
Neural Processing Letters (2020) 51:1125–1144
https://doi.org/10.1007/s11063-019-10138-1

Neural Network-Based Hybrid Position/Force Tracking
Control for Robotic SystemsWithout Velocity Measurement

Jinzhu Peng1 · Shuai Ding1 · Zeqi Yang1 · Fangfang Zhang1

Published online: 24 October 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In this paper, a hybrid position/force tracking control scheme based on neural network
observer is proposed for robotic systemswith uncertain parameters and external disturbances.
First, an observer based on neural network is designed to estimate joint velocities. Then, a
neural network-based adaptive hybrid position/force controller is proposed based on the
observed joint velocities. By using strict positive real method and Lyapunov stability theory,
it is proved that all the signals of the closed-loop system are ultimately uniformly bounded.
Finally, the simulation tests on a two-link manipulator are conducted. The simulation results
show the feasibility and effectiveness of the control scheme.

Keywords Robotic system · Hybrid position/force control · State observer · Neural
network · Lyapunov stability

1 Introduction

With the development of technology, robot has been widely used in industrial fields, and is
gradually entering people’s daily life. However, due to external disturbance, friction, external
environment and nonlinear coupling, there are still many problems to be solved. For example,
when the joint velocities of themanipulator are unknown, it is difficult to find an excellent state
feedback control scheme to achieve the desired tracking goal. Inmany industrial applications,
due to the requirements of the task, the robot needs to contact with the environment, and the
position and contact force must be accurately controlled. Therefore, how to design an ideal
and effective control scheme is complex and difficult.

In recent years, many researchers have investigated various control methods to make the
robot motion more compliant. There are two main ways to achieve the compliant motion:
the hybrid position/force control and the impedance control. Raibert and Craig [1] proposed
a hybrid position/force control, which assigned the force and position in any direction of
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the workspace to each joint controller by Jacobian matrix. Lozano and Brogliato [2] pro-
posed an adaptive force/position control scheme for robot manipulators based on a particular
decomposition of the robot Jacobian and environment stiffness matrices. The schemes did
not require measurement of the joint acceleration or the first derivative of force. In order to
improve the force tracking control performance, many advanced methods have been further
integrated into the hybrid position/force control scheme, such as sliding mode control [3–6],
robust control [7–10], fuzzy control [11–14], adaptive neural network [15–19] and so on.
Karayiannidis [15] proposed a neuro-adaptive controller for the force and position trajectory
tracking of a robot in compliant contact with a flat surface under non-parametric uncertainties
existing in the dynamic and contact model. Peng et al. [16] proposed an adaptive Jacobian and
radial basis function (RBF) neural network-based position/force tracking impedance control
scheme to control robotic system with uncertainties and external disturbances. The schemes
mainly realized force feedback control of the manipulator through the impedance relation-
ship. Kumar [17] proposed an adaptive controlmethod based on neural network for the hybrid
control of force and position of the rigid-link manipulator. However, the convergence speed
of the system was relatively slow since the feedforward neural network (FFNN) was used
to approximate the nonlinear model of the manipulator. Ghajar [18] designed an intelligent
position/force hybrid controller to solve the contact friction between the end-effector and
the environment in the present of the system uncertainties, then the experimental tests of
constant force were also conducted. Rani [19] proposed a hybrid intelligent force/position
control scheme in the presence of external disturbances and model uncertainties. However,
the joint velocities of the robot were assumed to be measured directly and accurately.

To solve the trajectory control and the environmental contact constraints, Mills and Gold-
enberg [20] proposed a method to simultaneously control the contact force exerted by the
manipulator and the position of the end-effector on the contact surface. Yoshikawa and Sudou
[21] proposed a dynamic hybrid control method, and developed an on-line estimation algo-
rithm to estimate the local shape constrained surface measurement data, so that the dynamic
hybrid control method was more practical and effective. However, the above control meth-
ods were designed under the known environment. For the uncertain environment, Ravandi
et al. [22] combined fuzzy logic with traditional sliding mode control, a full approximation
force/position hybrid control was then designed, and the adaptive PI controller was used to
estimate the robust part.

In the above investigations, the joint position and velocity of the robot were usually
assumed to be measured directly and accurately. However, in practical, due to the cost and
noise disturbances, the effective observers were usually designed to replace the actual joint
velocities measurement to reduce the cost and noise disturbances [23–30]. By employing
neural network to compensate gravity and friction terms, Yu et al. [23] proposed a high-gain
observer and presented the direct relationship between observer gain and observer error. Su
et al. [24] proposed a simple nonlinear observer for a class of uncertain nonlinear multiple
input multiple output (MIMO) mechanical systems with first order differentiable dynamics.
Golea [25] proposed a fuzzy adaptive control method for multi-link robots with structural
uncertainties and unstructured uncertainties. The scheme did not need to derive the linear
equations of the robot dynamics. Chaudhary [27] proposed a hybrid fuzzy PD+I force-
plus-position controller based on velocity observer. In the above observers, neural network
control techniques were also widely used to approximate unknown nonlinear dynamics and
compensate for uncertainties in dynamicmodels. Yang et al. [29] proposed an adaptive neural
network force tracking impedance control scheme based on a nonlinear observer, the accuracy
of joint position and force trackingwere then improved by using adaptiveRBFneural network
to compensate the uncertainty of the system. Sun [31] proposed an observer-based adaptive
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controller based on neural network for trajectory tracking of robot with unknown dynamic
nonlinearity. The scheme could guarantee the final values of tracking error and observer error
as well as the bound of neural network weights. Abdollahi [32] proposed an observer based
on nonlinear parameter neural network for general multi-variable nonlinear systems. The
observer could be applied to systems with higher nonlinearity without any prior knowledge
of system dynamics.

In this paper, assume that only the positions and force of robotic manipulator can be
measured, while the velocities are assumed to be unknown, a neural network-based hybrid
position/force tracking control scheme is proposed to control the robotic system based on a
neural network-based velocity observer. The contributions of this manuscript can be stated
as follows,

(1) A neural network-based velocity observer is combined into position/force tracking con-
trol framework.

(2) A state observer based on RBF neural network is proposed to estimate the velocities of
the robotic system.

(3) Based on the observed joint velocities, a hybrid position/force control scheme based on
RBF neural network is proposed for controlling robotic system without velocity mea-
surement.

(4) By using the strict positive real method and Lyapunov stability theory, it is proved that
all signals of the closed-loop system composed of robotic system, velocity observer and
hybrid position/force controller are eventually uniformly bounded.

Finally, the simulation tests on the two-link manipulator are conducted, which show the
feasibility and effectiveness of the design scheme.

The rest of this paper is organized as follows. In Sect. 2, some necessary mathematical
knowledge is given, and the robot dynamic model and the RBF neural network are also
presented. In Sect. 3, the RBF neural network-based adaptive observer is designed and the
stability of the observer is also analyzed. In Sect. 4, based on the estimated joint velocities,
a neural network adaptive hybrid position/force control scheme is designed. Contrastive
simulation tests on a two-link manipulator are conducted in Sect. 5. Finally, the conclusion
is drawn in Sect. 6.

2 Preliminaries

In this paper, standard notations are used. Let � be the real number set, �n be the n-
dimensional vector space, �n×n be the n × n real matrix space. The norm of vector x ∈ �n

and that of matrix A ∈ �n×n are defined as ‖ x ‖= √
xTx and ‖ A ‖= tr(ATA), respec-

tively. If y is a scalar, then ‖ y ‖ denotes the absolute value. λmin(A) and λmax(A) are the
minimum and the maximum eigenvalue of matrix A, respectively. In×n is an n × n identity
matrix. sgn(·) is a standard sign function. Denote ‖ x ‖2A= xTAx ≥ λmin(A) ‖ x ‖2, A is a
positive symmetry matrix. From [33], we can obtain the definitions of strictly positive real
(SPR) and Kalman–Yakubovich–Popov (KYP) Lemma as follows.

Definition 1 A real rational transfer function matrix G(s) is SPR if: for some ε > 0, (i) no
element of G(s − ε) has a pole in Re[s − ε] > 0; (ii) G(s − ε) + GT(−(s − ε)) ≥ 0 in
Re[s − ε] > 0.

Lemma 1 Suppose that the matrix G(s) +GT(−s) has full rank in the complex plane,where
G(s) = C(s I − A)−1B is the real rational transfer function; A satisfies that det(s I − A) has
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only zeros in the open left-half plane; (A, B) is completely controllable. Then the positive
definite symmetric matrices Q and P satisfying,{

ATP + PA = −Q

PB = CT

exist if and only if G(s) is SPR.

2.1 Dynamical Model and Properties for Robot Manipulators

The general dynamic model of a rigid-link robot with n joints can be represented as follows,

M(q)q̈ + C(q, q̇)q̇ + G(q) + Fn(q̇) + τd = τ − τe (1)

where q, q̇, q̈ ∈ �n are the position, velocity and acceleration vectors, respectively. M(q) ∈
�n×n is the inertia matrix. C(q, q̇) ∈ �n×n is the vector of centripetal and Coriolis forces
term. G(q) ∈ �n is the gravity effects. Fn(q̇) ∈ �n denotes the friction effects. τd ∈ �n is
the vector of unknown bounded external disturbances. τ ∈ �n is the torque of robot input
vector. τe ∈ �n is the interaction torque between robot and environment.

The dynamicmodel of Eq. (1) has the following properties which are useful for subsequent
work.

Property 1 The inertia matrix M(q) is symmetric, positive definite and satisfies,

Mm‖ζ‖2 ≤ ζTM(q)ζ ≤ MM‖ζ‖2 ∀ζ ∈ �n

where Mm and MM are positive constants.

Property 2 The matrix Ṁ(q) − 2C(q, q̇) is skew-symmetric, i.e.,

ζT(Ṁ(q) − 2C(q, q̇))ζ = 0 ∀ζ ∈ �n

Assumption 1 The friction effects and external disturbances are bounded, i.e.,

‖Fn(q̇)‖ ≤ α + β‖q̇‖, ‖τd‖ ≤ d

where α, β and d are positive constants.

Considering the measurement error and environmental factors, it is difficult to obtain
the actual values of the physical parameters such as the length of the link and the mass of
the link. Therefore, in this paper, the matrices M(q), C(q, q̇), G(q) are represented by the
nominal parts M0(q), C0(q, q̇), G0(q) and the uncertain parts ΔM(q), ΔC(q, q̇), ΔG(q)

respectively, that is,

M(q) = M0(q) + ΔM(q)

C(q, q̇) = C0(q, q̇) + ΔC(q, q̇)

G(q) = G0(q) + ΔG(q)

Assumption 2 The uncertain parts of the robot parameters are bounded, that is

‖ΔM(q)‖ ≤ ψM , ‖ΔC(q, q̇)‖ ≤ ψC , ‖ΔG(q)‖ ≤ ψG

where ψM , ψC and ψG are positive constants, and ψM ≤ λmin(M0(q)).
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The relationship between the contact force Fe ∈ �m at the end-effector and the contact
torque τe ∈ �n in the joint space can be expressed as,

τe = JT(q)Fe (2)

where J (q) is the m × n (m ≤ n) dimensional Jacobian matrix.
In the Cartesian space, the position of the end-effector associated with the joint angle of

the robot joint can be obtained by the following kinematic equation,

X = L(q) (3)

where X ∈ �m is the position of the end-effector, L(q) is the kinematic function of robot.
Then,

Ẋ = J (q)q̇ (4)

Taking the first derivative of Eq. (4), we can obtain,

Ẍ = J (q)q̈ + J̇ (q)q̇ (5)

In the task space, when the robot is in contact with the environment, the contact force Fe
of the robot can be obtained from the deformation of the environment, that is,

Fe = Ke(X − Xe) (6)

where Ke is the environmental stiffness matrix, Xe is the coordinate of the contact point of
the end-effector when the contact force Fe is zero. In general, the stiffness matrix Ke may
be singular. Therefore, Fe can be decomposed as,

Fe =
[
F
F ′

]
=

[
K
K ′

]
(X − Xe) (7)

where F ∈ �s , K ∈ �s×m (s ≤ m) is a full-rank matrix, and the rows of K ′ ∈ �(m−s)×m

depend linearly on the rows of K . Therefore, only F can be controlled, and the element of
F ′ is a linear combination of F .

2.2 Radial Basis Function Neural Network

As a typical neural network, it has been proved that the radial basis function neural network
(RBFNN) can approximate any nonlinear function. The RBFNN with multiple input and
single output can be described as,

y(x) =
m∑
j=1

w jξ j (x) = WTξ(x) (8)

where W = [w1, ..., wm]T is the network weight vector and x is the network input vector.
ξ(x) = [ξ1(x), ..., ξm(x)]T is the basis function of the hidden layer that is usually defined as
follows,

ξ j (x) = e
− ‖x−c j ‖

δ2j j = 1, 2, ...,m (9)

where c j and δ j represent the center of hidden layer neuron and the width of the Gauss basis
function, respectively.
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3 Neural Network-Based Velocity Observer Design and Stability
Analysis

Let x1 = q and x2 = q̇, the robotic dynamic Eq. (1) can be rewritten as,{
ẋ1 = x2

ẋ2 = M−1(x1)(τ − τe − τd) − M−1(x1)[C(x1, x2)x2 + Fn(x2) + G(x1)]
(10)

Defining

Do(x1, x2) = K1x2 − M−1(x1)[C(x1, x2)x2 + Fn(x2) + G(x1)] (11)

where K1 ∈ �n×n is a diagonal constant positive definite matrix.
Considering Eqs. (10) and (11), the robotic dynamic Eq. (1) can be further written as,{

ẋ1 = x2

ẋ2 = −K1x2 + M−1(x1)(τ − τe − τd) + Do(x1, x2)
(12)

Using the RBFNN for approximation of unknown function Do(x1, x2), which can be
written as,

Do(x1, x2) = WT
o ξo(x1, x2) + εo(x1, x2) (13)

whereWo represents the ideal weight matrix of the RBFNN, ξo(x1, x2) is the basis functions
of the hidden layer, εo(x1, x2) denotes reconstruction error of RBFNN.

3.1 Neural Network-BasedVelocity Observer

First, the nonlinear velocity observer based on neural network is designed as follows,{ ˙̂x1 = x̂2
˙̂x2 = −K1 x̂2 + K2 x̃1 + M−1

0 (x1)(τ − τe) + ŴT
o ξo(x1, x̂2) + vo

(14)

where x̂1 and x̂2 are the estimated values of x1 and x2, respectively, K2 ∈ �n×n is a diagonal
constant positive definite matrix, and satisfies K2 > K1, Ŵo represents the estimation ofWo,
vo is a robust compensator.

Let us define the observation error as follows,

x̃1 = x1 − x̂1 x̃2 = x2 − x̂2 (15)

Then, according to Eqs. (14) and (15), the observation error of observer can be obtained
as, { ˙̃x1 = x̃2

˙̃x2 = ẋ2 + K1 x̂2 − K2 x̃1 − M−1
0 (x1)(τ − τe) − ŴT

o ξo(x1, x̂2) − vo
(16)

Furthermore, the observation error can be written as,⎧⎪⎪⎨
⎪⎪⎩

˙̃x1 = x̃2
˙̃x2 = −K1 x̃2 − K2 x̃1 + Do(x1, x2) − ŴT

o ξo(x1, x̂2)

− M−1(x1)τd − M−1(x1)ΔM(x1)M
−1
0 (x1)(τ − τe) − vo

(17)
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Since x2 can not be obtained directly from the measurement, according to Eq. (13), we
have,

Do(x1, x2) − ŴT
o ξo(x1, x̂2)

= WT
o ξo(x1, x2) + εo(x1, x2) − ŴT

o ξo(x1, x̂2)

= W̃T
o ξo(x1, x̂2) − WT

o [ξo(x1, x2) − ξo(x1, x̂2)] + εo(x1, x2)

= W̃T
o ξo(x1, x̂2) − WT

o ξ̃o(x1, x2, x̂2) + εo(x1, x2) (18)

where W̃o = Wo − Ŵo is the weight estimation error and ξ̃o(x1, x2, x̂2) = ξo(x1, x2) −
ξo(x1, x̂2) is the estimated error of the hidden layer.

Assumption 3 The estimation errors of weight and the basis functions are bounded and
satisfied,

‖WT
o ξ̃o(x1, x2, x̂2)‖ ≤ ψWoψξo , ‖εo(x1, x2)‖ ≤ ψεo

where ψWo , ψξo and ψεo are positive constants.

According to Eqs. (17) and (18), the observer estimation errors Eq. (16) can be written as{ ˙̃x1 = x̃2
˙̃x2 = −K1 x̃2 − K2 x̃1 +Uo

(19)

where

Uo = W̃T
o ξo(x1, x̂2) − M−1(x1)τd − M−1(x1)ΔM(x1)M

−1
0 (x1)(τ − τe)

− WT
o ξ̃o(x1, x2, x̂2) + εo(x1, x2) − vo (20)

Therefore, Eq. (19) can be further written as,{ ˙̃x = Aox̃ − BoUo

x̃1 = Cox̃
(21)

where

x̃ =
[
x̃1
x̃2

]
, Ao =

[
0n×n In×n
−K2 −K1

]
, Bo =

[
0n×n
In×n

]
, Co = [

In×n 0n×n
]

According to Definition 1, defining the output of observer estimation errors Eq. (21) as

x̃1 = Go(s)Uo (22)

where Go(s) = Co(s I − Ao)
−1Bo is stable. The matrices K1 and K2 can be selected to

satisfy that det(s I − Ao) has zeros only in the open left-half plane and Go(s) is SPR.
For the subsequent development, considering the following inequations as,

‖M−1(x1)‖ ≤ 1

λmin(M
−1
0 (x1)) − ψM

(23)

‖M−1(x1)ΔM(x1)‖ ≤ ψM

λmin(M
−1
0 (x1)) − ψM

(24)

‖ − M−1(x1)τd − WT
o ξ̃o(x1, x2, x̂2) + εo(x1, x2)‖

≤ d

λmin(M
−1
0 (x1)) − ψM

+ ψWoψξo + ψεo

� ρo (25)

where ρo is a positive constant.
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3.2 Stability Analysis

Theorem 1 Assume that the robotic dynamic is given as Eq. (1), Assumptions 1–3 are sat-
isfied, and the transfer function Go(s) is SPR. According to Lemma 1, there exists a matrix
P = PT > 0 such that the following matrix equality holds,{

AT
o P + PAo = −Q

PBo = CT
o

(26)

Then, the nonlinear velocity observer based on RBFNN designed as Eq. (14) is asymptot-
ically stable, provided that the updating laws for the weights of the RBFNN and the robust
compensator term are given as,

˙̂Wo = −Γ −1
Wo

ξo(x1, x̂2)x̃
T
1 (27)

vo = −
[

ψM‖M−1
0 (x1)(τ − τe)‖

λmin(M
−1
0 (x1)) − ψM

+ ρo

]
sgn(x̃1) (28)

where ΓWo is a positive definite matrix.

Proof Please refer to “Appendix A”. 
�

4 Neural Network-Based Hybrid Position/Force Tracking Controller
Based on Velocity Observer and Stability Analysis

In this section, a hybrid position/force controller based on RBFNN is designed by using the
measured joint positions and the observed joint velocities designed in the previous Sect. 3.
The following identities are used for subsequent work,

I = J+ J + J− (29)

I = K+K + K− (30)

where J+ and K+ are the pseudo inverse of J and K , respectively. J− and K− are projections
of J and K , respectively.

Using Eqs. (6) and (30), Ẋ can be written as,

Ẋ = K+K Ẋ + K− Ẋ = K+ Ḟ + K− Ẋ (31)

Then, the differentiation of Eq. (31) can be obtained as,

Ẍ = K+ F̈ + K− Ẍ (32)

Using Eqs. (4), (29) and (31), one can obtain,

q̇ = J+ J q̇ + J−q̇ = J+(K+ Ḟ + K− Ẋ) + J−q̇ (33)

Using Eqs. (5), (29) and (32), we have,

q̈ = J+ J q̈ + J−q̈ = J+(K+ F̈ + K− Ẍ − J̇ q̇) + J−q̈ (34)

Let F1 = F , F2 = Ḟ , X1 = X , X2 = Ẋ , x1 = q and x2 = q̇, and substituting Eqs. (33)
and (34) into Eq. (1), we can obtain,
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M0(x1)[J+(K+ Ḟ2 + K− Ẋ2 − J̇ x2) + J− ẋ2] + C0(x1, x2)[J+(K+F2 + K−X2)

+ J−x2] + G0(x1) + τd = τ − τe − Dc0(x1, x2, ẋ2) (35)

where Dc0(x1, x2, ẋ2) = ΔM(x1)ẋ2 + ΔC(x1, x2)x2 + ΔG(x1) + Fn(x2).

4.1 Neural Network-Based Hybrid Position/Force Tracking Controller Based on
Velocity Observer

Since X2 can not be measured directly, the observed velocities obtained by the observer in
Sect. 3 are used to the controller. Defining the tracking error, estimation of velocities error
and observation of velocity error as follows,

eF1 = F1 − Fd , eX1 = X1 − Xd , ex1 = x1 − xd (36)

êF2 = F̂2 − Ḟd , êX2 = X̂2 − Ẋd , êx2 = x̂2 − ẋd (37)

ẽF2 = F2 − F̂2, ẽX2 = X2 − X̂2, x̃2 = x2 − x̂2 (38)

where Fd , Xd , xd are the desired values of F1, X1, x1, respectively. F̂2, X̂2, x̂2 are the
estimated values of F2, X2, x2, respectively.

Defining the following filtered errors,

s = J+(K+EF + K−EX ) + J−ex2 (39)

ŝ = J+(K+ ÊF + K− ÊX ) + J−êx2 (40)

s̃ = J+(K+ẽF2 + K−ẽX2) + J− x̃2 (41)

where s, ŝ and s̃ are the filtered tracking error, filtered estimation error and filtered observation
error, respectively.

EF = ėF1 + K f peF1 , EX = ėX1 + KppeX1 (42)

ÊF = êF2 + K f peF1 , ÊX = êX2 + KppeX1 (43)

where K f p and Kpp are diagonal constant positive definite matrices.
Taking the first derivative of Eq. (40) andmultiplyingM0(x1) on both sides, we can obtain,

M0(x1) ˙̂s = M0(x1)[J+(K+ ˙̂EF + K− ˙̂EX ) + J− ˙̂ex2 + Zŝ]
= M0(x1){J+[K+(

˙̂EF − Ḟ2) +− (
˙̂EX − Ẋ2) + J̇ x2] + J−( ˙̂ex2 − ẋ2)

+ Zŝ} + M0(x1)[J+(K+ Ḟ2 + K− Ẋ2 − J̇ x2) + J− ẋ2] (44)

where Zŝ = J̇+(K+ ÊF + K− ÊX ) + J̇−êx2 .
Substituting Eq. (35) into Eq. (44), we can obtain,

M0(x1) ˙̂s = M0(x1){J+[K+(
˙̂EF − Ḟ2) + K−(

˙̂EX − Ẋ2) + J̇ x2] + J−( ˙̂ex2 − ẋ2)

+ Zŝ} + C0(x1, x2){J+[K+(ÊF − F2) + K−(ÊX − X2)] + J−(êx2
− x2)} − G0(x1) − C0(x1, x2)ŝ + τ − τe − τd − Dc0(x1, x2, ẋ2)

= M0(x1){J+[K+(K f pêF2 − F̈d) + K−(KppêX2 − Ẍd)] − J− ẍd}
+ C0(x1, x̂2){J+[K+(K f peF1 − Ḟd) + K−(KppeX1 − Ẋd)] − J− ẋd}
− G0(x1) + M0(x1){J+[K+( ˙̃eF2 − K f pẽF2) + K−( ˙̃eX2 − KppẽX2)

+ J̇ x2] + J− ˙̃x2 + Zŝ} − C̃0(x1, x2, x̂2){J+[K+(K f peF1 − Ḟd)
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+ K−(KppeX1 − Ẋd)] − J− ẋd} + C0(x1, x2){J+[K+ẽF2 + K−ẽX2 ]
+ J− x̃2} + Dc0(x1, x2, ẋ2) − C0(x1, x2)ŝ + τ − τe − τd (45)

where C̃0(x1, x2, x̂2) = C0(x1, x2) − C0(x1, x̂2).
Combining Eqs. (3), (4), (5) with (6), one can conclude that the force and position of the

end-effector can be obtained from the joint position information. Since ŝ is the function of
[x1, x̂2], defining

Dc1(x1, x̂2) = M0(x1){J+[K+(K f pêF2 − F̈d) + K−(KppêX2 − Ẍd)] − J− ẍd}
+ C0(x1, x̂2){J+[K+(K f peF1 − Ḟd) + K−(KppeX1 − Ẋd)]
− J− ẋd} − G0(x1) (46)

Dc2(x1, x2) = M0(x1){J+[K+( ˙̃eF2 − K f pẽF2) + K−( ˙̃eX2 − KppẽX2) + J̇ x2]
+ J− ˙̃x2 + Zŝ} − C̃0(x1, x2, x̂2){J+[K+(K f peF1 − Ḟd)

+ K−(KppeX1 − Ẋd)] − J− ẋd} + C0(x1, x2){J+[K+ẽF2
+ K−ẽX2 ] + J− x̃2} + Dc0(x1, x2, ẋ2) (47)

Therefore, the closed-loop error dynamics Eq. (45) can be rewritten as,

M0(x1) ˙̂s = Dc1(x1, x̂2) − Dc2(x1, x2) − C0(x1, x2)ŝ + τ − τe − τd (48)

Using the RBFNN for approximation of unknown function Dc2(x1, x2), which can be
written as,

Dc2(x1, x2) = WT
c ξc(x1, x2) + εc(x1, x2) (49)

whereWc represents the ideal weight matrix of the RBFNN, ξc(x1, x2) is the basis functions
of the hidden layer, εc(x1, x2) is the approximation error.

Furthermore,

M0(x1)ṡ = Dc1(x1, x̂2) − WT
c ξc(x1, x2) − C0(x1, x2)ŝ + τ − τe − εc(x1, x2) − τd (50)

Then, the control law based on neural network observer can be designed as follows,

τ = −Kd ŝ + τe − Dc1(x1, x̂2) + ŴT
c ξc(x1, x̂2) + vc (51)

where Kd is a diagonal constant positive definite matrix, vc is the robust compensator term.
Substituting Eq. (51) into Eq. (50) yields,

M0(x1) ˙̂s = −[Kd + C0(x1, x2)]ŝ − [WT
c ξc(x1, x2) − ŴT

c ξc(x1, x̂2)]
− εc(x1, x2) + vc − τd (52)

Since

WT
c ξc(x1, x2) − ŴT

c ξc(x1, x̂2)

= W̃T
c ξc(x1, x̂2) + WT

c [ξc(x1, x2) − ξc(x1, x̂2)]
= W̃T

c ξc(x1, x̂2) + WT
c ξ̃c(x1, x2, x̂2) (53)

where W̃c = Wc − Ŵc is the weight estimation error and ξ̃c(x1, x2, x̂2) = ξc(x1, x2) −
ξc(x1, x̂2) is the estimated error of the basis function.
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Assumption 4 The estimation errors of weight and the basis functions are bounded and
satisfied,

‖WT
c ξ̃c(x1, x2, x̂2)‖ ≤ ψWcψξc , ‖εc(x1, x2)‖ ≤ ψεc

where ψWc , ψξc and ψεc are positive constants.

Then, substituting Eq. (53) into Eq. (52), we can obtain,

M0(x1) ˙̂s = −[Kd + C0(x1, x2)]ŝ − W̃T
c ξc(x1, x̂2) + vc − εc(x1, x2)

− WT
c ξ̃c(x1, x2, x̂2) − τd (54)

Considering Assumptions 1 and 4, we have,

‖WT
c ξ̃c(x1, x2, x̂2) + εc(x1, x2) + τd‖ ≤ ψWcψξc + ψεc + d � ρc (55)

where ρc is a positive constant.

4.2 Stability Analysis

Theorem 2 Considering the robotic dynamic Eq. (1), suppose that Assumptions 1–4 are
satisfied, the control input torque τ is designed as Eq. (51), the adaptation laws for the
weights of RBFNN and the robust compensator term are given as,

˙̂Wc = −Γ −1
Wc

ξc(x1, x̂2)ŝ
T (56)

vc = ρcsgn(ŝ) (57)

where ΓWc is positive definite matrices.
Then, the RBFNN-based hybrid position/force controller designed as Eq. (51) is asymp-

totically stable, and the filtered estimation error ŝ and the weight estimation error W̃c are
bounded.

Proof Please refer to “Appendix B”. 
�
Using Eqs. (39), (40) and (41), we can obtain

s = ŝ + s̃ (58)

Due to physical constraints, X , F , J+, J−, K+, K− are all bounded. According to the
bounded J and K and Eqs. (4) and (6), one can conclude that s̃ defined by Eq. (38) is bounded
since the observer error x̃2 is bounded, which has been proven in Sect. 3. Therefore, s is also
bounded since ŝ is bounded that has been proved in “Appendix B”.

Remark 1 In this paper, only the revolute joints of the robotic system are considered, where
the joint positions and the lengths of the link are all bounded in the actual scene. Therefore,
from Eqs. (3), (6) and J (q) = ∂(X)/∂(q), one can obtain that X , F , J+, J− are all bounded.
Moreover, K+ and K− are both bounded since the environmental stiffness matrix K is also
generally bounded.

Since K , J are full rank matrices, multiplying Eq. (39) by K J , we can obtain,

K Js = EF (59)

123



1136 J. Peng et al.

Multiplying Eq. (39) by J , we can obtain,

Js = K−EX (60)

Since s and K− are bounded, one can obtain that EF and EX are bounded. It means that
the tracking error eF1 and eX1 , velocities error ėF1 and ėX1 are all bounded. Using Eqs. (39),
(59) and (60), since J− is bounded, the joint velocity ex2 is also bounded.

5 Simulation Examples

To verify the theoretical results, simulations are conducted on a two-link manipulator, and
its dynamic model is given as follows,[

M11 M12

M21 M22

] [
q̈1
q̈2

]
+

[
C11 C12

C21 C22

] [
q̇1
q̇2

]
+

[
G1

G2

]
+

[
Fn1
Fn2

]
+

[
τd1
τd2

]

=
[

τ1
τ2

]
− JTF (61)

where the inertia matrix,the vector of centripetal and coriolis forces term,the gravity effects
and friction effects are given as follows,

M11 = (m1 + m2)l
2
1 + m2l

2
2 + 2m2l1l2c2; M12 = m2l

2
2 + m2l1l2c2;

M21 = m2l
2
2 + m2l1l2c2; M22 = m2l

2
2;

C11 = −2m2l1l2q̇2s2; C12 = m2l1l2q̇2s2; C21 = m2l1l2q̇2s2; C22 = 0;
G1 = (m1 + m2)l1gc1 + m2l2gc12; G2 = m2l2gc12;

where m1 and m2 are the masses of link 1 and link 2,respectively; l1 and l2 are the lengths
of link 1 and link 2, respectively; si denotes sin(qi ), ci denotes cos(qi ), and ci j denotes
cos(qi + q j ), for i = 1, 2 and j = 1, 2. g is the acceleration of gravity.

5.1 Design Process

To summarize the analysis in Sects. 3 and 4, the step-by-step procedures of the neural
network-based hybrid position/force control for robotic systems based on neural network-
based observer are outlined as follows,

Step 1 Select the observer gains as,

K1 =
[
10 0
0 10

]
, K2 =

[
400 0
0 400

]

Step 2 The number of hidden-layer nodes of the RBFNN is chosen to be 20. The center
c j of the Gaussian function are 20 points in [− 5, 5] and width δ j are set to be 0.5. The
learning rate of weight is selected as ΓWo = 0.2I20, set ψM = 10−8 and ρo = 50, then the
RBFNN-based observer can be obtained from Theorem 1.

Step 3 Choosing the controller gains K pp = 25I2×2, K f p = 100I2×2, Kd = 200I2×2 in
Eqs. (43) and (51), respectively, the structure of RBFNN is chosen as Step 3. The learning
rate of weight is selected as ΓWc = 0.2I20, and set ρc = 50, then the RBFNN-based hybrid
position/force control for robotic systems based on neural network-based observer can be
obtained from Theorem 2.

123



Neural Network-Based Hybrid Position/Force Tracking Control… 1137

Remark 2 To ensure that the errors of observer and controller are converged to zero quickly,
the observer gains and controller gainswould be usually selected to be large enough.However,
it is not recommended to use very large gains, because this may lead to a stronger noise effect
andmay decrease the service life of the robotic system.Moreover, too large or too small value
of the gains will lead to the overshoot. Therefore, the gains should be adjusted carefully for
achieving suitable performances of the observer and controller.

5.2 Simulation Results

In this section, the proposed intelligent hybrid position/force control scheme based on
observer is applied to control a two-link robotic manipulator. The nominal parameters
of the robot used for simulation are m1 = 8 kg,m2 = 4 kg and l1 = 1.1m, l2 =
0.9m, g = 9.8m/s2, Fn = [5q̇1, 3q̇2]T, while actual parameters of robot are chosen as
m1 = 10 kg,m2 = 8 kg and l1 = l2 = 1m to introduce the parameters uncertainties. Choos-
ing the contact force F = k(X − Xxe) in the Xx direction where k = 2000N/m and Xxe =
1m, the desired trajectories Xyd = 1.5(1−e−t )m in Xy direction. For testing the robustness
of the proposed method, choosing external disturbances τd = [−3cos(5t), 3sin(5t)]T. The
desired time-varying force Fd is chosen as a non-smooth function, which is described as,

Fd =
{

4t + 20 − 8μ, 2μ ≤ t < 2μ + 1

− 4t + 28 + 8μ, 2μ + 1 ≤ t < 2μ + 2
(62)

where μ = 0, 1, 2, · · · .
The initial conditions are q(0) = [π/3,−2π/3]Trad, q̇(0) = [0, 0]Trad/s, and K+ =

1/k, K− = [0 0; 0 1], J+ = J−1, J− = 0. The initial conditions are q̂(0) =
[π/3,−2π/3]Trad, ˙̂q(0) = [0, 0]Trad/s. The total simulation time is 10s and the sampling
time is 0.001s.

In order to facilitate the comparison and analysis, we conduct two cases to verify the
performances of the proposed method, where Case 1 is used to test the performance of the
designed observer and Case 2 is used to test the performance of the proposed observer-based
controller.

Case 1 Under the condition of friction and external disturbance, based on high-gain
observer [24],the intelligent hybrid position/force controller (IHPFC) [19] and the neural-
network-based robust hybrid force/position controller (NNBRHFPC) [18] are used to
compare with the proposed hybrid position/force tracking controller (HPFTC) based on
neural network observer in this paper. Figure 1 shows the simulation results, where Fig. 1a
is the position tracking the end-effector of the robot manipulator in y-direction. Figure 1b
is the force tracking in x-direction. Fig. 1c is the position tracking error the end-effector in
y-direction. Figure 1d is the force tracking error in x-direction. Figure 1e, f are the position
estimation errors of joint 1 and joint 2, respectively. Figure 1g, h are the velocity estimation
errors of joint 1 and joint 2, respectively.

From the simulation results of Fig. 1 the stability of the robot system can be achieved under
the control of the above three observer-based hybrid position/force controllers. From Fig. 1c,
d, it is obvious that the steady-state error of HPFTC tracking in force and position subspace
is smaller than that of IHPFC and NNBRHFPC. At t = 1s, the tracking of NNBRHFPC
presents severe chattering phenomenon in force and position subspace, which is caused by
singularity. While there are no singularity in HPFTC and IHPFC, the system response of
HPFTC is significantly better than that of IHPFC. Moreover, due to the large gain of the
high-gain observer, the observed state has a certain range of chattering, which would affect
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Fig. 1 Simulation results using NNO-based HPFTC, HGO-based IHPFC and HGO-based NNBRHFPC
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Fig. 2 Simulation results using NNO-based HPFTC, NNO-based NNAHPFC and NNO-based NNBRHFPC
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the performance of the controller. From Fig. 1g, h, it can be seen that the designed observer
based on neural network can achieve smaller steady-state error in comparison to the high-gain
observer (HGO).

Case 2 Under the same conditions as Case 1, the neural network adaptive hybrid
position/force controller(NNAHPFC) [17] and the neural-network-based robust hybrid
force/position controller (NNBRHFPC) [18] are used to control the robotic system, but the
joint velocity of the manipulator is obtained by the observer designed in this paper. Figure 2
show the simulation results, where Fig. 2a is the position tracking the end-effector of the robot
manipulator in y-direction. Figure 2b is the force tracking in x-direction. Figure 2c is the
position tracking error the end-effector in y-direction. Figure 2d is the force tracking error in
x-direction. Figure 2e, f are the position estimation errors of joint 1 and joint 2, respectively.
Figure 2g, h are the velocity estimation errors of joint 1 and joint 2, respectively.

According to the simulation results of Fig. 2, we can conclude that the proposed HPFTC,
NNAHPFC and NNBRHFPC can achieve the stability of the system. From Fig. 2e–h, it can
be seen that the observer designed in this paper demonstrates excellent performance. And
the system regulation time of NNAHPFC is longer than that of the proposed HPFTC. This
is because the convergence speed of FFNN used in NNAHPFC was relatively slow, which
would affect the convergence rate and steady-state error of the system. The convergence
speed of RBFNN used in the proposed HPFTC is better than that of FFNN. Moreover,
from Fig. 2c,d, there is severe chattering of the force tracking and position tracking by
using NNAHPFC in the initial stage, which may degrade the tracking performances and
even cause the systems instability. Furthermore, the tracking control using NNBRHFPC also
presents severe chattering phenomenon at t = 1s because of the existence of singularity,
which reduces the control accuracy of the system. Instead, the response and steady state
performances of the proposed HPFTC are better than those of NNAHPFC and NNBRHFPC.
These results indicate that the proposed HPFTC can achieve the good convergence speed and
small steady-state error.

6 Conclusions

This paper proposed a hybrid position/force tracking control scheme based on neural network
observer for robotic systems in the presence of systemuncertainties and external disturbances.
For the unmeasurable joint velocities, a neural network-based observer was designed, and
the observation errors are proved to be ultimately uniformly bounded by using strict pos-
itive real method and Lyapunov stability theory. An adaptive neural network-based hybrid
position/force controller was then proposed based on the observed velocities to guarantee sta-
bility of closed-loop system and achieve a certain tracking performance. By using Lyapunov
stability theory, it was proved that all the signals of the closed-loop system were ultimately
uniformly bounded. Finally, the feasibility and effectiveness of the proposed neural network
observer-based position/force control scheme were demonstrated by the simulation on a
two-link manipulator.
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Appendix A: Proof of Theorem 1

Considering the following Lyapunov function,

Vo = 1

2
x̃TPx̃ + 1

2
W̃T

o ΓWo
˙̃Wo (63)

Taking the differentiation of Eq. (63) and substituting Eqs. (21) and (26), yields

V̇o = 1

2
˙̃xTPx̃ + 1

2
x̃TP ˙̃x + W̃T

o ΓWo
˙̃Wo

= 1

2
x̃T(AT

o P + PAo)x̃ + 1

2
UT
o B

T
o P x̃ + 1

2
x̃TPBoUo + W̃T

o ΓWo
˙̃Wo

= −1

2
x̃TQx̃ +UT

o B
T
o P x̃ + W̃T

o ΓWo
˙̃Wo (64)

According to Eq. (20), we can obtain,

UT
o B

T
o P x̃ + W̃T

o ΓWo
˙̃Wo

= [W̃T
o ξo(x1, x̂2) − M−1(x1)τd − M−1(x1)ΔM(x1)M

−1
0 (x1)(τ − τe)

+ εo(x1, x2) − vo − WT
o ξ̃o(x1, x2, x̂2)]TBT

o P x̃ + W̃T
o ΓWo

˙̃Wo

= [W̃T
o ξo(x1, x̂2)]TBT

o P x̃ + W̃T
o ΓWo

˙̃Wo + [−M−1(x1)ΔM(x1)M
−1
0 (x1)(τ − τe)

− M−1(x1)τd − WT
o ξ̃o(x1, x2, x̂2) + εo(x1, x2) − vo]TBT

o P x̃ (65)

Now, using the updating laws Eq. (27), the facts ˙̃W = − ˙̂W and BoPT x̃ = Cox̃ = x̃1, we
can obtain,

[W̃T
o ξo(x1, x̂2)]TBT

o P x̃ + W̃T
o ΓWo

˙̃Wo ≤ 0 (66)

According to inequality (25) and Eq. (28), we can obtain,

[−M−1(x1)ΔM(x1)M
−1
0 (x1)(τ − τe) − M−1(x1)τd − WT

o ξ̃o(x1, x2, x̂2)

+ εo(x1, x2) − vo]TBT
o P x̃ ≤ 0 (67)

Therefore,

UT
o B

T
o P x̃ + W̃o

T
ΓWo

˙̃Wo ≤ 0 (68)

Substituting Eq. (68) into Eq. (64) yields,

V̇o ≤ −1

2
x̃TQx̃ (69)

This implies Vo > 0 and V̇o ≤ 0, the stability of the observer can be then ensured so that x̃
and W̃o are bounded.
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Appendix B: Proof of Theorem 2

Considering the following Lyapunov function,

Vc = 1

2
ŝTM0(x1)ŝ + 1

2
W̃T

c ΓWc
˙̃Wc (70)

Taking the differentiation of Eq.(70) yields

V̇c = 1
2 ŝ

T Ṁ0(x1)ŝ + ŝTM0(x1) ˙̂s + W̃T
c ΓWc

˙̃Wc (71)

Substituting Eqs. (54) and (56) into Eq. (71), and considering the fact ˙̃Wc = − ˙̂Wc, we can
obtain,

V̇c = 1

2
ŝT Ṁ0(x1)ŝ + ŝT{−[Kd + C0(x1, x2)]ŝ − W̃T

c ξc(x1, x̂2) + vc

− WT
c ξ̃c(x1, x2, x̂2) − εc(x1, x2) − τd} + W̃T

c ξc(x1, x̂2)ŝ
T

= 1

2
ŝT[Ṁ0(x1) − 2C0(x1, x2)]ŝ − ŝTKd ŝ + ŝT{vc − εc(x1, x2)

− WT
c ξ̃c(x1, x2, x̂2) − τd} (72)

According to property 2, we have,

V̇c = −ŝTKd ŝ + ŝT[vc − εc(x1, x2) − WT
c ξ̃c(x1, x2, x̂2) − τd ] (73)

Substituting Eqs. (55) and (57) into Eq. (73), we can obtain,

V̇c ≤ −ŝTKd ŝ (74)

It can be concluded that the closed-loop system is asymptotically stable. Integrating Eq. (74)
from time t = 0 to t = T yields,∫ T

0
‖ ŝ ‖2 dt ≤ Vc(0) − Vc(T )

λmin(Kd)
(75)

Using Eq. (70), we can obtain,

Vc(0) = 1

2
ŝT(0)M0(x1)ŝ(0) + 1

2
W̃T

c (0)ΓWc
˙̃Wc(0) (76)

According to inequality (75), we have,

‖ ŝ ‖≤
√
ŝT(0)M0(x1)ŝ(0) + W̃T

c (0)ΓWc
˙̃Wc(0)

2λmin(Kd)
(77)

This implies that ŝ and W̃c are bounded. Since Wc is bounded, Ŵc is hence bounded.
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