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Abstract
Minimal-redundancy–maximal-relevance (mRMR) algorithm is a typical feature selection
algorithm. To select the feature which has minimal redundancy with the selected features
and maximal relevance with the class label, the objective function of mRMR subtracts the
average value of mutual information between features from mutual information between
features and the class label, and selects the feature with the maximum difference. However,
the problem is that the feature with the maximum difference is not always the feature with
minimal redundancy maximal relevance. To solve the problem, the objective function of
mRMR is first analyzed and a constraint condition that determines whether the objective
function can guarantee the effectiveness of the selected features is achieved. Then, for the
case where the objective function is not accurate, an idea of equal interval division is pro-
posed and combined with ranking to process the interval of mutual information between
features and the class label, and that of the average value of mutual information between
features. Finally, a feature selection algorithm based on equal interval division and minimal-
redundancy–maximal-relevance (EID–mRMR) is proposed. To validate the performance of
EID–mRMR, we compare it with several incremental feature selection algorithms based on
mutual information and other feature selection algorithms. Experimental results demonstrate
that the EID–mRMR algorithm can achieve better feature selection performance.

Keywords Minimal-redundancy–maximal-relevance · Equal interval division · Mutual
information · Feature selection

1 Introduction

With the explosive growth of information, dimension of feature set increases and it can cause
the curse of dimensionality. Therefore, it is necessary to reduce the dimension of feature
set [1–3]. Dimensionality reduction methods involve feature extraction and feature selec-
tion [4]. Feature extraction is a way that transforms the original features into a new space and
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takes the transformed features as the final features, while feature selection selects a subset of
the original features. Compared with feature extraction, feature selection has advantages in
the interpretation of data [5]. Therefore, feature selection has a wide range of applications,
such as text processing [6,7], underwater objects recognition and classification [8,9],network
anomaly detecting [10], information retrieval [11], image classification [12,13] and microar-
ray data classification [14].

The metrics adopted in feature selection include distance, mutual information and con-
sistency. Compared with other metrics, mutual information can measure the relationship
between variables and it has the invariance under space transformations [15]. Hence, many
feature selection algorithms based on mutual information are proposed, such as [16,17].
Among these algorithms, mutual information maximisation (MIM) algorithm [18] is a basic
algorithm. However, it does not perform well due to only considering mutual information
between features and the class label.

To overcome the shortcoming of MIM, some algorithms that employ mutual information
between features and the class label to describe relevance and adopt mutual information
between features to describe redundancy are proposed. Among them, minimal-redundancy–
maximal-relevance (mRMR) algorithm [19] is a typical algorithm. In order to select the
feature that has minimal redundancy with the selected features and maximal relevance with
the class label, the average value of mutual information between each candidate feature
and all the selected features is subtracted from mutual information between each candidate
feature and the class label, and the feature with the maximum difference is selected. Since the
feature with the maximum difference does not mean that the feature has minimal redundancy
maximal relevance, the objective function of mRMR has a limitation.

Aiming at solving the existing problems of mRMR, some feature selection algorithms
have been proposed. Since mRMR had the problem that mutual information biases toward
multivalued features, normalization operation was used. Ultimately, NMIFS algorithm was
proposed in [15]. Mutual information between each candidate feature and the class label, and
the average value of mutual information between each candidate feature and all the selected
features were processed by an optimization algorithm known as NSGA-II. Finally,MIFS-ND
algorithm was presented in [20]. Combining mRMR with the idea of optimization, feature
selection was investigated in [21]. mRMR was combined with ReliefF algorithm, and a two-
stage feature selection algorithm was proposed in [22]. Combining mRMR with a particle
swarm optimization algorithm, a maximum relevance minimum redundancy PSO algorithm
was presented in [23]. In [15,20–23], the aforementioned limitation of the objective function
of mRMR has not been handled properly.

In view of the problem that the objective function of mRMR has a limitation, this paper
first analyzes the objective function of mRMR and achieves a condition that the objective
function can guarantee the effectiveness of selected features. Then, for the case where the
objective function cannot guarantee the effectiveness of selected features, the interval of
mutual information between each candidate feature and the class label, and that of the average
value of mutual information between each candidate feature and all the selected features are
divided equally, and then the subintervals are ranked. Finally, a feature selection algorithm
based on equal interval division andminimal-redundancy–maximal-relevance (EID–mRMR)
is proposed.

The rest of this paper is organized as follows. Section 2 analyzes some feature selection
algorithms based on mutual information. The EID–mRMR algorithm is proposed in Sect. 3.
Section 4 presents and discusses experimental results. Conclusions and future work are
presented in Sect. 5.
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2 RelatedWork

In this paper, we only analyze mutual information of discrete random variables. Assuming Y
and Z are two discrete random variables, p(y) is the probability density function of Y , p(z) is
the probability density function of Z , and p(y, z) is the joint probability density function of Y
and Z . Mutual information is utilized to quantify the information that two random variables
share. Mutual information I (Y ; Z) can be defined as

I (Y ; Z) =
∑

y∈Y

∑

z∈Z
p(y, z) log

p(y, z)

p(y)p(z)
. (1)

The higher mutual information values means that the two random variables share more
information.

MIM is a feature selection algorithm based on mutual information, and its objective
function is expressed as

MIM = argmax
fi∈X

[I (c; fi )] (2)

where X is the candidate features set, fi is a candidate feature and c is the class label. MIM
calculates mutual information between each candidate feature and the class label. Then, it
ranks features in descending order according to the values, and selects some features with
larger values. The algorithm does not yield good results due to ignoring feature interactions.

To overcome the shortcoming of MIM, some feature selection algorithms based on rel-
evance and redundancy are proposed [19,24]. Objective functions of these algorithms are
different, while their feature selection processes are same. The process is presented as fol-
lows. It first calculates mutual information between features and the class label, and selects
the feature that has the maximum value. Then, it loops to select the feature that complies
with the objective function in a forward search way. The loop ends when a specified num-
ber of features are selected. Obviously, objective functions are the key of these algorithms.
Combined with the objective functions, these algorithms are analyzed.

MIFS = argmax
fi∈X

⎡

⎣I (c; fi ) − β
∑

fs∈S
I ( fs; fi )

⎤

⎦ . (3)

Equation (3) is the objective function ofmutual information based feature selection (MIFS)
algorithm [24]. S is the selected feature set and fs is a selected feature.MIFS uses a parameter
β to adjust mutual information I (c; fi ) and mutual information between all the selected
features and fi . When β is set to zero, this algorithm is MIM.

mRMR [19] uses the reciprocal of the number of selected features to replace the parameter
β, solving the problem of uncertain parameter. For selecting the feature that has minimal
redundancy with the selected features and maximal relevance with the class label, mRMR
subtracts the average value of mutual information between all the selected features and fi
from I (c; fi ), and selects the feature with the maximum difference. The objective function
of mRMR is expressed as

mRMR = argmax
fi∈X

⎡

⎣I (c; fi ) − 1

|S|
∑

fs∈S
I ( fs; fi )

⎤

⎦ (4)
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where |S| is the number of selected features. However, the feature satisfying Eq. (4) is not
always the feature with minimal redundancy maximal relevance. Therefore, the objective
function of mRMR has a limitation.

MIFS-ND = argmax
fi∈X

[Cd − Fd ] . (5)

Combining mRMR with an optimization algorithm NSGA-II, MIFS-ND algorithm [20]
was proposed. MIFS-ND first selects the feature that has the maximum mutual information
value with the class label. Then, it calculates I (c; fi ) and the average value of mutual
information between all the selected features and each candidate feature. Following that,
it processes them by NSGA-II and achieves the domination count Cd and the dominated
count Fd for each feature. As shown in [20], the domination count of a candidate feature
represents the number of features that it dominates for mutual information between the
candidate feature and the class label. The dominated count of a candidate feature represents
the number of features that it dominates for the average value of mutual information between
the candidate feature and all the selected features. Finally, the feature satisfying Eq. (5) is
selected. Following the above steps, it loops to select features until a specified number of
features are selected. Compared with the range of I (c; fi ) and that of the average value
of mutual information between all the selected features and fi , the range of Cd and that
of Fd are greater. However, since Cd and Fd are not correlated to the difference between
mutual information between the class label and different candidate features, and the difference
between the average values of mutual information between the selected features and different
candidate features,MIFS-NDcannot effectively handle the problem that the limitation existed
in the objective function of mRMR.

3 The Proposed Feature Selection Algorithm

This section first achieves a condition that tests whether the objective function can guarantee
the performance of selected features. Then, equal interval division is proposed and combined
with ranking to deal with the case where the objective function cannot guarantee the perfor-
mance of selected features. Following that, the proposed algorithmEID–mRMR is presented.
Finally, an example is adopted to analyze the first two features selected bymRMR,MIFS-ND
and EID–mRMR.

3.1 AValidation Condition

mRMR is a feature selection algorithm based on relevance and redundancy. Flow chart of
mRMR is presented in Fig. 1. In the flow chart, the candidate feature set X and the selected
feature set S are initialized. Then, mutual information between features and the class label is
calculated, and the feature with the maximum value is selected; it loops to select the feature
that complies with Eq. (4) in a forward search way until a specified number of features N are
selected.

The objective function presented in Eq. (4) is the key of mRMR. mRMR utilizes I (c; fi )
to describe relevance and adopts I ( fs; fi ) to describe redundancy. In order to select the
feature that has minimal redundancy with the selected features and maximal relevance with
the class label, mRMR subtracts the average value of mutual information between all the
selected features and each candidate feature from I (c; fi ), and selects the feature with the
maximum difference. The feature that has minimal redundancy with the selected features
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Fig. 1 Flow chart of mRMR

and maximal relevance with the class label can satisfy Eq. (4), not vice versa. Therefore, Eq.
(4) has a limitation. The feature selected by Eq. (4) is analyzed. It is necessary to present Eq.
(6) at first.

J ( fi ) = I (c; fi ) − 1

|S|
∑

fs∈S
I ( fs; fi ) (6)

Equation (4) is a special case of Eq. (6) attaining the maximum value. Calculate Eq. (6),
if the maximum value is far greater than the secondary maximum value, and then select the
feature with the maximum value. If not, the advantage of using Eq. (4) to select features is not
obvious. To simplify the calculation, a condition that the difference between the maximum
value and the secondarymaximum value of Eq. (6) is greater than a fixed valueP is adopted to
test whether using Eq. (4) to select features. If the difference between themaximum value and
the secondary maximum value is greater than P, Eq. (4) is used to select features; otherwise,
an idea of equal interval division and ranking is adopted to select features. We will give a
detailed description of the idea of equal interval division and ranking in the next section.
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3.2 Equal Interval Division and Ranking

For the situation where Eq. (4) cannot guarantee the effectiveness of selected features, to
guarantee the featurewithminimal redundancymaximal relevance being selected, the interval
of I (c; fi ) and that of the average value of mutual information between all the selected
features and fi are divided equally, and then the subintervals are ranked. The number of
dataset’s features is taken as the number of subintervals. The concrete practices are presented
as follows: determine themaximum value and theminimum value of I (c; fi ) and the average
value of mutual information between all the selected features and fi as interval values, and
then the interval values are divided equally. Following that, the subintervals are numbered
from 1 to the number of dataset’s features, and the numbers are taken as the ordinal values
of the values in the subintervals.

FFMI ( fs; fi ) is the value that the interval of
∑

fs∈S I ( fs; fi )/ |S| is processed by equal
division and ranking. CFMI (c; fi ) is the value that the interval of I (c; fi ) is processed by
equal division and ranking. The process of computing FFMI ( fs; fi ) is shown in Algorithm 1
and that of computing CFMI (c; fi ) is shown in Algorithm 2.

Algorithm 1 Compute FFMI ( fs; fi );
Input: M : the number of dataset’s features, |S| : the number of features in S,

∑
fs∈S

I ( fs ; fi )/ |S|.
Output: FFMI ( fs ; fi ).
1: a = min [

∑
fs∈S

I ( fs ; fi )/ |S|], b = max [
∑
fs∈S

I ( fs ; fi )/ |S|];
2: c = (b-a) / (M-1);
3: for fi ∈ X do
4: for j = 1: M do
5: if

∑
fs∈S

I ( fs ; fi )/ |S| ≥ a - c + j*c then

6: if
∑
fs∈S

I ( fs ; fi )/ |S| < a + j*c then

7: FFMI ( fs ; fi ) = j;
8: end if
9: end if
10: end for
11: end for

Algorithm 2 Compute CFMI (c; fi );
Input: M : the number of dataset’s features, I (c; fi ).
Output: CFMI (c; fi ).
1: a = min [I (c; fi )], b = max [I (c; fi )];
2: c = (b-a) / (M-1);
3: for fi ∈ X do
4: for j = 1: M do
5: if I (c; fi ) ≥ a - c + j*c then
6: if I (c; fi ) < a + j*c then
7: CFMI (c; fi ) = j;
8: end if
9: end if
10: end for
11: end for
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For the situation where Eq. (4) cannot guarantee the effectiveness of selected features,
equal interval division and ranking are adopted to process I (c; fi ) and

∑
fs∈S I ( fs; fi )/|S|,

and CFMI (c; fi ) and FFMI ( fs; fi ) are attained. Then, Eq. (7) is presented.

EID−mRMR = argmax
fi∈X

[CFMI (c; fi ) − FFMI ( fs; fi )] (7)

Equation (7) is the objective function of the proposed algorithm EID–mRMR. CFMI
(c; fi ) is utilized to describe relevance and FFMI ( fs; fi ) is adopted to describe redundancy.
If there are some features satisfying Eq. (7), the feature that maximizes Eq. (6) is selected
from these features satisfying Eq. (7).

Equations (4), (5) and (7) are all proposed to select the features with minimal redundancy
maximal relevance. Therefore, it is necessary to compare Eq. (7) with Eqs. (4) and (5). Before
comparisons, Eqs. (8) and (9) are presented.

J ( fi ) = Cd − Fd (8)

J ( fi ) = CFMI (c; fi ) − FFMI ( fs; fi ) (9)

Equation (5) is a special case of Eq. (8) attaining the maximum value and Eq. (7) is that
of Eq. (9) attaining the maximum value. Equation (9) is compared with Eqs. (6) and (8).
The first part of Eqs. (6), (8) and (9) is adopted to describe relevance, and the second part is
adopted to describe redundancy. With different candidate features, the range of Cd and that
of Fd are related to the number of candidate features, and the range of CFMI (c; fi ) and that
of FFMI ( fs; fi ) are related to the number of dataset’s features. While the range of I (c; fi )
and that of the average value of mutual information between all the selected features and fi
are not related to the number of candidate features and that of dataset’s features, and they
are smaller than the range of Cd , that of Fd , that of CFMI (c; fi ) and that of FFMI ( fs; fi ).
Further, since the number of dataset’s features is greater than that of candidate features, the
range of Cd and that of Fd are smaller than the range of CFMI (c; fi ) and that of FFMI
( fs; fi ). Therefore, Eq. (9) has greater range of relevance and range of redundancy than Eqs.
(6) and (8), and Eq. (8) has greater range of relevance and range of redundancy than Eq. (6).

Further, different from Eq. (8), since Eq. (9) adopts equal interval division and ranking to
process I (c; fi ) and the average value ofmutual information between all the selected features
and fi , CFMI (c; fi ) and FFMI ( fs; fi ) can guarantee the values in the same subinterval have
the same priority. Therefore, compared with Eqs. (4) and (5), Eq. (7) has more advantages
in selecting the feature with minimal redundancy maximal relevance.

3.3 Algorithmic Implementation

With the above validation condition and Eq. (7), EID–mRMR is shown in Algorithm 3.
EID–mRMR consists of two parts: in the first part (lines 1–7), the candidate feature set

X and the selected feature set S are initialized. Then, I (c; fi ) is calculated, and the feature
with the maximum value is selected; in the second part (lines 8–34), the average value of
mutual information between all the selected features and fi is calculated. Then, the difference
between the maximum and the secondary maximum of Eq. (6) is calculated, if the difference
is greater than a fixed value P , select the feature that satisfies Eq. (4); otherwise, calculate
CFMI (c; fi ), FFMI ( fs; fi ) and the difference between CFMI (c; fi ) and FFMI ( fs; fi ).
Following that, test whether the number of features with the maximum difference between
CFMI (c; fi ) and FFMI ( fs; fi ) is more than 1, if it is no less than 2, select the feature
that maximizes Eq. (6) from these features; otherwise, select the feature with the maximum
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Algorithm 3 EID–mRMR: a feature selection algorithm based on equal interval division and
minimal-redundancy–maximal-relevance;
Input: M: the number of dataset’s features, Q: the number of features to be selected, P: a fixed value.
Output: S: the selected features.
1: initialize S = ∅ and X = { f1, f2, . . . , fM };
2: for fi ∈ X do
3: compute mutual information I (c; fi );
4: end for
5: find the feature fk by maximizing mutual information with c, fk ∈ X ;
6: S = S ∪ { fk };
7: X = X − { fk };
8: while |S|≤Q do
9: for fi∈X do
10: for fs∈S do
11: compute mutual information I ( fs ; fi );
12: end for
13: compute

∑
fs∈S

I ( fs ; fi )/ |S|;
14: end for
15: compute Eq.(6);
16: if the difference between the maximum and the secondary maximum of Eq.(6) is greater than P then;
17: find the feature fl that maximizes Eq.(6), fl ∈ X ;
18: S = S ∪ { fl };
19: X = X − { fl };
20: else
21: compute FFMI ( fs ; fi );
22: compute CFMI (c; fi );
23: find the number of features that satisfy Eq.(7);
24: if the number of features is more than 1 then
25: find the feature fm that maximizes Eq.(6) from the features satisfying the above condition,

fm ∈ X ;
26: S = S ∪ { fm };
27: X = X − { fm };
28: else
29: find the feature fn that satisfies Eq.(7), fn ∈ X ;
30: S = S ∪ { fn};
31: X = X − { fn};
32: end if
33: end if
34: end while

difference between CFMI (c; fi ) and FFMI ( fs; fi ). Following the above steps, it loops to
select features. The loop ends when a specified number of features are selected.

3.4 An Example

For better understanding the idea of EID–mRMR, an example is presented. Since the first
selected feature is the maximum mutual information value with the class label and it is
different from the other selected features. The second selected feature and other selected
features satisfy the objective function of the algorithm. Therefore, an example is adopted
to analyze the first two features selected by mRMR, MIFS-ND and EID–mRMR. A dataset
with 7 features is used, and the feature f7 has the maximum mutual information value with
c. Dataset description is presented in Table 1.

Since the feature f7 has the maximum mutual information value with c, mRMR, EID–
mRMR and MIFS-ND first select f7. Since f7 is selected and the number of selected feature
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Table 1 Dataset description

Features fi Mutual information
I (c; fi )

Mutual information
I ( f7; fi )

I (c; fi ) -
I ( f7; fi )

f1 0.90 0.09 0.81

f2 0.89 0.07 0.82

f3 0.86 0.06 0.80

f4 0.78 0.05 0.73

f5 0.66 0.03 0.63

f6 0.60 0.04 0.56

Table 2 Domination count of a feature

Features fi Domination count Cd Dominated count Fd Cd–Fd

f1 5 5 0

f2 4 4 0

f3 3 3 0

f4 2 2 0

f5 1 0 1

f6 0 1 − 1

is 1, the average value of mutual information between all the selected features and the
candidate feature fi is I ( f7; fi ). The range of I (c; fi ) is [0.60, 0.90] and that of I ( f7; fi )
is [0.03, 0.09]. Considering that the feature f2 has the maximum difference between mutual
information, mRMR selects f2.

MIFS-ND adopts NSGA-II to process mutual information I (c; fi ) and I ( f7; fi ), and
achieves the domination count Cd and the dominated count Fd . Fd is subtracted from Cd

and the difference is attained. Domination count of a feature is shown in Table 2.
As shown in Table 2, because f5 has the maximum difference, MIFS-ND selects f5. Since

the number of the candidate features is 6, the range of Cd and that of Fd are both [0, 5].
Therefore, compared with the range of I (c; fi ) and that of I ( f7; fi ), the range of Cd and
that of Fd are greater. Further, although I (c; f2) is not far greater than I (c; f1), f1 and f2
have different Cd values. We can know that Cd and Fd are not correlated to the difference
between mutual information between the class label and different candidate features, and
the difference between the average values of mutual information between all the selected
features and different candidate features.

f2 has the maximum difference between I (c; f2) and I ( f7; f2). f1 has the secondary
maximum difference between I (c; f1) and I ( f7; f1). Considering that the maximum dif-
ference is not far greater than the secondary maximum difference, the objective function of
mRMR cannot guarantee the effectiveness of the selected features. We adopt equal interval
division and ranking to process I (c; fi ) and I ( f7; fi ). Since the dataset has 7 features, with
the idea of equal interval division, the interval of I (c; fi ) is divided into [0.60, 0.65), [0.65,
0.70), [0.70, 0.75), [0.75, 0.80), [0.80, 0.85), [0.85, 0.90), [0.90, 0.95) and that of I ( f7; fi )
is divided into [0.03, 0.04), [0.04, 0.05), [0.05, 0.06), [0.06, 0.07), [0.07, 0.08), [0.08, 0.09),
[0.09, 0.10). The ordinal values CFMI (c; fi ) and FFMI ( fs; fi ) are calculated. Ordinal value
of a feature is shown in Table 3.

123



1246 X. Gu et al.

Table 3 Ordinal value of a feature

Features fi Ordinal value
CFMI (c; fi )

Ordinal value
FFMI ( f7; fi )

CFMI (c; fi )–
FFMI ( f7; fi )

f1 7 7 0

f2 6 5 1

f3 6 4 2

f4 4 3 1

f5 2 1 1

f6 1 2 − 1

In order to understand EID–mRMR, I (c; f1) and I ( f7; f1) are adopted to analyze the
ordinal values with EID–mRMR. Since I (c; f1) is 0.90, the value is in the subinterval of
[0.90, 0.95) and the number is 7, hence the ordinal value of I (c; f1) is 7. Considering that
I ( f7; f1) is 0.09, the value is in the subinterval of [0.09, 0.10) and the number is 7, hence
the ordinal value of I ( f7; f1) is 7.

As shown in Table 3, since f3 has the maximum difference between the ordinal values,
EID–mRMR selects f3 as the second selected feature. Since the dataset has 7 features, the
range of CFMI (c; fi ) and that of FFMI ( fs; fi ) are both [1, 7]. Compared with the range
of I (c; fi ), that of I ( f7; fi ), that of Cd and that of Fd , the range of CFMI (c; fi ) and that
of FFMI ( fs; fi ) are greater. Therefore, EID–mRMR has greater range of relevance and
range of redundancy than mRMR and MIFS-ND. Further, CFMI (c; fi ) and FFMI ( fs; fi )
can guarantee the features in the same subinterval have the same priority. Therefore, EID–
mRMR has more advantages in selecting the feature with minimal redundancy maximal
relevance. Compared with f2 and f5, it is more appropriate to select f3.

4 Experimental Results

To validate the effectiveness of EID–mRMR, mRMR and MIFS-ND, other five incremental
MI-based feature selection algorithms and other four feature selection algorithms are adopted
for performance comparisons.

4.1 The Datasets and Experimental Settings

The datasets presented in Table 4 are from UCI machine learning repository [25] and ASU
feature selection datasets [26]. The number of selected features is 50 for all the datasets. The
minimum description length discretization method is adopted to transform the numerical fea-
tures into discrete ones [27] and it is only used for feature selection. Three popular classifiers,
J48, IB1 and Naive Bayes are utilized. The classifiers’ parameters are set to WEKA’s [28]
default values. ASU feature selection software package [29] is adopted.

To validate the effectiveness of EID–mRMR, MIFS, mRMR, MIFS-ND, NMIFS [15],
MIFS-U [30], MIFS-CR [31] and CMI [32] are adopted for performance comparisons.
NMIFS, MIFS-U, MIFS-CR and CMI are four feature selection algorithms based on rel-
evance and redundancy, and their objective functions are presented as follows:

NMIFS = argmax
fi∈X

⎡

⎣I (c; fi ) − 1

|S|
∑

fs∈S

I ( fs; fi )

min {H ( fi ) , H ( fs)}

⎤

⎦ (10)
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Table 4 Summary of datasets in
the experiment

Datasets Instances Features Classes Source

Spambase 4601 57 2 UCI

Synthetic_control 600 60 6 UCI

Mfeat_fou 2000 76 10 UCI

Movement_libras 360 90 15 UCI

Musk 476 166 2 UCI

Mfeat_fac 2000 216 10 UCI

Mfeat_pix 2000 240 10 UCI

Semeion 1593 256 10 UCI

ORL 400 1024 40 ASU

COIL20 1440 1024 20 ASU

gisette 7000 5000 2 ASU

orlraws10P 100 10,304 10 ASU

MIFS-U = argmax
fi∈X

⎡

⎣I (c; fi ) − β
∑

fs∈S

I (c; fs)

H( fs)
I ( fs; fi )

⎤

⎦ (11)

MIFS-CR = argmax
fi∈X

⎧
⎨

⎩I (c; fi ) − 1

2

∑

fs∈S

[
I (c; fs)

H( fs)
+ I (c; fi )

H( fi )

]
I ( fs; fi )

⎫
⎬

⎭ (12)

CMI = argmax
fi∈X

⎡

⎣I (c; fi ) − H( fi/c)

H( fi )

∑

fs∈S

I (c; fs)I ( fs; fi )

H( fs)H(c)

⎤

⎦ (13)

where H( fs) is the entropy of fs , H( fi ) is the entropy of fi , H(c) is the entropy of c,
H( fi/c) is the conditional entropy.

In the experiment, the β value of MIFS is set to 0.5 and that of MIFS-U is set to 1.
Except for seven incremental MI-based algorithms, Relief-F [33], Fisher [34], QPFS [35]

and SPEC-CMI [36] are compared with EID–mRMR. In QPFS and SPEC-CMI, before
feature selection, all the features are normalized to the range [−1, 1] and five equal-size bins
is adopted to transform the numerical features into discrete ones.

As shown in [37], for reducing the influence of randomness on the final results, ten times
of tenfold cross-validation are used, and the mean value and standard deviation of ten results
are taken as the final results. To determine whether the effectiveness of experimental results
is significant, a one-sided paired t-test at 5% significance level is carried out.

4.2 Experimental Results and Analysis

4.2.1 With Different P Values

In this section, the influence of P value on EID–mRMR is analyzed. The P value is set to
0.02, 0.03, 0.04, 0.05 and 0.06 respectively. The average performance of EID–mRMR with
different P values when using J48, IB1 and Naive Bayes is presented in Table 5.

As shown in Table 5, when the P value is 0.05 or 0.06, it achieves the greatest Avg.
value. At the same time, with different P values, the differences between the Avg. values
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Table 5 Average performance of
EID–mRMR with different P
values

Datasets 0.02 0.03 0.04 0.05 0.06

Spambase 86.97 86.91 86.83 86.49 86.10

Synthetic_control 92.28 92.28 92.26 92.26 92.26

Mfeat_fou 77.14 77.10 77.06 77.06 77.02

Movement_libras 66.59 66.83 66.89 66.89 66.91

Musk 80.79 80.80 80.80 80.80 80.80

Mfeat_fac 89.64 89.66 89.73 89.70 89.71

Mfeat_pix 80.19 80.33 80.48 80.59 80.59

Semeion 70.28 70.97 71.28 71.61 71.77

ORL 68.12 68.43 68.57 68.68 68.78

COIL20 93.33 93.28 93.32 93.37 93.38

gisette 91.10 91.19 91.26 91.31 91.31

orlraws10P 87.96 87.84 87.93 88.03 88.12

Avg. 82.04 82.13 82.20 82.23 82.23

are very small. Therefore, the P value has a relatively small impact on the performance of
EID–mRMR. In the experiment, we find that it takes more time for feature selection with
the P value increasing. Therefore, in comparison with the incremental MI-based Algorithms
and other feature selection algorithms, the P value of EID–mRMR is set to 0.05.

4.2.2 Comparison with Incremental MI-Based Algorithms

The section compares EID–mRMR with other incremental MI-based algorithms. Margins
between the performance of EID–mRMR and other algorithms when using J48, IB1 and
Naive Bayes are presented in Tables 6, 7 and 8. The values in the Avg. row are the mean
value and standard deviation of the above twelve values. The values in the Win/Tie/Loss
(W/T/L) row are the results obtained with one-sided paired t-test, among the values, the
first value is the number of datasets that EID–mRMR is significantly superior to the other
algorithms, the second value is the number of datasets that EID–mRMR performs equally
with the other algorithms and the third value is the number of datasets that EID–mRMR is
significantly inferior to the other algorithms. Classification accuracy of the optimal features
selected by EID–mRMR and other algorithms when using J48, IB1 and Naive Bayes are
presented in Tables 9, 10 and 11. The running time of EID–mRMR and other algorithms
that select 50 features is shown in Table 12. Average performance comparisons of algorithms
with the three classifiers are shown in Fig. 2.

As shown in Table 6, in Movement_libras, Mfeat_pix, Semeion, COIL20 and orlraws10P,
EID–mRMR is significantly better than mRMR. From the values in the Avg. andW/T/L row,
EID–mRMR performs better than mRMRwhen using J48. Compared with other algorithms,
MIFS-U, MIFS-ND and EID–mRMR achieve better results.

In Table 7, the Avg. values indicate that MIFS-U, MIFS-CR and EID–mRMR yield
better results. The values in the W/T/L row suggest that mRMR, NMIFS, MIFS-U and
EID–mRMR can obtain better feature selection performance. Different from Table 6, the
differences between EID–mRMR and the other algorithms increase except for MIFS-U.

In Table 8, in the terms of the Avg. values, compared with other algorithms, MIFS-U,
MIFS-CR and EID–mRMR achieve better results. For the W/T/L values, MIFS-U, CMI
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and EID–mRMR perform better than the other algorithms. Moreover, the advantages that
EID–mRMR is superior to the other algorithms increase in both the Avg. and W/T/L values.

As shown in Tables 9, 10 and 11, we can see that EID–mRMR can achieve better results in
the majority of datasets. Take Table 11 for example, the number of datasets that EID–mRMR
performs better than the other seven algorithms is 7, while that of any of the other algorithms
is superior to EID–mRMR is no more than 2. Furthermore, EID–mRMR can obtain the
greatest Avg. values with all the three classifiers.

In Table 12, EID–mRMR takes a fair amount of time with the other seven algorithms
in the majority of datasets except for gisette and orlraws10p. Since features of gisette and
orlraws10p are high dimensional and they need to be processed by the method of equal
interval division and ranking for more times, EID–mRMR is more time-consuming in these
two datasets and it obtains greater Avg. values than other algorithms.

As shown in Fig. 2, in some datasets, such as Spambase and Mfeat_fou, the selected
features account for a large proportion of these datasets. After classification accuracy of the
features selected by the majority of algorithms reaches the maximum value, it decreases to
some extent. While in most of datasets, due to selected features occupying a certain pro-
portion of datasets, the average performance of the features selected by most of algorithms
significantly increases in the beginning. Then, it increases slowly and varies gently after
arriving at a certain extent. Considering that the average value of the 50 features selected
by the algorithms is taken as the final result, the percentage of selected features accounting
for the datasets has less impact on the final result. Therefore, it is suitable for selecting 50
features. In the average performance comparisons of algorithms, EID–mRMR can achieve
better effectiveness in the majority of datasets. However, the other algorithms do not perform
well in some datasets; for example, mRMR cannot handle well in Synthetic_control, Move-
ment_libras, Mfeat_pix, Semeion, ORL and gisette. MIFS-ND does not yield good results
in Spambase, Mfeat_fou and gisette. As a whole, compared with the other seven feature
selection algorithms, EID–mRMR can achieve better results.

4.2.3 Comparison with Other Feature Selection Algorithms

The section compares EID–mRMR with Relief-F, Fisher, QPFS and SPEC-CMI. Margins
between the performance of EID–mRMR and other algorithms when using J48, IB1 and
Naive Bayes are presented in Tables 13, 14 and 15. Classification accuracy of the optimal
features selected by EID–mRMR and other algorithms when using J48, IB1 and Naive Bayes
are presented in Tables 16, 17 and 18.

As shown in Table 13, EID–mRMR and SPEC-CMI are superior to Relief-F, Fisher
and QPFS in Spambase and Mfeat_fou. EID–mRMR and QPFS are superior to Relief-F,
Fisher and SPEC-CMI inMfeat_fou andMovement_libras. In most of datasets, EID–mRMR
performs better than Relief-F, Fisher, QPFS and SPEC-CMI. From the values in the Avg.
and W/T/L row, EID–mRMR can achieve better results than the other four algorithms.

In Table 14, SPEC-CMI performs better than EID–mRMR in Spambase and Mfeat_fou.
In the majority of datasets, EID–mRMR yields better results than the other four algorithms.
The values in the Avg. row and the W/T/L row suggest that EID–mRMR can obtain better
feature selection effectiveness. Different from Table 13, the advantages that EID–mRMR is
superior to the other algorithms increase in both the Avg. and W/T/L values.

As shown in Table 15, Fisher and SPEC-CMI achieve better results than EID–mRMR in
Spambase. In most of datasets, EID–mRMR can achieve better feature selection performance
than the other four algorithms. Different fromTables 13 and 14, the differences between EID–
mRMR and the other four algorithms increase in the Avg. and W/T/L values.
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(b) Synthetic control
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(f) Mfeat fac

Fig. 2 Average performance comparisons of algorithms with the three classifiers
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(g) Mfeat pix
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(k) gisette
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Fig. 2 continued
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Table 13 Margins (mean ± SD) (%) between the performance of EID–mRMR and other algorithms when
using J48

Datasets EID–mRMR Relief-F Fisher QPFS SPEC-CMI

Spambase 91.94±0.07 88.35±0.11 91.22±0.13 91.47±0.11 91.98±0.07

Synthetic_control 89.89±0.51 81.66±0.55 82.68±0.35 89.38±0.57 86.53±0.76

Mfeat_fou 74.93±0.45 75.07±0.44 74.92±0.42 75.10±0.51 75.30±0.47

Movement_libras 63.74±0.82 49.76±0.78 47.68±0.61 63.58±1.19 58.73±1.34

Musk 80.69±0.69 74.64±0.59 75.56±0.40 77.30±0.67 78.27±0.60

Mfeat_fac 85.96±0.30 78.04±0.22 81.60±0.17 84.15±0.10 82.72±0.20

Mfeat_pix 74.51±0.45 64.58±0.27 63.07±0.22 71.16±0.43 65.56±0.77

Semeion 69.89±0.50 57.53±0.17 56.52±0.18 64.35±0.23 57.26±1.22

ORL 51.65±1.95 46.93±0.89 42.72±0.90 43.81±0.90 38.47±0.65

COIL20 89.56±0.36 69.62±0.43 62.38±0.28 87.86±0.27 81.71±0.37

gisette 92.42±0.07 92.10±0.09 90.26±0.07 90.08±0.06 90.27±0.07

orlraws10P 78.08±1.91 64.49±3.15 53.74±3.31 61.91±2.12 47.09±4.47

Avg. 78.61±12.54 70.23±14.24 68.53±16.46 75.01±14.66 71.16±17.52

W/T/L – 11/0/1 11/1/0 10/1/1 10/1/1

Table 14 Margins (mean ± SD) (%) between the performance of EID–mRMR and other algorithms when
using IB1

Datasets EID–mRMR Relief-F Fisher QPFS SPEC-CMI

Spambase 84.43±0.15 83.84±0.15 83.79±0.15 82.40±0.10 85.53±0.10

Synthetic_control 92.66±0.28 86.31±0.19 86.79±0.23 90.28±0.23 87.67±0.44

Mfeat_fou 79.62±0.20 79.59±0.23 79.64±0.21 79.71±0.22 80.09±0.19

Movement_libras 80.75±1.03 65.18±0.65 58.49±0.74 79.75±0.85 75.36±0.80

Musk 82.28±0.74 77.05±0.50 78.64±0.48 79.58±0.49 80.24±0.41

Mfeat_fac 92.26±0.14 81.34±0.16 88.34±0.11 90.93±0.10 89.02±0.13

Mfeat_pix 81.36±0.29 61.09±0.14 58.67±0.22 74.87±0.08 69.92±0.61

Semeion 71.20±0.37 54.22±0.27 51.73±0.27 60.81±0.15 58.08±0.91

ORL 81.54±0.80 68.52±0.51 67.46±0.66 75.72±1.07 61.54±1.06

COIL20 96.09±0.09 75.60±0.20 65.30±0.15 93.49±0.11 91.26±0.17

gisette 91.32±0.24 91.32±0.04 89.27±0.08 88.91±0.08 89.13±0.07

orlraws10P 92.60±1.21 74.97±0.69 69.11±2.54 70.43±0.93 64.42±2.35

Avg. 85.51±7.38 74.92±10.88 73.10±12.99 80.57±9.50 77.69±11.69

W/T/L – 10/2/0 11/1/0 11/0/1 10/0/2

In Tables 16, 17 and 18, we can see that EID–mRMR performs better than the other four
algorithms in the majority of datasets. Take Table 16 for example, the number of datasets
that EID–mRMR can obtain better results than the other four algorithms is 7, while that of
datasets that EID–mRMR is inferior to any one of the other algorithms is no more than 5.
Furthermore, EID–mRMR achieves the greatest Avg. values with all the three classifiers.
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Table 15 Margins (mean ± SD) (%) between the performance of EID–mRMR and other algorithms when
using Naive Bayes

Datasets EID–mRMR Relief-F Fisher QPFS SPEC-CMI

Spambase 83.09±0.25 72.08±0.06 83.81±0.07 79.66±0.10 85.58±0.09

Synthetic_control 94.24±0.20 80.08±0.33 81.58±0.23 92.53±0.27 89.50±0.41

Mfeat_fou 76.64±0.24 75.86±0.16 75.86±0.19 76.27±0.17 76.18±0.17

Movement_libras 56.18±1.49 38.31±0.60 34.52±0.43 52.08±1.71 42.38±1.25

Musk 79.43±0.53 73.71±1.08 75.52±0.76 74.61±0.51 76.67±0.47

Mfeat_fac 90.90±0.10 75.33±0.18 81.09±0.18 88.72±0.13 84.03±0.18

Mfeat_pix 85.89±0.12 67.27±0.20 65.65±0.19 79.80±0.14 75.70±0.54

Semeion 73.76±0.39 57.23±0.14 56.22±0.08 66.61±0.12 59.18±0.69

ORL 72.86±1.20 44.80±0.97 36.71±0.82 51.74±0.71 34.80±1.49

COIL20 94.45±0.13 66.10±0.19 60.71±0.22 90.35±0.15 81.49±0.29

gisette 90.18±0.09 85.22±0.02 85.89±0.02 85.67±0.02 85.86±0.03

orlraws10P 93.40±1.42 68.06±3.18 58.92±3.26 70.56±0.97 43.89±3.11

Avg. 82.59±11.47 67.00±13.93 66.37±17.56 75.72±13.62 69.61±19.35

W/T/L – 12/0/0 11/0/1 12/0/0 11/0/1

Table 16 Classification accuracy (%) of the optimal features selected by EID–mRMR and other algorithms
when using J48

Datasets EID–mRMR Relief-F Fisher QPFS SPEC-CMI

Spambase 93.03 (49) 93.00 (47) 93.04 (30) 93.13 (22) 92.93 (45)

Synthetic_control 92.87 (50) 93.32 (50) 91.60 (50) 93.33 (30) 93.77 (45)

Mfeat_fou 77.09 (32) 78.11 (10) 78.19 (11) 78.11 (16) 77.97 (10)

Movement_libras 68.50 (29) 64.00 (49) 59.56 (50) 68.92 (28) 67.39 (50)

Musk 83.41 (48) 79.54 (50) 81.19 (48) 80.36 (43) 81.60 (46)

Mfeat_fac 89.03 (43) 87.27 (50) 87.45 (47) 88.62 (50) 87.44 (50)

Mfeat_pix 78.81 (49) 77.36 (50) 74.02 (50) 78.00 (44) 75.77 (50)

Semeion 76.75 (50) 70.92 (50) 68.41 (48) 74.80 (48) 70.24 (50)

ORL 55.95 (50) 55.03 (50) 53.92 (50) 51.17 (43) 46.88 (47)

COIL20 92.81 (46) 77.81 (49) 90.66 (47) 93.20 (50) 87.25 (50)

gisette 94.21 (46) 94.17 (50) 91.68 (50) 92.15 (50) 92.33 (50)

orlraws10P 81.40 (31) 68.30 (27) 65.70 (50) 65.90 (3) 52.60 (50)

Avg. 81.99 78.24 77.95 79.81 77.18

Bold indicates that the best results can be achieved

5 Conclusions and FutureWork

This paper first analyzes the objective function of mRMR. Then, for the case where the
objective function cannot guarantee the effectiveness of selected features, an idea of equal
interval division and ranking is proposed to process mutual information between the class
label and features, and the average value of mutual information between features. Ultimately,
EID–mRMR is proposed. To verify the performance, we apply EID–mRMR to three classi-
fiers, eight UCI datasets and four ASU datasets, and compare results with those from seven
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Table 17 Classification accuracy (%) of the optimal features selected by EID–mRMR and other algorithms
when using IB1

Datasets EID–mRMR Relief-F Fisher QPFS SPEC-CMI

Spambase 90.70 (50) 90.80 (49) 90.11 (45) 89.60 (39) 90.88 (45)

Synthetic_control 97.58 (49) 97.80 (50) 97.08 (50) 97.77 (42) 98.27 (44)

Mfeat_fou 83.15 (23) 83.61 (22) 83.46 (31) 83.70 (12) 84.05 (14)

Movement_libras 85.03 (37) 82.94 (50) 76.11 (50) 85.67 (31) 83.94 (49)

Musk 86.18 (50) 82.68 (50) 85.40 (50) 83.40 (50) 84.05 (33)

Mfeat_fac 96.48 (30) 94.19 (50) 95.21 (47) 96.57 (50) 94.92 (50)

Mfeat_pix 93.94 (50) 84.83 (50) 80.99 (50) 93.64 (50) 89.40 (50)

Semeion 86.40 (47) 77.96 (50) 73.28 (50) 80.92 (50) 79.34 (50)

ORL 93.03 (49) 83.27 (50) 86.83 (50) 90.67 (49) 78.58 (50)

COIL20 99.87 (46) 85.71 (50) 96.26 (50) 99.74 (50) 98.73 (50)

gisette 94.32 (50) 94.71 (49) 91.92 (45) 92.47 (50) 92.36 (50)

orlraws10P 97.20 (41) 81.60 (49) 87.20 (50) 77.50 (49) 75.60 (48)

Avg. 91.99 86.68 86.99 89.30 87.51

Bold indicates that the best results can be achieved

Table 18 Classification accuracy (%) of the optimal features selected by EID–mRMR and other algorithms
when using Naive Bayes

Datasets EID–mRMR Relief-F Fisher QPFS SPEC-CMI

Spambase 90.26 (12) 77.14 (49) 90.69 (29) 89.50 (8) 90.68 (29)

Synthetic_control 97.98 (31) 94.77 (50) 94.40 (50) 96.98 (38) 96.92 (45)

Mfeat_fou 79.34 (21) 79.53 (22) 78.93 (28) 79.37 (21) 79.13 (20)

Movement_libras 61.03 (37) 52.78 (49) 49.64 (50) 59.03 (42) 55.83 (50)

Musk 82.77 (50) 80.20 (50) 78.88 (36) 78.83 (50) 79.61 (50)

Mfeat_fac 95.48 (49) 88.63 (50) 87.82 (50) 94.77 (50) 89.02 (48)

Mfeat_pix 92.78 (50) 83.00 (50) 81.92 (50) 92.16 (50) 89.04 (50)

Semeion 83.97 (50) 75.14 (50) 71.80 (50) 79.86 (50) 75.75 (50)

ORL 88.05 (50) 62.65 (50) 55.08 (50) 75.63 (50) 55.77 (50)

COIL20 99.12 (50) 74.42 (50) 91.06 (50) 98.29 (49) 89.45 (50)

gisette 91.76 (50) 86.34 (29) 86.74 (45) 86.85 (50) 86.85 (50)

orlraws10P 98.20 (41) 72.10 (50) 76.70 (50) 75.40 (35) 61.60 (50)

Avg. 88.40 77.23 78.64 83.89 79.14

Bold indicates that the best results can be achieved

incremental MI-based algorithms and other four feature selection algorithms. Experimental
results validate that EID–mRMR can achieve better feature selection effectiveness in the
majority of datasets.

Considering that EID–mRMR currently only adopts mutual information, and it does not
utilize three-way interaction information or higher dimensional mutual information [38–46],
it is likely to degrade the performance due to missing some useful information. In the next
stage, we will investigate how to combine three-way interaction information with the idea of
equal interval division and ranking.
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