs; fi) =J;

8: end if

9: end if

10:  end for

11: end for

Algorithm 2 Compute CFMI (c; f;);

Input: M : the number of dataset’s features, I (c; fi).
Output: CFMI (c; f;).

1: a=min [] (¢; f;)], b=max [] (c; fi)];

2: ¢ =(b-a)/ (M-1);

3: for f; € X do

4: forj=1:Mdo

5: if 7 (¢c; fj) > a-c+j*c then
6: if 7 (c; fi) < a+j*c then
7: CFMI (c; fi) =7;

8: end if

9: end if

10:  end for

11: end for
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For the situation where Eq. (4) cannot guarantee the effectiveness of selected features,
equal interval division and ranking are adopted to process I (c; f;) and > fieS I(fs; f)/ISI,
and CFMI (c; f;) and FFEMI ( fs; f;) are attained. Then, Eq. (7) is presented.

EID—mRMR = arg max [CFMI (c; f;) — FEMI (f; f)] @)
i€

Equation (7) is the objective function of the proposed algorithm EID-mRMR. CFMI
(c; fi) is utilized to describe relevance and FFEMI ( fs; f;) is adopted to describe redundancy.
If there are some features satisfying Eq. (7), the feature that maximizes Eq. (6) is selected
from these features satisfying Eq. (7).

Equations (4), (5) and (7) are all proposed to select the features with minimal redundancy
maximal relevance. Therefore, it is necessary to compare Eq. (7) with Egs. (4) and (5). Before
comparisons, Egs. (8) and (9) are presented.

J(fi)=Cq—Fy (®)
J (fi) = CFMI (c; fi) — FEMI(fs; fi) )

Equation (5) is a special case of Eq. (8) attaining the maximum value and Eq. (7) is that
of Eq. (9) attaining the maximum value. Equation (9) is compared with Eqgs. (6) and (8).
The first part of Egs. (6), (8) and (9) is adopted to describe relevance, and the second part is
adopted to describe redundancy. With different candidate features, the range of C; and that
of F; are related to the number of candidate features, and the range of CEMI (c; f;) and that
of FFMI (fy; fi) are related to the number of dataset’s features. While the range of 7 (c; f;)
and that of the average value of mutual information between all the selected features and f;
are not related to the number of candidate features and that of dataset’s features, and they
are smaller than the range of Cy, that of Fy, that of CFMI (c; f;) and that of FFMI (f5; fi).
Further, since the number of dataset’s features is greater than that of candidate features, the
range of C; and that of F; are smaller than the range of CFMI (c; f;) and that of FFMI
(fs; fi)- Therefore, Eq. (9) has greater range of relevance and range of redundancy than Eqgs.
(6) and (8), and Eq. (8) has greater range of relevance and range of redundancy than Eq. (6).

Further, different from Eq. (8), since Eq. (9) adopts equal interval division and ranking to
process I (c; fi) and the average value of mutual information between all the selected features
and f;, CFMI (c; f;) and FEMI (f; f;) can guarantee the values in the same subinterval have
the same priority. Therefore, compared with Eqgs. (4) and (5), Eq. (7) has more advantages
in selecting the feature with minimal redundancy maximal relevance.

3.3 Algorithmic Implementation

With the above validation condition and Eq. (7), EID-mRMR is shown in Algorithm 3.
EID-mRMR consists of two parts: in the first part (lines 1-7), the candidate feature set
X and the selected feature set S are initialized. Then, / (c; f;) is calculated, and the feature
with the maximum value is selected; in the second part (lines 8-34), the average value of
mutual information between all the selected features and f; is calculated. Then, the difference
between the maximum and the secondary maximum of Eq. (6) is calculated, if the difference
is greater than a fixed value P, select the feature that satisfies Eq. (4); otherwise, calculate
CFMI (c; f;), FEMI (f;; fi) and the difference between CFMI (c; f;) and FEMI ( fs; fi).
Following that, test whether the number of features with the maximum difference between
CFMI (c; fi) and FEMI ( fs; fi) is more than 1, if it is no less than 2, select the feature
that maximizes Eq. (6) from these features; otherwise, select the feature with the maximum
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1244 X.Guetal.

Algorithm 3 EID-mRMR: a feature selection algorithm based on equal interval division and
minimal-redundancy—maximal-relevance;

Input: M: the number of dataset’s features, Q: the number of features to be selected, P: a fixed value.
Output: S: the selected features.
1: initialize S=¥Wand X ={f1, f2, ..., fm};
: for f; € X do
compute mutual information 7 (c¢; fi);
: end for
: find the feature fj by maximizing mutual information with ¢, f; € X;
2SS =SU{fih
DX =X - (fihs
: while |S|<Q do
for fieX do
10: for fyeS do
11: compute mutual information I (fs; fi);
12: end for
132 compute Y I(fs: f;)/ISI:
fs€S

RN e U W N

14:  end for
15:  compute Eq.(6);
16:  if the difference between the maximum and the secondary maximum of Eq.(6) is greater than P then;

17: find the feature f; that maximizes Eq.(6), f; € X;

18: S=SU{fi}

19: X=X-{f1k

20:  else

21: compute FEMI (fs: fi);

22: compute CFMI (c; f;);

23: find the number of features that satisfy Eq.(7);

24: if the number of features is more than 1 then

25: find the feature f;, that maximizes Eq.(6) from the features satisfying the above condition,
fm € X;

26: S=SU{fuh

27: X=X—{fuk

28: else

29: find the feature f), that satisfies Eq.(7), f, € X;

30: S=SU{fuks

31: X=X~ {faki

32: end if

33:  endif

34: end while

difference between CFMI (c; f;) and FEMI ( fs; fi). Following the above steps, it loops to
select features. The loop ends when a specified number of features are selected.

3.4 An Example

For better understanding the idea of EID-mRMR, an example is presented. Since the first
selected feature is the maximum mutual information value with the class label and it is
different from the other selected features. The second selected feature and other selected
features satisfy the objective function of the algorithm. Therefore, an example is adopted
to analyze the first two features selected by mRMR, MIFS-ND and EID-mRMR. A dataset
with 7 features is used, and the feature f7 has the maximum mutual information value with
c¢. Dataset description is presented in Table 1.

Since the feature f7 has the maximum mutual information value with ¢, mRMR, EID-
mRMR and MIFS-ND first select f7. Since f7 is selected and the number of selected feature
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Table 1 Dataset description

Features f; Mutual information Mutual information I(c; fi) -
I(c; f7) I(f7: fD) I(f7: fo)
N 0.90 0.09 0.81
b 0.89 0.07 0.82
3 0.86 0.06 0.80
fa 0.78 0.05 0.73
fs 0.66 0.03 0.63
fe 0.60 0.04 0.56

Table 2 Domination count of a feature

Features f; Domination count Cy Dominated count Fy Cy—Fy
h 5 5 0
f2 4 4 0
VE] 3 3 0
fa 2 2 0
fs 1 0 1
fe 0 1 —1

is 1, the average value of mutual information between all the selected features and the
candidate feature f; is I (f7; fi). The range of I (c; f;) is [0.60, 0.90] and that of I (f7; f;)
is [0.03, 0.09]. Considering that the feature f> has the maximum difference between mutual
information, mRMR selects f>.

MIFS-ND adopts NSGA-II to process mutual information / (c; f;) and I (f7; fi), and
achieves the domination count C; and the dominated count Fy. Fy is subtracted from Cy
and the difference is attained. Domination count of a feature is shown in Table 2.

As shown in Table 2, because f5 has the maximum difference, MIFS-ND selects f5. Since
the number of the candidate features is 6, the range of C; and that of F; are both [0, 5].
Therefore, compared with the range of 7 (¢; f;) and that of I (f7; f;), the range of C4 and
that of F, are greater. Further, although I (c¢; f7) is not far greater than 7 (¢; f1), f1 and f>
have different C; values. We can know that Cy and F; are not correlated to the difference
between mutual information between the class label and different candidate features, and
the difference between the average values of mutual information between all the selected
features and different candidate features.

/> has the maximum difference between [ (c; f2) and I (f7; f2). f1 has the secondary
maximum difference between [ (c; f1) and I (f7; f1). Considering that the maximum dif-
ference is not far greater than the secondary maximum difference, the objective function of
mRMR cannot guarantee the effectiveness of the selected features. We adopt equal interval
division and ranking to process I (c; f;) and I (f7; f;). Since the dataset has 7 features, with
the idea of equal interval division, the interval of I (c; f;) is divided into [0.60, 0.65), [0.65,
0.70), [0.70, 0.75), [0.75, 0.80), [0.80, 0.85), [0.85, 0.90), [0.90, 0.95) and that of I (f7; f;)
is divided into [0.03, 0.04), [0.04, 0.05), [0.05, 0.06), [0.06, 0.07), [0.07, 0.08), [0.08, 0.09),
[0.09, 0.10). The ordinal values CFMI (c; f;) and FEMI ( f5; f;) are calculated. Ordinal value
of a feature is shown in Table 3.
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Table 3 Ordinal value of a feature

Features f; Ordinal value Ordinal value CFMI (c; fi)—
CEMI (c; f7) FEMI (f7; fi) FFMI (f7; fi)

f1 7 7 0

b 6 5 1

f3 6 4 2

fa 4 3 1

fs 2 1 1

fe 1 2 -1

In order to understand EID-mRMR, I (c; f1) and I (f7; f1) are adopted to analyze the
ordinal values with EID-mRMR. Since I (c; f1) is 0.90, the value is in the subinterval of
[0.90, 0.95) and the number is 7, hence the ordinal value of I (c; f1) is 7. Considering that
I (f7; f1) is 0.09, the value is in the subinterval of [0.09, 0.10) and the number is 7, hence
the ordinal value of I (f7; f1) is 7.

As shown in Table 3, since f3 has the maximum difference between the ordinal values,
EID-mRMR selects f3 as the second selected feature. Since the dataset has 7 features, the
range of CFMI (c; f;) and that of FEMI ( f;; fi) are both [1, 7]. Compared with the range
of I (c; fi), that of I (f7; fi), that of C; and that of Fy, the range of CFMI (c; f;) and that
of FFMI (fs; fi) are greater. Therefore, EID-mRMR has greater range of relevance and
range of redundancy than mRMR and MIFS-ND. Further, CFMI (c; f;) and FEMI (f5; fi)
can guarantee the features in the same subinterval have the same priority. Therefore, EID—
mRMR has more advantages in selecting the feature with minimal redundancy maximal
relevance. Compared with f> and fs, it is more appropriate to select f3.

4 Experimental Results

To validate the effectiveness of EID-mRMR, mRMR and MIFS-ND, other five incremental
MI-based feature selection algorithms and other four feature selection algorithms are adopted
for performance comparisons.

4.1 The Datasets and Experimental Settings

The datasets presented in Table 4 are from UCI machine learning repository [25] and ASU
feature selection datasets [26]. The number of selected features is 50 for all the datasets. The
minimum description length discretization method is adopted to transform the numerical fea-
tures into discrete ones [27] and it is only used for feature selection. Three popular classifiers,
J48, IB1 and Naive Bayes are utilized. The classifiers’ parameters are set to WEKA’s [28]
default values. ASU feature selection software package [29] is adopted.

To validate the effectiveness of EID-mRMR, MIFS, mRMR, MIFS-ND, NMIFS [15],
MIFS-U [30], MIFS-CR [31] and CMI [32] are adopted for performance comparisons.
NMIFS, MIFS-U, MIFS-CR and CMI are four feature selection algorithms based on rel-
evance and redundancy, and their objective functions are presented as follows:

1 I (fss i)
NMIFS = I (c; fi) — — - 10
e |10~ 15 2 St gy ) (o
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Table4 Summary of datasets in

the experiment Datasets Instances Features Classes Source
Spambase 4601 57 2 UcCl
Synthetic_control 600 60 6 UC1
Mfeat_fou 2000 76 10 ucCI
Movement_libras 360 90 15 UCI
Musk 476 166 2 ucI
Mfeat_fac 2000 216 10 UCI
Mfeat_pix 2000 240 10 UCI
Semeion 1593 256 10 UcCI
ORL 400 1024 40 ASU
COIL20 1440 1024 20 ASU
gisette 7000 5000 2 ASU
orlraws10P 100 10,304 10 ASU
MIFS-U = argmax | I (c; fi) — B Z I fS)I(fs;fi) (11)
fiex S H ()

1 I(c; fs)  1(c; fi)
2|t

MIFS-CR = argg;g} I(c; fi)— = "o H) j|1(fs; Ji) (12)

fs€S

_ ey HUfi/e) o Iles S (fs; i)
CMI = argpa | 1€ /0 = 50" 2 iy HG

13)

fs€s

where H(f;) is the entropy of f;, H(f;) is the entropy of f;, H(c) is the entropy of c,
H(fi/c) is the conditional entropy.

In the experiment, the 8 value of MIFS is set to 0.5 and that of MIFS-U is set to 1.

Except for seven incremental MI-based algorithms, Relief-F [33], Fisher [34], QPFS [35]
and SPEC-CMI [36] are compared with EID-mRMR. In QPFS and SPEC-CMI, before
feature selection, all the features are normalized to the range [— 1, 1] and five equal-size bins
is adopted to transform the numerical features into discrete ones.

As shown in [37], for reducing the influence of randomness on the final results, ten times
of tenfold cross-validation are used, and the mean value and standard deviation of ten results
are taken as the final results. To determine whether the effectiveness of experimental results
is significant, a one-sided paired t-test at 5% significance level is carried out.

4.2 Experimental Results and Analysis
4.2.1 With Different P Values

In this section, the influence of P value on EID-mRMR is analyzed. The P value is set to
0.02, 0.03, 0.04, 0.05 and 0.06 respectively. The average performance of EID-mRMR with
different P values when using J48, IB1 and Naive Bayes is presented in Table 5.

As shown in Table 5, when the P value is 0.05 or 0.06, it achieves the greatest Avg.
value. At the same time, with different P values, the differences between the Avg. values
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E"‘;]b)'f ;R/;[Vgr';‘i‘:hpggf";‘:;“;e o Datasets 002 003 004 005 006
values Spambase 8697 8691  86.83 8649  86.10
Synthetic_control 92.28 92.28 92.26 92.26 92.26
Mfeat_fou 7714 77.10  77.06  77.06  77.02
Movement_libras ~ 66.59  66.83 6689  66.89  66.91
Musk 80.79  80.80  80.80  80.80  80.80
Mfeat_fac 80.64  89.66 89.73 8970  89.71
Mfeat_pix 80.19 8033 8048  80.59  80.59
Semeion 7028 7097 7128 7161 7177
ORL 68.12 6843 6857  68.68 6878
COIL20 9333 9328 9332 9337 9338
gisette 91.10  91.19 9126 9131 9131
orlraws10P 8796  87.84  87.93  88.03  88.12
Ave. 82.04 8213 8220 8223  82.23

are very small. Therefore, the P value has a relatively small impact on the performance of
EID-mRMR. In the experiment, we find that it takes more time for feature selection with
the P value increasing. Therefore, in comparison with the incremental MI-based Algorithms
and other feature selection algorithms, the P value of EID-mRMR is set to 0.05.

4.2.2 Comparison with Incremental MI-Based Algorithms

The section compares EID-mRMR with other incremental MI-based algorithms. Margins
between the performance of EID-mRMR and other algorithms when using J48, IB1 and
Naive Bayes are presented in Tables 6, 7 and 8. The values in the Avg. row are the mean
value and standard deviation of the above twelve values. The values in the Win/Tie/Loss
(W/T/L) row are the results obtained with one-sided paired t-test, among the values, the
first value is the number of datasets that EID-mRMR is significantly superior to the other
algorithms, the second value is the number of datasets that EID-mRMR performs equally
with the other algorithms and the third value is the number of datasets that EID-mRMR is
significantly inferior to the other algorithms. Classification accuracy of the optimal features
selected by EID-mRMR and other algorithms when using J48, IB1 and Naive Bayes are
presented in Tables 9, 10 and 11. The running time of EID-mRMR and other algorithms
that select 50 features is shown in Table 12. Average performance comparisons of algorithms
with the three classifiers are shown in Fig. 2.

As shown in Table 6, in Movement_libras, Mfeat_pix, Semeion, COIL20 and orlraws10P,
EID-mRMR is significantly better than mRMR. From the values in the Avg. and W/T/L row,
EID-mRMR performs better than mRMR when using J48. Compared with other algorithms,
MIFS-U, MIFS-ND and EID-mRMR achieve better results.

In Table 7, the Avg. values indicate that MIFS-U, MIFS-CR and EID-mRMR yield
better results. The values in the W/T/L row suggest that mRMR, NMIFS, MIFS-U and
EID-mRMR can obtain better feature selection performance. Different from Table 6, the
differences between EID-mRMR and the other algorithms increase except for MIFS-U.

In Table 8, in the terms of the Avg. values, compared with other algorithms, MIFS-U,
MIFS-CR and EID-mRMR achieve better results. For the W/T/L values, MIFS-U, CMI

@ Springer



1249

A Feature Selection Algorithm Based on Equal Interval...

1/¢/6 1/¢/8 1/¢/8 1/1/01 [ 0/v/8 0/0/C1 - T/L/M

0S ETF9Y'9L LOTIFOV'LL Vel F6C9L CCTEIFoL6L YCEIF90°LL CLTIFOELL 00° €I F+S89L PSCIF198L Bay
19CFLULL W I0€EL SLTFOTOL OLTFSYOL YLCF60TL o6V CFEVTL Y8CFESEL 16'T+808L dO[SMBILIO0
9T'0F9¢'68 cr0F¥9l6 01'0FS€C6 OI'0F¥e'16 90'0F90°C6 LOOF61C6 CCOF8I'16 LO'OF YO onosis
7€0F 6588 SS'0F9198 SE0F8Y'LS 0€'0F98'18 PE0F €588 ELOF61'LS 07'0F10°88 9¢'0F 9568 0CTI0D
YT 1F66'8Y €1 F610S 9¢' 1 F09°08 eC1F1T0S 61"l F6£7CS YOI F8I'1S 6l'cFIc6Y SO'TFSIIS TI0
er'0F €€°69 0’0+ 0L'69 CCOFL8EY STOFYLE9 61'0F98C9 SY'OF1€°69 9¢'0F €569 0S'0F 6869 uoroweg
8C0F86'CL €S0F6LEL 6€0FCSCTIL I7'0FceoL 9¢'0FS0€L 17'0F06'¢€L LSOF16'CL SYOFISYL xid ey
0C0FvI'c8 0+ vy e8 Ye0FLIC8 I€0F LS €8 YeOF IS8 £7'0F 0868 [S0F6v'S8 0€'0F96'S8 RLARLEN AN
S6'0F61°08 LSOF86'6L G8'0F9¢08 £€8'0F2008 LL'OFS9°08 SE0F S 08 I18°0FL88L 69'0F69°08 R AN
€6'0F90¢9 LT'TF0S€9 91I'1 +88'6S LO'TF06'LS €T FL86S LY 1TF97'19 8L TF+07C9 80FPrLES SBIQI[ JUSWAOIN
6£0F88'19 6V 0FICEL 9S'0F9TSL 6V 0FE€TSL 0S'0F0gSL I7'0FL9EL 0r'0Fc60L SAESYN72 noJ 1BJIN
LS'0F 8106 £5°0F 6668 SSOFIELS CEOF VLTS 0L'0F8L'88 CLOFO6L'LS 9¢'0F LE68 1S°0F 6868 [onuoddnAYUAS
CI'0oF6£06 ¢I'0F607C6 SO'0FILT6 80'0F66'16 0I'0F007C6 IT'0F86°16 LO'0OF €016 LO'0OF V6’16 asequredg
AN-SAIN AD-SAIN IND SAIAN ANJu N-SAIN SAIN ANIU-ara syesere(

8% SUISN UAYM SUILIOSE I1oYI0 pue YNJW—IH Jo ouewroyrad o) usamiaq (%) (S F ueowr) surSIe[y 9 3jqel

pringer

Qs



X.Guetal.

1250

0/¢/01 0/1/11 1/1/01 </0/01 a/1/6 1/¢/6 O/1/T1 - T/ L/M
9C8F11'€8 SLOFO0LE8 SY'6F0618 900l F€I'18 LTOTIFSLC8 €8°9FEv8 76'9F8LC8 8CLF 1668 Bay
991+ Lv'88 OV’ I +8L 18 0S'TFSLC8 17’ 1+76'88 08'0FL606 08'CFo6l'L8 ESTFLIP8 1T T+09C6 dO[SMBILIO0
0CT0F9598 0I'0F IS°06 Cr'oF00'16 CI'0F¢C06 IT'0OFI1T16 CI'0F98°06 91'0F68'L8 YCoFee 16 onesis
60'0FCS'S6 CI'0F 8616 01'0F9C°¢6 YI'0F 6’16 YI'0F SY'S6 0T°0F90°S6 8I'0F 1T'S6 60'0F 6096 0CTI0D
89'0F 8118 10'TF8C°08 6S'0F6S°SL SLOFITSL L8OFI9LL 00'T+20C8 L8'0F6C°08 08'0F¥S'18 TI0
P70+ 6£69 0€0F20' 1L €CO0F¥L09 YCOF2e09 CE0F 1888 ce0F16°0L €C0F06'0L LEOFOTIL uorweg
CC0FL6'08 8CO0F16'6L IT0F69¢L 0CT0F9L°LY croFeLeL YC0+59°08 6C0F08'6L 6C0F9¢18 xid ey
croFsrio LT'0F 0816 80°0F¢cr'i6 €I'0F 006 OI'0F IS’ 16 cro+ee’le 6L'0FIS'T6 ¥1'0F 976 RIS LS A
88'0F6CC8 ¢S0+F68°08 89°0F¢SCC8 19°0F81°08 Y9'0FS6'18 9L 0FCLI8 16'0F16°18 VL' 0F8CT8 REAN
10'TFT86L 06'0F 108 601 FLY'SL 60 1FCEVL 0T T+599L 8L'0F LS 08 9L 0F11°08 €0'TFSL08 SBIQI[ JUSWIAOIN
6€°0F8E°LY STOFI6LL CCOFTI08 61°0F¥1°08 0T0FCI'08 1T0F6TLL 9C0F00°SL 0CT0FT96L nojJ 1B N
£e'0FCeTO 770+ 0788 SP'OFSL68 8€'0F 88 LTOFLI'06 £6°0F 5988 9%'0FS0'88 8C0F99C6 [onuoddnAYUAS
LT'OFCLIS CI'0Fv6'e8 €C0F8LES €1'0F o8 CIOFvLY8 8I'0FLI'S8 0€'0F8¥'8L SI'OF eV v8 asequredg

AN-SAIN YD-SAIN IND SAIAN ANJu N-SAIN SAIN ANIU-dra s1esereq

141 Sursn uoym swypoS[e 1Yo pue YAW—TH Jo 2oueutograd oy usamiaq (%) (S F ueow) suisiejy / ajqel

pringer

as



1251

A Feature Selection Algorithm Based on Equal Interval...

O/1/T1 1/1/01 </0/01 1/0/T1 1/1/01 a/1/6 1/1/01 - T/L/M
CO'TIFLI6L 6L 1T F86'6L €CElF169L IT°EIF00SL €S €T F8L'8L YETIF9£08 €611 F19°6L LY TTF65C8 Bay
YS'T+0C68 9GCTF65°€8 CLTF8Y8L 86’1 FEv'6L SCIFTSI6 6’1 +L8C8 YeTF 6618 IF0ve6 dO[SMBILIO0
LLOF1€7C8 SO'0F 1606 LO0OF0E16 SO'0F8Y'LS S0'0F9T'88 60'0FI€°16 9€'0FS¥°06 60'0F81°06 aNasIs
0CT0FS6'Co LEOFLT06 €C0F8T68 9CT0F 16'¢€8 LI'0OF91°C6 9 0FVI'16 9CT0F66'16 EI'0FSY'v6 0CTI0D
S8'0FS6'69 WOTFELLY 69°0F 6185 £8'0F88YS CLOFVY'19 08'0F80CL 66'0F V6’ 1L 0T T+987CL TI0
STO0F00€EL YCOF0CTEL IT'0FLI'S9 IT0F TV v9 0I'0F¢€5€9 61'0F9vEL 8COFILEL 6€°0F9LEL uoroweg
0I'0F €568 71'0F09°68 CIoFov8L 0T0FESTL LT'0OF LO'6L IT0F1v6'S8 8I'0FSL'S8 ClI'0+68°68 xid ey
91'0FSI°06 1T°0+90°06 01'0+88'88 0Cc0Fo6l's8 IT0F¢<v88 LT'0F €106 0I'0F0L68 01'0F 06°06 RLARLEN AN
090F¢€l'6L 9LOFIE6L 8S°0F89'6L ¥S'0FLO6L 00+ IS6L 19°0F06'8L 9L'0F969L €S0FeroL R AN
SI'TFTr'SS 8T TF6LTS ITTF LY 6v 00T FSCToY OI'T+55°08 06'0F 9’18 6¢ 1F09°¢S o' I F81°9¢ SBIQI[ JUSWAOIN
8CTOFI1'S9 0€'0FT8'SL 8I'0FEYIL 9I'0F9¢9L LI'0OF6E9L STOFYLSL 0l'0F8C¢eL YTOFY99L noJ 1BJIN
0’0+ 80°¢6 6C0FS6'€o SE'0F 6868 E0F 98 6C0F 6068 9¢'0F06'L8 8I'0F16'¢6 0C0FVvTTo [onuoddnAYUAS
CCTOFYCyL LI'0F099L IT'0FO08LL SO'0F VT8 80°0F9T'S8 €E'0F€0e8 €E0F V69 ST0F60¢8 asequredg
AN-SdIN AD-SAIN IND SAIAN ANJu N-SAIN SAIN ANIU-ara syesere(

saeg oATeN SuIsn uoym swIHIoS[e 19Y10 pue JAW—TH Jo @oueutograd oy usamiaq (%) (S F ueow) suisiejy g a|qel

pringer

Qs



1252 X.Guetal.

and EID-mRMR perform better than the other algorithms. Moreover, the advantages that
EID-mRMR is superior to the other algorithms increase in both the Avg. and W/T/L values.

As shown in Tables 9, 10 and 11, we can see that EID-mRMR can achieve better results in
the majority of datasets. Take Table 11 for example, the number of datasets that EID-mRMR
performs better than the other seven algorithms is 7, while that of any of the other algorithms
is superior to EID-mRMR is no more than 2. Furthermore, EID-mRMR can obtain the
greatest Avg. values with all the three classifiers.

In Table 12, EID-mRMR takes a fair amount of time with the other seven algorithms
in the majority of datasets except for gisette and orlraws10p. Since features of gisette and
orlraws10p are high dimensional and they need to be processed by the method of equal
interval division and ranking for more times, EID-mRMR is more time-consuming in these
two datasets and it obtains greater Avg. values than other algorithms.

As shown in Fig. 2, in some datasets, such as Spambase and Mfeat_fou, the selected
features account for a large proportion of these datasets. After classification accuracy of the
features selected by the majority of algorithms reaches the maximum value, it decreases to
some extent. While in most of datasets, due to selected features occupying a certain pro-
portion of datasets, the average performance of the features selected by most of algorithms
significantly increases in the beginning. Then, it increases slowly and varies gently after
arriving at a certain extent. Considering that the average value of the 50 features selected
by the algorithms is taken as the final result, the percentage of selected features accounting
for the datasets has less impact on the final result. Therefore, it is suitable for selecting 50
features. In the average performance comparisons of algorithms, EID-mRMR can achieve
better effectiveness in the majority of datasets. However, the other algorithms do not perform
well in some datasets; for example, mRMR cannot handle well in Synthetic_control, Move-
ment_libras, Mfeat_pix, Semeion, ORL and gisette. MIFS-ND does not yield good results
in Spambase, Mfeat_fou and gisette. As a whole, compared with the other seven feature
selection algorithms, EID-mRMR can achieve better results.

4.2.3 Comparison with Other Feature Selection Algorithms

The section compares EID-mRMR with Relief-F, Fisher, QPFS and SPEC-CMI. Margins
between the performance of EID-mRMR and other algorithms when using J48, IB1 and
Naive Bayes are presented in Tables 13, 14 and 15. Classification accuracy of the optimal
features selected by EID-mRMR and other algorithms when using J48, IB1 and Naive Bayes
are presented in Tables 16, 17 and 18.

As shown in Table 13, EID-mRMR and SPEC-CMI are superior to Relief-F, Fisher
and QPFS in Spambase and Mfeat_fou. EID-mRMR and QPFS are superior to Relief-F,
Fisher and SPEC-CMI in Mfeat_fou and Movement_libras. In most of datasets, EID-mRMR
performs better than Relief-F, Fisher, QPFS and SPEC-CMI. From the values in the Avg.
and W/T/L row, EID-mRMR can achieve better results than the other four algorithms.

In Table 14, SPEC-CMI performs better than EID-mRMR in Spambase and Mfeat_fou.
In the majority of datasets, EID-mRMR yields better results than the other four algorithms.
The values in the Avg. row and the W/T/L row suggest that EID-mRMR can obtain better
feature selection effectiveness. Different from Table 13, the advantages that EID-mRMR is
superior to the other algorithms increase in both the Avg. and W/T/L values.

As shown in Table 15, Fisher and SPEC-CMI achieve better results than EID-mRMR in
Spambase. In most of datasets, EID-mRMR can achieve better feature selection performance
than the other four algorithms. Different from Tables 13 and 14, the differences between EID—
mRMR and the other four algorithms increase in the Avg. and W/T/L values.
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Table 13 Margins (mean £ SD) (%) between the performance of EID-mRMR and other algorithms when

using J48

Datasets EID-mRMR Relief-F Fisher QPFS SPEC-CMI
Spambase 91.94+0.07 88.35+0.11 91.22+0.13 91.47+0.11 91.98+£0.07
Synthetic_control ~ 89.89+0.51 81.66+0.55 82.68+0.35 89.38+£0.57 86.53+£0.76
Mfeat_fou 74.931+0.45 75.07+0.44 74.92+0.42 75.10£0.51 75.30£0.47
Movement_libras 63.741+0.82 49.76 £0.78 47.68+£0.61 63.58+1.19 58.73+1.34
Musk 80.69+0.69 74.64£0.59 75.56£0.40 77.30£0.67 78.27+0.60
Mfeat_fac 85.96+0.30 78.04+£0.22 81.60+0.17 84.15+0.10 82.724+0.20
Mfeat_pix 74.51+£0.45 64.58+£0.27 63.07+£0.22 71.16+£0.43 65.56+£0.77
Semeion 69.89£0.50 57.53+£0.17 56.52+0.18 64.35+£0.23 57.26+£1.22
ORL 51.65+£1.95 46.93+0.89 42.724£0.90 43.81£0.90 38.47+0.65
COIL20 89.56+0.36 69.62+£0.43 62.38+£0.28 87.86+0.27 81.71+£0.37
gisette 92.424+0.07 92.10+0.09 90.26+0.07 90.08 +0.06 90.274+0.07
orlraws10P 78.08£1.91 64.49+3.15 53.74+£3.31 61.91+£2.12 47.09 £4.47
Avg. 78.61£12.54  70.23+14.24  68.53+£16.46  75.01+£14.66 71.16+17.52
WI/T/L - 11/0/1 11/1/0 10/1/1 10/1/1

Table 14 Margins (mean £ SD) (%) between the performance of EID-mRMR and other algorithms when

using IB1

Datasets EID-mRMR Relief-F Fisher QPFS SPEC-CMI
Spambase 84.43£0.15 83.84+£0.15 83.79+£0.15 82.40£0.10 85.53£0.10
Synthetic_control 92.66 £0.28 86.31£0.19 86.79+£0.23 90.28+0.23 87.67+£0.44
Mfeat_fou 79.62£0.20 79.59£0.23 79.64£0.21 79.714£0.22 80.09£0.19
Movement_libras 80.75£1.03 65.18 £0.65 58.49£0.74 79.75+0.85 75.36 £0.80
Musk 82.28+£0.74 77.05+£0.50 78.64£0.48 79.58+0.49 80.24£0.41
Mfeat_fac 92.26£0.14 81.34+£0.16 88.34+0.11 90.934+0.10 89.02+0.13
Mfeat_pix 81.36+£0.29 61.09+0.14 58.67+£0.22 74.87+0.08 69.92+0.61
Semeion 71.204+0.37 54.224£0.27 51.73£0.27 60.81£0.15 58.08£0.91
ORL 81.54£0.80 68.52£0.51 67.46 £0.66 75.72+1.07 61.54£1.06
COIL20 96.09 £0.09 75.60£0.20 65.30£0.15 93.49+0.11 91.26 £0.17
gisette 91.32£0.24 91.32£0.04 89.27+£0.08 88.91£0.08 89.13£0.07
orlraws10P 92.60£1.21 74.97+0.69 69.11+£2.54 70.434+0.93 64.42+£2.35
Avg. 85.51+£7.38 74.92+£10.88 73.10£12.99 80.57+£9.50 77.69+11.69
W/T/L - 10/2/0 11/1/0 11/0/1 10/0/2

In Tables 16, 17 and 18, we can see that EID-mRMR performs better than the other four
algorithms in the majority of datasets. Take Table 16 for example, the number of datasets
that EID-mRMR can obtain better results than the other four algorithms is 7, while that of
datasets that EID-mRMR is inferior to any one of the other algorithms is no more than 5.
Furthermore, EID-mRMR achieves the greatest Avg. values with all the three classifiers.
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Table 15 Margins (mean £ SD) (%) between the performance of EID-mRMR and other algorithms when

using Naive Bayes

Datasets EID-mRMR Relief-F Fisher QPFS SPEC-CMI
Spambase 83.09+0.25 72.08£0.06 83.81+0.07 79.66+£0.10 85.58+£0.09
Synthetic_control ~ 94.24£0.20 80.08 +£0.33 81.58+0.23 92.53+£0.27 89.50+£0.41
Mfeat_fou 76.64+0.24 75.86+0.16 75.86+0.19 76.27+0.17 76.18+£0.17
Movement_libras 56.18+1.49 38.31+0.60 34.524+0.43 52.08+1.71 42.38+1.25
Musk 79.43+£0.53 73.71£1.08 75.52+£0.76 74.61£0.51 76.67+0.47
Mfeat_fac 90.90£0.10 75.33+£0.18 81.0940.18 88.724+0.13 84.03+0.18
Mfeat_pix 85.89+0.12 67.27+£0.20 65.65+0.19 79.80+0.14 75.70£0.54
Semeion 73.76 £0.39 57.23+0.14 56.22+£0.08 66.61£0.12 59.18+£0.69
ORL 72.86+£1.20 44.80+£0.97 36.71£0.82 51.74+£0.71 34.80+£1.49
COIL20 94.45+0.13 66.10£0.19 60.71+£0.22 90.35+0.15 81.49+£0.29
gisette 90.18+0.09 85.224+0.02 85.89+0.02 85.67+0.02 85.86 +£0.03
orlraws10P 93.40+1.42 68.06£3.18 58.92+3.26 70.56+£0.97 43.89+3.11
Avg. 82.59+11.47 67.00+£13.93 66371756  75.72+£13.62  69.61 £19.35
WI/T/L - 12/0/0 11/0/1 12/0/0 11/0/1

Table 16 Classification accuracy (%) of the optimal features selected by EID-mRMR and other algorithms

when using J48

Datasets EID-mRMR Relief-F Fisher QPFS SPEC-CMI
Spambase 93.03 (49) 93.00 (47) 93.04 (30) 93.13 (22) 92.93 (45)
Synthetic_control 92.87 (50) 93.32 (50) 91.60 (50) 93.33 (30) 93.77 (45)
Mfeat_fou 77.09 (32) 78.11 (10) 78.19 (11) 78.11 (16) 77.97 (10)
Movement_libras 68.50 (29) 64.00 (49) 59.56 (50) 68.92 (28) 67.39 (50)
Musk 83.41 (48) 79.54 (50) 81.19 (48) 80.36 (43) 81.60 (46)
Mfeat_fac 89.03 (43) 87.27 (50) 87.45 (47) 88.62 (50) 87.44 (50)
Mfeat_pix 78.81 (49) 77.36 (50) 74.02 (50) 78.00 (44) 75.77 (50)
Semeion 76.75 (50) 70.92 (50) 68.41 (48) 74.80 (48) 70.24 (50)
ORL 55.95 (50) 55.03 (50) 53.92 (50) 51.17 (43) 46.88 (47)
COIL20 92.81 (46) 77.81 (49) 90.66 (47) 93.20 (50) 87.25 (50)
gisette 94.21 (46) 94.17 (50) 91.68 (50) 92.15 (50) 92.33 (50)
orlraws10P 81.40 (31) 68.30 (27) 65.70 (50) 65.90 (3) 52.60 (50)
Avg. 81.99 78.24 77.95 79.81 77.18

Bold indicates that the best results can be achieved

5 Conclusions and Future Work

This paper first analyzes the objective function of mRMR. Then, for the case where the
objective function cannot guarantee the effectiveness of selected features, an idea of equal
interval division and ranking is proposed to process mutual information between the class
label and features, and the average value of mutual information between features. Ultimately,
EID-mRMR is proposed. To verify the performance, we apply EID-mRMR to three classi-
fiers, eight UCI datasets and four ASU datasets, and compare results with those from seven
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Table 17 Classification accuracy (%) of the optimal features selected by EID-mRMR and other algorithms
when using IB1

Datasets EID-mRMR Relief-F Fisher QPFS SPEC-CMI
Spambase 90.70 (50) 90.80 (49) 90.11 (45) 89.60 (39) 90.88 (45)
Synthetic_control 97.58 (49) 97.80 (50) 97.08 (50) 97.77 (42) 98.27 (44)
Mfeat_fou 83.15 (23) 83.61 (22) 83.46 (31) 83.70 (12) 84.05 (14)
Movement_libras 85.03 (37) 82.94 (50) 76.11 (50) 85.67 (31) 83.94 (49)
Musk 86.18 (50) 82.68 (50) 85.40 (50) 83.40 (50) 84.05 (33)
Mfeat_fac 96.48 (30) 94.19 (50) 95.21 (47) 96.57 (50) 94.92 (50)
Mfeat_pix 93.94 (50) 84.83 (50) 80.99 (50) 93.64 (50) 89.40 (50)
Semeion 86.40 (47) 77.96 (50) 73.28 (50) 80.92 (50) 79.34 (50)
ORL 93.03 (49) 83.27 (50) 86.83 (50) 90.67 (49) 78.58 (50)
COIL20 99.87 (46) 85.71 (50) 96.26 (50) 99.74 (50) 98.73 (50)
gisette 94.32 (50) 94.71 (49) 91.92 (45) 92.47 (50) 92.36 (50)
orlraws10P 97.20 (41) 81.60 (49) 87.20 (50) 77.50 (49) 75.60 (48)
Avg. 91.99 86.68 86.99 89.30 87.51

Bold indicates that the best results can be achieved

Table 18 Classification accuracy (%) of the optimal features selected by EID-mRMR and other algorithms
when using Naive Bayes

Datasets EID-mRMR Relief-F Fisher QPFS SPEC-CMI
Spambase 90.26 (12) 77.14 (49) 90.69 (29) 89.50 (8) 90.68 (29)
Synthetic_control 97.98 (31) 94.77 (50) 94.40 (50) 96.98 (38) 96.92 (45)
Mfeat_fou 79.34 (21) 79.53 (22) 78.93 (28) 79.37 (21) 79.13 (20)
Movement_libras 61.03 (37) 52.78 (49) 49.64 (50) 59.03 (42) 55.83 (50)
Musk 82.77 (50) 80.20 (50) 78.88 (36) 78.83 (50) 79.61 (50)
Mfeat_fac 95.48 (49) 88.63 (50) 87.82 (50) 94.77 (50) 89.02 (48)
Mfeat_pix 92.78 (50) 83.00 (50) 81.92 (50) 92.16 (50) 89.04 (50)
Semeion 83.97 (50) 75.14 (50) 71.80 (50) 79.86 (50) 75.75 (50)
ORL 88.05 (50) 62.65 (50) 55.08 (50) 75.63 (50) 55.77 (50)
COIL20 99.12 (50) 74.42 (50) 91.06 (50) 98.29 (49) 89.45 (50)
gisette 91.76 (50) 86.34 (29) 86.74 (45) 86.85 (50) 86.85 (50)
orlraws10P 98.20 (41) 72.10 (50) 76.70 (50) 75.40 (35) 61.60 (50)
Avg. 88.40 77.23 78.64 83.89 79.14

Bold indicates that the best results can be achieved

incremental MI-based algorithms and other four feature selection algorithms. Experimental
results validate that EID-mRMR can achieve better feature selection effectiveness in the
majority of datasets.

Considering that EID-mRMR currently only adopts mutual information, and it does not
utilize three-way interaction information or higher dimensional mutual information [38—46],
it is likely to degrade the performance due to missing some useful information. In the next
stage, we will investigate how to combine three-way interaction information with the idea of
equal interval division and ranking.
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