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Abstract
Arguably the most recurring issue concerning network security is building an approach 
that is capable of detecting intrusions into network systems. This issue has been addressed 
in numerous works using various approaches, of which the most popular one is to con-
sider intrusions as anomalies with respect to the normal traffic in the network and classify 
network packets as either normal or abnormal. Improving the accuracy and efficiency of 
this classification is still an open problem to be solved. The study carried out in this arti-
cle is based on a new approach for intrusion detection that is mainly implemented using 
the Hybrid Artificial Bee Colony algorithm (ABC) and Monarch Butterfly optimization 
(MBO). This approach is implemented for preparing an artificial neural system (ANN) in 
order to increase the precision degree of classification for malicious and non-malicious 
traffic in systems. The suggestion taken into consideration was to place side-by-side nine 
other metaheuristic algorithms that are used to evaluate the proposed approach alongside 
the related works. In the beginning the system is prepared in such a way that it selects the 
suitable biases and weights utilizing a hybrid (ABC) and (MBO). Subsequently the artifi-
cial neural network is retrained by using the information gained from the ideal weights and 
biases which are obtained from the hybrid algorithm (HAM) to get the intrusion detec-
tion approach able to identify new attacks. Three types of intrusion detection evaluation 
datasets namely KDD Cup 99, ISCX 2012, and UNSW-NB15 were used to compare and 
evaluate the proposed technique against the other algorithms. The experiment clearly dem-
onstrated that the proposed technique provided significant enhancement compared to the 
other nine classification algorithms, and that it is more efficient with regards to network 
intrusion detection.
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1  Introduction

Today system assaults are inescapably pervasive and growing in number, which automati-
cally results in the unprecedented demand for systems which can detect intrusion. IDSs 
were created for the first time in 1980 by Anderson [1] and were later perfected by Den-
ning [2]. This system was either manifested as a device or a software tool and has been 
constantly improving since its inception. The main purpose of the intrusion detection sys-
tem (IDS) is to seek out and react to intrusive and harmful activities aimed at the sys-
tem’s resource and facilities. This can be achieved by paying close attention to the activ-
ities of the system and analyzing networks [3]. IDSs can be categorized into those that 
detect anomalies and those that detect misuse: what makes the two different is the means 
of detection. To detect misuse the IDS searches for the attack fingerprint in quite a large 
database that has all attack signatures stored. Conversely, to detect anomalies, the IDS can 
notice how the system behaves differently from normative behavior. The use of both meth-
ods creates another method known as the ‘hybrid technique’. Naturally, it produces better 
results than using a singular separate method [4].

Recently data mining and neural networks have occupied a crucial position in increasing 
the quality in the performance of IDSs. This has facilitated the process of categorizing the 
kinds of attacks needed to calculate the effectiveness of the IDS. The main purpose of the 
data mining procedure is to obtain simulating information from big knowledge warehouses 
and convert it into a data structure that can be understood. The most used methods in data 
mining are: information preprocessing, clustering, recognizing patterns and classifying 
the information. The most significant technique is the classification as it is of the utmost 
importance to determine accurately the aimed class for each situation in the information. 
The categorization implies finding the hidden pattern in information and can be considered 
a usual issue in data mining, and in learning how to operate a machine [5].

Quite a few suggestions regarding data mining have been utilized by creating systems to 
detect anomalies and some examples could be the artificial neural networks (ANNs), radial 
basis function (RBF) [6, 7], multi-layer perceptron (MLP) [8–10], fuzzy neural network 
(FNN) [9], self-organizing map (SOM) [11, 12], support vector machines (SVMs) [13–16] 
and SVM with modified versions [17, 18].

Recently biology and natural systems have been used by researchers, and innovative 
systems such as ‘Swarm Intelligence’ have been obtained thereby; these depicting the 
conduct of animals and insects [19]. This conduct includes activities such as finding food 
resources, creating their nests, and moving the nests from one place to another-this is then 
analyzed thoroughly (this also aided the improvement of the IDS performance). By being 
better able to trace the source of the attack it was possible to differentiate between mali-
cious and non-malicious behavior, and also to offer elucidation pertaining to some compli-
cated issues [20].

Artificial neural networks (ANNs) can be defined as the most significant parts of the 
Artificial intelligence. They are categorized as either Supervised Learning Neural Net-
works or Unsupervised Learning Neural Networks; the difference between the two being 
that the supervised network has to learn under supervision of another person, whereas 
the unsupervised kind of network does not need this (as indicated by its name). To be 
successful in its activity the system depends upon the following factors [21]: the archi-
tecture of the system, the training algorithm, and the features utilized in the training. 
These factors make designing an optimal neural network difficult [22]. Furthermore, 
each of these factors should be chosen correctly so that the training algorithm does not 
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fall into a local minimum. In [23] there have been reports on methods based on the heu-
ristic algorithms in order to obtain a good ANNs model.

Artificial Neural Networks have certain qualities that permit them to resolve a range 
of issues such as pattern classification, regression, and forecasting. Some of the most 
notable traits are the ability to learn from examples, adaptability to generalize and to be 
able to solve problems such as the classification of patterns, and to approximate func-
tions and optimization [24, 25].

ANNs have been created in different kinds of multilayer Neural Networks. The 
majority of applications utilize a feed-forward type of NNs that implies the use of the 
typical back propagation (BP) learning method. This type of training usually concludes 
by utilizing the back-propagation (BP) gradient descent (GD) method. When using this 
algorithm some issues may be confronted as the algorithm is based on the gradient. 
One of the most notable problems is the propensity to get stuck in a local minimum as a 
result of the quite-low speed of convergence [26, 27].

Moreover, the BP method has to be able to determine a few essential learning param-
eters such as the rate of learning, the momentum, and the prearranged structure. The BP 
method has a prefixed NNs structure, meaning it trains only its weights in its structure. 
As a result there is no solution as for how to design a nearly perfect NNs arrangement 
for an application. Global optimum search methods are capable of avoiding local min-
ima and are usually utilized to regulate weights of NNs, such as the artificial bee colony 
(ABC) [21, 28], particle swarm optimization (PSO) [29, 30], evolutionary algorithms 
(EA), simulated annealing (SA) and ant colony optimization (ACO), meaning they can 
also be used in order to dispose of the problems in standard and typical algorithms.

This research focuses on dealing with the fixed structure of the ANN. ANNs are con-
sidered some of the most widely used machine-learning techniques. Many complex and 
practical problems have been successfully solved, which are conversely difficult to solve 
through other methods. Despite this, the general architecture of ANNs still suffers from 
the local optima issue and low convergence speed [31–33]. There are three major draw-
backs to an ANN-based intrusion detection system.

•	 The error function of an ANN is a multimodal function that is frequently trapped 
into local minima.

•	 This type of ANN-based IDS demonstrates a slow convergence.
•	 Over-fitting usually creates an overly complex model.

To overcome the shortcomings attributed to the BP training algorithm and avoid 
falling into a local minimum, we use our previously proposed HAM algorithm to train 
ANN [34, 35]. Our new proposal may provide an effective and suitable alternative solu-
tion for the problem of Multilayer Perceptron Neural Network training algorithm and 
the global and local optima in a multimodal search space. It may be evident from our 
previous work that HAM algorithm could guarantee to find a global optimal solution, 
whereas the BP algorithm could only guarantee finding the initial point at the end of the 
slope of the search space (local optimum).

In this article we propose the new HAMMLP technique which improves the intrusion 
detection rate as well as reduces the false alarm rate. The main idea of the new approach 
is to solve the problem of the training algorithm in ANN to identify new attacks of 
IDS, and to evaluate three IDS datasets, two of which are new, namely UNSW-NB15 
and ISCX 2012, as well the antique dataset KDD Cup 99. In this work we demonstrate 
that we managed to solve the dataset-related problems whilst managing to enhance the 
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detection of intrusions. The main contributions in this research are summarized, as 
follows:

1.	 Building a new hybrid HAM algorithm that optimizes the MLP neural network and 
achieves its effectiveness in addressing the shortcomings of artificial neural networks 
in the field of network intrusion detection.

2.	 Assessing the performance, reliability and validity of the new technique in detecting 
a new attack by using two new datasets (ISCX 2012 and UNSW-NB15) and compare 
them with the (KDD Cup 99) dataset.

3.	 Comparing our new proposed approach with other evolutionary and swarm intelligence 
algorithms, using the four of IDS datasets to confirm the applicability of our approach.

4.	 Comparing our work with other related works of literature by using the datasets to 
evaluate the performance of our proposal.

The advantages of our proposal as following:

•	 A high accuracy rate in detecting the attacks on the network.
•	 The possibility of detecting an unknown attack.
•	 Reduce the false alarm rate.

Section 2 reviews the materials and methods which include: describing the methodol-
ogy then outlining the mathematical overview of the neural network and HAM algorithm; 
then discussing how the HAM algorithm could be deployed to train the MLP. Section 3 
describes the experimental setup which includes: the validation of the IDS, algorithms and 
parameters, and performance measuring. Section 4 presents the experimental results. Sec-
tion 5 summarizes the conclusions and provides directions for future research.

2 � Materials and Methods

2.1 � Hybrid Algorithm Based on Artificial Bee Colony and Monarch Butterfly 
Optimization

The most important factors in metaheuristic algorithms are the exploitation and explora-
tion search mechanisms. A good metaheuristic algorithm has the ability to strike a balance 
between these two mechanisms, thereby enhancing the solving of low and high-dimen-
sional optimization problems. The exploitation mechanism is based on the present knowl-
edge which is to seek better solutions; while the exploration mechanism is based on fully 
searching the problem space for an optimal solution [34, 35].

In general by analyzing the standard MBO algorithm we notice that it has the abil-
ity to explore the search space very effectively; it also has the ability to find the global 
optimum in a fast speed; however, it has a poor ability to exploit the local search space 
due to the occasional use of Levy flight by the updating operators, which leads to large 
steps (or moves). On the other side we notice that the ABC algorithm has the ability to 
explore the search space relatively well, but has better ability in finding local optima 
through the two phases of employee and onlooker bees, which are considered local 
search processes. ABC is mostly based on selecting the solutions that improve the local 
search. There is one fundamental difference between those two phases: an onlooker 
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bee relies on the probability value of the solution in order to select it where it chooses 
solutions that have high fitness value, while solutions with low fitness values are used 
to produce the trial solutions. Global search, on the other hand, is implemented in the 
ABC algorithm by the scout phase, resulting in the reducing of the convergence speed 
during the search process.

As presented in our previous work [34, 35], the main idea of the HAM algorithm is 
based on two improvements; first, to modify the butterfly adjusting operator in the MBO 
algorithm in order to improve the exploitation versus exploration balance, by increas-
ing the search diversity and counterbalancing the shortfall of ABC algorithm in global 
search efficacy. The modified version of the operator is shown in algorithm 1. The sec-
ond improvement is to integrate the modified butterfly adjusting operator from MBO 
in place of the first phase in the standard ABC algorithm (the employee phase). The 
improved operator is named as “employee bee adjusting operator”.

The proposed Hybrid ABC and MBO (HAM) algorithm is shown in Fig. 1. This algo-
rithm includes four phases: Initialization, Employee bee adjusting phase, Onlooker bee 
phase and Scout bee phase (the onlooker and scout phases are the same phases inher-
ited from the standard ABC algorithm). Thus, the new HAM algorithm is essentially 
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an integration of the effective local search phase (onlooker bee) and two global search 
phases (Employee bee adjusting and Scout bee) for effective global optimization.

In the Initialization phase we need to define all the variables that would be defined in the 
standard ABC algorithm and assign them their respective suitable values. The HAM algo-
rithm adopts all parameters from the original ABC algorithm then adds three new control 
parameters: limit1, limit2 and the maximum walk step parameter; these three parameters are 
used in the employee bee adjusting phase.

In the employee bee adjusting phase, each employee bee is assigned to its food source 
and in turn generates a new one either by using Levy flight or through mutation operators, 
which are based on the two control parameters (limit1 and limit2). These parameters are used 
to fine-tune the exploitation versus exportation by improving the global search diversity. The 
employee bee adjusting phase is very simple and is used to update all solutions in the bee 
population, where each solution is a D-dimensional vector.

The first step in this phase is to calculate a walk step “ dx ” for the ith bee using the levy 
flight in Eq. 1, and calculate a weighting factor “ ∝”using Eq. 2, where Smax represents the max 
walk step that a bee individual can move in one step, and t is the current generation. Then, for 
each element j of the D dimensions, if (rand ≥ limit1), the algorithm uses Eq. 4 to update the 
solution element:

(1)dxk = levy(xt
j
)

(2)∝= Smax∕t
2

(3)xt+1
i,j

= xt+1
i,j

+ ∝ ×(dxk − 0.5)

Fig. 1   Flowchart of the HAM 
algorithm Start

Initialization

Employee bee adjusting phase

Onlooker bee phase

Scout bee phase

End

Output the best solution

Is termination
condition met?

N

Y
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where xt+1
i,j

 is the jth element of solution xi at generation t + 1, which represents the location 
of the solution i, while xt

best,j
 is the jth element of xbest at generation t, which represents the 

best location among the food sources so far with respect to the ith bee. In contrast, if (rand 
<. limit1) then another set of updates are performed. First, a random food source (equiva-
lent to a random solution or bee) is selected from the current population using Eq. 5. Then, 
depending on whether a randomly generated value is smaller than limit2, Eq. 6 is used to 
update the solution elements, as follows:

where xt+1
i,j

 is the jth element of solution xi at generation t + 1, which represents the loca-
tion of the solution i,xt

best,j
 is the jth element of xbest at generation t, which represents the 

best location among the food sources so far, xt
worst,j

 is the jth element of xworst at genera-
tion t, which represents the worst location among the food sources so far, and xt

r,j
 is the jth 

element of xr at generation t, which represents the location of the solution r calculated by 
Eq. 5. The t in Eq. 6 is the current generation number.

On the other hand, if the randomly generated value was bigger than limit2, the solu-
tion elements are updated by Eq. 7, where xt+1

i,j
 is the jth element of solution xi at genera-

tion t + 1, which represents the location of the solution i, xt
best,j

 is the jth element of xbest at 
generation t, which represents the best location among the food sources so far, xt

worst,j
 is the 

jth element of xworst at generation t, which represents the worst location among the food 
sources so far, while xt

r,j
 is the jth element of xr at generation t, which represents the loca-

tion of the solution r calculated by Eq. 17.

The levy flight step from the MBO algorithm is adopted here with a smaller probability 
of execution to reduce its impact on the exploitation process. Assuming the execution path 
passed the test of limit1 and limit2 control parameters, yet another random check against 
the BAR parameter is performed, right after the update by Eq. 7 to further change the value 
of xt+1

i,j
 occasionally by the amount ∝ ×

(
dxk − 0.5

)
, as per Eq. 3.

Finally, the employee bee adjusting phase tests the boundary for the new solution to 
make sure the newly generated solution is within the allowed boundaries for the optimi-
zation problem at hand. It then evaluates the fitness value of the new solution in order to 
apply a ‘greedy’ selection process between the new and the best solutions in order to select 
the better one. If the solution does not improve then a trial counter is increased by one. As 
for the onlooker-bee and scout phases, the algorithm adopts their implementation from the 
original ABC algorithm without any change.

2.2 � The HAM Adaptation Process

The adapting process is an important step for the optimization of the ANN by using evo-
lutionary and swarm intelligence for the training of ANNS. In all evolutionary-based and 
swarm-based methods, the training process translates into using suitable MLP weights 

(4)xt+1
i,j

= xt
best,j

;

(5)r = round((SN ∗ rand) + 0.5)

(6)xt+1
i,j

= xt
r,j
+ 0.5 ∗ rand ∗ (xt

worst,j
− xt

r2,j
− xt

best,j
)

(7)xt+1
i,j

= xt
r,j
+ 0.5 ∗ rand ∗

(
xt
best,j

− xt
r3,j

− xt
worst,j

)
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representation, fitness function and termination condition(s). Consequently, in order to adapt 
the HAM algorithm as an MLP training method these three issues must be adapted to suit 
the enforcement of the HAM algorithm, and to satisfy the requirements assigned by the MLP 
training process in general. This new training method is called the HAMMLP algorithm.

The methodology of using a metaheuristic algorithm for training neural networks is 
based on three methods. Firstly, algorithms are used to find a combination of weights and 
biases that provide a minimum of error for any type of neural network, and to reduce the 
MSE (Mean Square Error) which represents the cost function of the ANN. Secondly, the 
algorithms are utilized to find a suitable structure for any type of neural network in a par-
ticular problem. Lastly, the metaheuristic algorithm is used to tune the parameters of a 
gradient-based learning algorithm, such as the learning rate and momentum. In the first 
method the structure of neural network model (MLP) does not change during the learn-
ing process. The training algorithm seeks after finding the suitable values for all connec-
tion weights and biases for minimizing the overall error of the MLP. While in the second 
method the architecture of the MLP model varies. The training algorithm determines the 
best architecture of the MLP model for solving a specific problem. Changing the architec-
ture can be accomplished by manipulating the connections between neurons, the number of 
hidden layers, and the number of hidden nodes in each layer.

For example, Yu et  al. [36] used the PSO algorithm for defining the architecture of 
the MLP model to solve two real problems. And, Leung et al. used the EA algorithm to 
tune the parameters of an FNN by applying the last method. There are some studies that 
employed a combination of methods simultaneously: for instance, Mizuta et al. [37] and 
Leung et al. [38] used the genetic algorithm and the improved genetic algorithm to define 
the architecture of neural network model FNN. In this work, the HAM algorithm is applied 
to an MLP using the first method. To design a HAM trainer for MLPs, the following main 
stages should be completed:

2.2.1 � Representing the Weights and Biases for MLP Using HAMMLP

This section shows the details of the HAMMLP method in order to improve the weights and 
biases of MLP model; the aim being to reduce overall error. Moreover, any MLP model will 
rely on the number of hidden layers, the number of nodes in each hidden layer, which in turn 
relate to weights, while the biases relate to each node in hidden and output layers.

In fact, the methods of representing weights and biases can be one of these three meth-
ods: matrix, binary, and vector. This was presented in detail in our previous work [39, 40]. 
In matrix encoding every solution is encoded as a matrix. To train the MLP, each solution 
is representative of all the weights and biases. While in the binary representation solu-
tions are encoded as the strings of binary bits. And in vector representation every agent is 
encoded as a vector. Each of these three methods has its own advantages and disadvantages 
that can be useful in a particular application [41].

In the vector method the encoding process is much easier than the decoding process. It 
is often used for simple neural network models. In the matrix method the decoding process 
is easy but the encoding is difficult for neural network models with complex architectures; 
it is very appropriate for learning algorithms from generalized neural network toolboxes. 
But naturally the binary method needs to represent variables in the binary form. In this case 
the length of each solution will be increased when the architecture starts to become more 
complex; this leads to the process of decoding and encoding also becoming very intricate.
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This study does not use any generic toolboxes because the run time is much less for our 
hand-coded MLPs. As an example of this encoding process the final vector of the MLP is 
shown in Fig. 2.

This study proposes a new algorithm (HAMMLP) for training the MLPs. In the 
HAMMLP solutions are represented by two vectors:

1.	 The first vector represents the solution structure which contains the number of inputs, 
number of hidden layers, and the number of nodes in each hidden layer in the MLP 
Model.

2.	 The second vector does represent the weights and biases of the solution, which cor-
responds to the weights and biases in the MLP model. For the purpose of this study the 
structure is fixed before training MLPs. The objective is to reach a training algorithm 
that excels in finding suitable values for all connection weights and biases that ultimately 
contribute to minimizing the MLPs overall error.

Each of these two vectors have different representations; the cell of the structure vec-
tor contains 0 or 1, while the cell of the vector which represents the weights and biases of 
the solution contains a real number in the range of [0, 1]. The solution representation in 
HAMMLP is provided in Fig. 2. The solution structure vector divides into three groups; 
the first group contains a set of cells representing the number of nodes in the input layer, 
which is considered a feature of the datasets. The length of the weights and biases solution 
vector is based on the number of the weights, plus the number of biases in the neural net-
work model; it is deduced by Eq. 8. The number of weights and biases is dependent on the 
number of hidden layers and the number of nodes in each hidden layer participating in the 
solution structure; they are calculated by Eqs. 9 and 10.

where W represents the number of weights, B represents the number of biases; I denotes 
the number of nodes in the input layer, N represents the number of nodes in each hidden 
layer, H represents the number of hidden layers, and O denotes the number of nodes in the 
output layer.

(8)Length of weights and biases solution vector = W + B

(9)W = (I × N) + ((N × N) × (H − 1)) + (N × O)

(10)B = H × N + O

Fig. 2   Solution representation of HAMMLP algorithm
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In the case of classification (as the feature selection is vital in the classification process) 
several cells are added in the solution structure for the selection of inputs for the neural 
network as a feature selection part. Undoubtedly, the number of cells in the features part 
is equal to the number of the conditional features in the dataset. If one is an element of the 
features part, then the particular feature from the conditional feature set is contained in the 
subset. If zero, the subset does not contain the specified feature. All the experiments in this 
study employ the complete set of features in the dataset.

2.2.2 � Adapting the HAMMLP Quality Measure (Fitness Function)

The HAMMLP algorithm can decide on the success of the improvised solution. In fact it 
uses a HAMMLP quality measure, i.e. fitness function. The HAM algorithm is very similar 
to other optimization algorithms in that it is translated to maximize or minimize a meas-
ure obtained by the above-mentioned fitness function. The goal of such a fitness function 
should be similar to its functionality in optimization algorithms, besides that it is similar to 
those training methods in [41, 42]; they reduce the overall error. Thus, such a fitness func-
tion could utilize any of the MLPs error calculation formulas, or derive a new fitness func-
tion based on these formulas where the goal is to minimize this error.

In this work, MSE is used as the principal quality measure of the proposed HAM train-
ing algorithm. The training goal is to minimize the MSE until the maximum number of 
iterations has been reached.

The MSE is one of the most commonly used fitness functions; it is chosen as the main 
quality measure for the proposed MLP training algorithm (as this work is one that con-
siders classification problems). The MSE, as the main fitness function, is the measure by 
which the food source vectors are to be sorted on from best to worst, with the best being 
the solution with the least MSE value. Thus in order to find an optimal solution, i.e. MLPs 
with acceptable weights & biases vector, its MSE value must be smaller than the worst one 
in the current food source memory vectors (FSMV). The fitness function is responsible for 
evaluating the quality of the solution in successive iterations. With the use of the fitness 
function a solution is picked that optimizes the quality of the solution.

In order to compute MSE, forward pass calculations must be performed first on the 
given MLP structure. This is a repetitive process that involves loading the entire training 
data set. This would require a process by which the network weights & bases (represented 
by the solution vector) are to be loaded into the MLP structure to implement such a com-
putation. The MLP structure must be therefore flexible to allow loading different weight 
& bias vectors during the HAMMLP algorithm initialization and improvisation processes-
such forward pass computation process is shown in Fig. 3. 

The objective in training an MLP is to reach the highest classification, approximation, 
or prediction accuracy for both training and testing samples. A common metric for the 
evaluation of an MLP is the mean square error (MSE). In this work we apply the same 
method in [43–45] in order to calculate the fitness function. From Fig. 2(a) we note that 
MLPs with three layers contain one input, one hidden, and one output layer. The number of 
input nodes is equal to (n), the number of hidden nodes is equal to (h), and the number of 
output nodes is (m). The output of the ith hidden node is calculated as follows:

(11)f
(
Sj
)
= 1∕

(
1 + exp

(
−

(
n∑
i=1

Wij.Xi − �j

)))
, j = 1, 2,… , h
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where Sj =
n∑
i=1

Wij.Xi − �j , n is the number of the input nodes, Wij is the connection weight 

from the ith node in the input layer to the jth node in the hidden layer,�j is the bias (thresh-
old) of the jth hidden node, and Xi is the ith input. After calculating outputs of the hidden 
nodes, the final output can be defined as follows:

where Wkj is the connection weight from the jth hidden node to the kth output node and �k 
is the bias (threshold) of the kth output node. Finally, the learning error E (fitness function) 
is calculated as follows:

where q is the number of training samples, dk
i
 is the desired output of the jth input unit 

when the kth training sample is used, and Ok
i
 is the actual output of the ith input unit when 

the kth training sample is used. Therefore, the fitness function of the ith training sample 
can be defined as follows:

(12)Ok =

n∑
i=1

Wkj.f
(
Sj
)
− �k, k = 1, 2,… ,m,

(13)Ek =

m∑
i=1

(
O

k
i
− dk

i

)2

(14)E =

q∑
k=1

Ek

q

(15)Fitness
(
xi
)
= E

(
xi
)

Fig. 3   The HAMMLP- IDS framework
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2.2.3 � Training of MLP with the HAM algorithm

Figure 3 shows the flowchart of a generic HAM based MLP training approach for intrusion 
detection that utilizes the HAM algorithm introduced above. It illustrates the framework 
for our proposed HAMMLP-IDS and shows that it can be dissected into four main mod-
ules: parameter-initialization stage, data-input stage, neural network-training stage, and the 
HAM module.

The first stage of our proposal framework is the initialization of the parameters of the 
HAM algorithm and neural network module. The HAM algorithm has many variables, 
including population size (SN) representing the number of food sources or solutions in the 
population (Solution Number). Every solution in SN (i = 1, 2…, N) represents a D-dimen-
sional vector, N is the number of decision variables. The ranges’ lower and upper limits are 
specified by two vectors xL and xU, both having the same length SN. The limit is used to 
diversify the search, to determine the number of allowable iterations for which each non-
improved solution is to be abandoned, and additionally there is three control parameters: 
limit1, limit2 which are used to adjust the mutation operators in the HAM algorithm and 
the maximum walk step parameter Smax. The Food Source Memory (FSM) is a matrix of 
the best solution vectors achieved so far. It is an augmented matrix of size SN × N com-
prised in each row as in Eq.  (16). The FSM size is set prior to the running of the algo-
rithm. Each Source vector is also associated with a source quality value (fitness) based on 
an objective function f(x). The algorithm in Fig. 1 is similar to the optimization algorithm 
where it begins by initializing the HAM with random food source memory vectors repre-
senting candidate MLP weight vector values.

On the other hand, the number of neurons in the layers of the neural network is deter-
mined by knowing the number of features for each dataset. An example of this: if the con-
struction of a neural network based on the KDD Cup 99 dataset which has 41 of features, 
the number of neurons in the input layer is equal to 41, which also refer to the number of 
food sources or solutions vector in the HAM algorithm. The number of neurons in the hid-
den layer is calculated by using Kolmogorov’s Theorem: one hidden layer and 2 N + 1, N 
representing the number of neurons in the input layer. The neurons in the output layer are 
equal to 1 for each IDS dataset used in this work, as all datasets used in our work are repre-
sented by binary data [0 or 1].

The second stage is an important one as it uses the data input module. This module is 
based on processing, filtering, and extracting the features from the raw data. One of the 
most important steps in this module is to divide the raw data into a training and testing set, 
which will then be used in the next neuron module as input data. Before we send the data 
into NN module, we must map the incoming inputs to turn into zero to one [0, 1] to make 
this data usable for the next module.

In the third stage, the ANN module begins to function after receiving training attributes 
for the input data from the previous module. This module is designed as a multilayer per-
ceptron (MLP) which is a type of a feed-forward neural network. An MLP consists of three 

(16)FSM =

⎡⎢⎢⎢⎢⎣

x11
x21

x12
x22

⋯ x1N
⋯ x2N

x31
⋯

x32
⋯

⋯

⋱
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⋯

xSN1 xSN2 ⋯ xSNN

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
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layers of neurons with an architecture containing one input layer, one hidden layer, and one 
output layer. The ANN module receives the outcoming data from the data input module 
which are considered as training pattern data (training dataset) for training the ANN. The 
training process in this module is implemented via sending the weights and biases to the 
HAM module.

The fourth stage in our proposal framework is using the HAM algorithm as a standalone 
system (black box) for generating new solutions which in turn are based on updated syn-
aptic weights and biases (after each iteration). In each iteration of the training process the 
HAM module sends its individual solutions as a set of weights and biases into an ANN 
module; here the ANN module plays an important role by valuing these individual solu-
tions based on a training data set and then returns their fitness values. The fitness func-
tion selected in this work to compute the fitness is the mean squared error (MSE), as it 
is a known fitness function and therefore good for use on the proposed HAM training 
algorithm.

The weights and biases are obtained by minimizing the error rate value of the MSE. The 
training process stops when the iterations reach the maximum number of iterations. After-
ward the knowledge base (weights and biases) is updated. In the final step and after finish-
ing training with the training dataset, we get the optimal solution from the HAM module. 
We use the optimal solution with the testing inputs which are fed from the testing dataset 
into the trained ANN module to predict the output. The testing process of the ANN can be 
seen as testing the predicted output with the closest match to any of the target classes.

Integrating various parts of the adaptation process that were presented in the previous 
section would lead to the HAM-based MLP training algorithm provided as a flow step in 
Fig.  4. The region of the flowchart enclosed by the dashed rectangle is the food source 
memory FSM initialization phase that essentially involves generating random weight and 
bias vectors from the allowable range of [Lower, Upper] and computing the relative MSE 
values for each by carrying out the forward pass computations.

The forward pass ingredients represented by the shaded side-framed rectangle is the 
pre-defined process provided previously in Fig.  4. This is also needed during the HAM 
training process to measure the quality (fitness function) of the newly improvised weight 
and bias vector.

3 � Experimental Framework

The implementation and evaluation of the proposed framework was conducted on a Laptop 
with Core i5 2.4 GHz CPU and 8 GB RAM, and using a MATLAB R2014a running on a 
Windows 7. To evaluate the performance of HAMMLP-IDS framework we implemented 
three experiments, each using a different dataset for the offline evaluation of the IDSs, 
namely KDD Cup 99, ISCX 2012, and UNSW-NB15, against nine of the metaheuris-
tic algorithms which have been adapted with ANNs; they are similar to our proposed 
framework.

3.1 � Datasets Used for Experiments

There are many sets of data employed in assessing intrusion detection systems. One of 
the most noticeably antiquated is KDD Cup 99; although it is still used in much research 
hitherto. There are also a lot of datasets that have emerged in recent years in order to 
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evaluate IDSs, such as the ISCX 2012 which was developed in 2012, and UNSW-NB15 
which was developed in 2015.
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Fig. 4   The HAMMLP training algorithm flowchart
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3.1.1 � KDD Cup 99 Dataset

The most popular and widely used dataset regarding the detection of intruders and anom-
alies is the aforementioned “KDD Cup 1999 Dataset” [46, 47], which was created and 
developed in 1999 by Lee and Stolfo [48]. It was built on the information obtained from 
MIT Lincoln Laboratory, under Defence Advanced Research Projects Agency (DARPA 
ITO) and Air Force Research Laboratory (AFRL/SNHS) sponsorship. It is made out of a 
set of records that can be approximated at 5 million. It represents TCP/IP packet connec-
tion, each packet connection contains 41 attributes (features) out of which 38 are numeric 
and 3 are symbolic. The NSL-KDD dataset is divided into training and testing sets, and it 
has four attack classes: DoS, U2R, R2L, and probe [49].

In this work we have used four sets of KDD Cup 99 datasets that were selected ran-
domly by Zainal in 2007 and which have been used by many researchers [50–55]. Every 
single data set houses approximately 4000 records, nearly half of the data (50–55%) 
belonging to the normal category; the leftovers mere attacks. For training purposes dataset 
1 is used, and for the purpose of testing datasets 2, 3, and 4 are utilized. The classes of all 
the datasets, number of records and the percentage of occurrence of the feature classes are 
tabulated in Table 1.

3.1.2 � ISCX 2012 Dataset

In order to overcome the limitations of the KDD Cup 99 dataset, the ISCX 2012 intru-
sion evaluation dataset of an IDS at Information Security Center of Excellence (ISCX) 
is used in developing, testing and evaluating the performance of the proposed approach 
for intrusion and anomaly detection. The entire ISCX labeled dataset comprises nearly 
1512000 packets with 20 features and covered seven days of network activity (i.e. norma-
tive and intrusive). This has been due to the fact approaches based on anomaly in particular 
are not reliable and suffer from an inaccurate assessment, comparison, and dissemination 
that arises from sufficient data scarcity. Many of these datasets are internal and cannot be 
shared because of privacy issues; others are completely anonymous and do not reflect cur-
rent trends, or they lack some statistical characteristics.

The ISCX 2012 dataset is available in the packet capture form. Features are extracted 
from the packet format by using tcptrace utility (downloaded from http://www.tcptr​ace.
org) and applying the following command: tcptrace csv-l filename1.7z > filename1.csv. 
Since the ready-made training and testing dataset is not available, and it is difficult to per-
form experiments on huge sets of data, we decided to select incoming packets for a particu-
lar host and particular days to validate the proposed approach as presented in Table 2. The 

Table 1   Distribution statistics 
of the KDD Cup 99 training and 
testing datasets

Type Dataset 1 Dataset 2 Dataset 3 Dataset 4

Actual % Actual % Actual % Actual %

Dos 1000 25 1203 30 1050 26 903 23
Probe 563 14 400 10 491 12 475 12
R2L 122 3 55 1 30 1 62 2
U2R 15 0 45 1 30 1 10 0
Normal 2300 58 2300 57 2400 60 2550 64
Total 4000 100 4003 100 4001 100 4000 100

http://www.tcptrace.org
http://www.tcptrace.org
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training data contains 54344 normal traces and 27,171 attack traces while the testing data 
contains 16,992 normal traces and 13,583 additional attack traces. Further description on 
this dataset can be found in [56].

3.1.3 � UNSW‑NB15 Dataset

UNSW-NB15 dataset is hybrid of the contemporary synthesized attack activities of the 
network traffic and the real modern normal. This data set is available in the following link: 
http://www.cyber​secur​ity.unsw.adfa.edu.au/ADFA%20NB1​5%20Dat​asets​/. In 2015 the 
researchers Nour and Jill created the UNSW-NB15 hybrid of the abnormal network traffic 
and modern normal by using IXIA PerfectStorm tool in the Cyber Range Lab of the Aus-
tralian Centre for Cyber Security. In both of these datasets (i.e. KDD’99, NSL-KDD and 
UNSW-NB15 datasets) has more than forty of the features. It is important to mention two 
datasets KDD’99 and NSL-KDD share only slight common features with UNSW-NB15 
datasets, and the rest of the features are different, making it harder to compare them [57, 
58].

The UNSW-NB15 dataset included nine different moderns attack types (compared to 
14 attack types in KDD’99 and NSL-KDD datasets) and wide varieties of real and normal 
activities as well as 44 features inclusive of the class label consisting total of 2, 540, 044 
records. The features UNSW-NB15 are classified into six groups, and they are as follows: 
Basic Features (BF), Content Features (CF), Flow Features (FF), Time Features (TF), 
Additional Generated Features (AGF) and class features. The Additional Generated Fea-
tures are further classified into two sub-groups namely Connection Features and General 
Purpose Features.

The UNSW-NB15 dataset has been divided into two subsets, the first containing 
175,341 records (56,000 Attacks and 119,341 Normal) represents the training datasets and 
the second contains 82,332 records (45,332 Attacks and 37,000 Normal) which represent 
the testing dataset including all attack types and normal traffic records. Both the train-
ing and testing datasets have 45 features, the distribution statistics of the UNSW-NB15 is 
shown in Table 3. It is important to note that the first feature (i.e. id) was not mentioned in 
the full UNSW-NB15 dataset features, and also the features scrip, sport, dstip, stime and 
ltime are missing in the Training and Testing dataset [59].

Table 2   Distribution statistics 
of the ISCX 2012 training and 
testing datasets

Date Train ISCX 2012 Test ISCX 2012

Normal Attack Normal Attack

11th 0 0 0 0
12th 2775 1388 1388 690
13th 27,144 13,572 3393 6786
14th 5028 2514 2514 1257
15th 12,459 6229 6229 3115
16th 0 0 0 0
17th 6938 3468 3468 1735
Total 54,344 27,171 16,992 13,583

81,515 30,575

http://www.cybersecurity.unsw.adfa.edu.au/ADFA%20NB15%20Datasets/
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3.1.4 � Preprocessing Dataset

Dataset processing is the most important step; it is implemented on all the datasets used 
in this work. The dataset processing is divided into two phases:

In the first phase we determine the data set that we will use to evaluate algorithms. 
Because the size of this dataset is too huge to load it into memory, we selected random 
sample records from the datasets. This random sample is divided into two a samples, the 
first sample is called training dataset, and the second sample is called testing dataset.

The second phase is to convert a symbolic value to a numeric value and then to nor-
malize the numeric value. Because all the datasets include symbolic features, for exam-
ple [protocol feature (e.g. tcp, udp, etc.), service feature (e.g. telnet, ftp, etc.), and flag 
feature]. These are incompatible with the classification method so we need to ensure 
that all the symbols are a set of numeric values, and to ensure that all class is repre-
sented as a numeric value.

(Normalization means to make the numeric values in the same range. The attributes 
of the numeric valuesin the dataset have to be normalized before using them in the train-
ing algorithm in order to provide regular semantics to the attribute values [60]. To nor-
malize numeric values to a regular semantics between xmin and xmax (the min and max 
values for attribute x) first one would convert xmin and xmax to the new range, as per 
Eq. (17).

Identification of class where all the four data sets that are used in this work includes 
a class for each set of features, where it is either a normal connection or an attack. This 
means that each record in the dataset belongs to one of the major classes: Normal or 
Attack. The values for each class are mapped to a numeric value. More specifically the 
Normal class was mapped to the number 0 and the attack class to 1. All the data sets 
used to evaluate our proposal contain two features: either normal representing zero or 
abnormal representing one.

(17)xnew =
xcurrent − xmin

xmax − xmin

Table 3   Distribution statistics of 
the UNSW-NB15 training and 
testing datasets

No. Type of attacks Train UNSW-NB15 Test UNSW-NB15
No. of record No. of record

1 Analysis 2000 677
2 Backdoor 1746 583
3 Dos 12,264 4089
4 Exploits 33,393 11,132
5 Fuzzers 18,184 6062
6 Generic 40,000 18,871
7 Reconnaissance 10,491 3496
8 Shellcode 1133 378
9 Worms 130 44
10 Normal 56,000 37,000
Total 175,341 82,332
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3.2 � Algorithms and Parameters

In this work, study was carried out involving several algorithms for the fair analysis of the 
proposal, these are: Artificial Bee Colony algorithm (ABC) [61], Ant colony optimization 
(ACO) [62], Ant Lion Optimizer (ALO) [63], Elephant Herding Optimization (EHO) [64], 
Evolution Strategy (ES) [65], Harmony Search (HS) [66], monarch butterfly optimization 
(MBO) [67], A Sine Cosine Algorithm (SCA) [68], and Whale Optimization Algorithm 
(WOA) [69].

We set the common control parameters for all algorithms to the same values, including 
the population size SN, and the dimensionality of the search space D, which represents the 
number of the features in the dataset. The parameters of all algorithms used in this work 
are presented below:

•	 ABC parameter settings: The number of colony size is 50 employed bees and 50 
onlooker bees as the colony size is 100. limit is set to 100.

•	 MBO parameter settings: There are many parameters for the MBO method. In this 
work we follow the setup in the original work of MBO, and set the butterfly adjusting 
rate BAR = 0.4167, max step Smax = 1.0, migration period Peri = 1.2, the migration ratio 
P  = 0.4167 and the population size NP is the same as the colony size, being 50.

•	 ALO parameter settings: The population size in this method is also set to 50, and the 
vector a: linear decrease: which were set in this work is equal to 2.

•	 ACO parameter settings: The ACO method involves many parameters, which were set 
as follows: pheromone update constant Q = 20, local pheromone decay rate ρl = 0.5, 
global pheromone decay rate ρg = 0.9, exploration constant q0 = 1, pheromone sensitiv-
ity s = 1, visibility sensitivity β = 5 and initial pheromone value τ0 = 1E − 6.

•	 EHO parameter settings: This algorithm is based on three parameters: the scale factor 
α = 0.5, β = 0.1, and the number of clan nClan = 5.

•	 HS parameter settings: The HS algorithm involves many parameters, which were set 
as follows: harmony memory consideration rate = 0.95, pitch adjustment rate = 0.1, fret 
width damp ratio  = 0.1, Harmony Memory Size = 50, number of new harmonies  = 50.

•	 ES parameter settings: This method is based on two parameters: the number of off-
spring λ = 10 produced in each generation and the standard deviation σ = 1 for changing 
solutions.

•	 SCA parameter settings: In this method the population size in this method is also set to 
50, and the vector a: linear decrease: is set to 2.

•	 WOA parameter setting: There is one parameter for WOA algorithm, is Vector a: linear 
decrease: which were set in this work from 2 to 0.

3.3 � Performance Measures for IDS

We compared and evaluated the proposed model based on three performance measures: 
The detection rate (DR), False Positive Rate (FPR), and Accuracy Rate (Acc). These main 
factors are calculated based on the main performance measurement for IDS, namely true 
positive (TP), false positive (FP), true negative (TN), and false negative (FN). These four 
main criteria have been collected from the confusion matrix. The confusion matrix has a 
dimension of the neural network, and it shows the classification results. Table 4 shows the 
confusion matrix for a 2-class classification.
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The abbreviations of the confusion matrix a 2-class classification are as follows:

True positive (TP) Indicates the amount of attack data detected is actually attack data.
True negative (TN) Indicates the amount of putative normal data detected is indeed 
normal data.
False positive (FP) Represents the normal data that is detected as attack data.
False negative (FN) Represents the attack data that is detected as normal data.
ACC​ returns the global percentage of correctly classified instances to the total num-
ber of instances. It can be derived as follows:

FAR a shortened name for the false alarm rate; it is known also as the false positive 
rate. This factor computes by dividing the number of normal instances which are 
misclassified as anomalies by the overall number of normal instances. It can be com-
puted as follows:

DR a shortened name for the detection rate; it is also known as a true positive rate 
(TPR) or recall. It is the rate of the number of successfully classified anomalies to the 
overall number of instances. It refers to the reliability of the new approach in detect-
ing abnormality from all of the abnormal instances. It can be computed as follows:

Specificity is also known as a true negative rate (TNR). It is the rate of the number 
of successfully classified non-anomalies to the total number of instances. It refers to 
the precision of the new approach in detecting non-anomalies from all of the non-
anomalous instances. It can be computed as follows:

Precision is the ratio of negatives that are correctly identified as instances among the 
results of the new approach, which is another information retrieval term, and often is 
paired with “Recall”.

(18)ACC =
TP + TN

TP + TN + FP + FN

(19)FAR =
FP

FP + TN

(20)DR =
TP

TP + FN

(21)Specificity =
TN

TN + FP

(22)Precision =
TP

TP + FP

Table 4   A confusion matrix for 
binary classification

Actual Total

Normal Attack

Predicted
 Normal TN FN TN + FN
 Attack FP TP FP + TP

Total TN + FP FN + TP
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F-Measure is also known as F-score; it is a standard f-measure and computes as a tradeoff 
between precision and recall of both classes. It is computed in binary form, and is a meas-
ure of a test’s accuracy. It is defined as the weighted harmonic mean of the precision and 
recall when testing a new approach.

4 � Results and Discussion

The design elements explained in the previous section are used to implement multilayer-per-
ceptron training algorithms: HAMMLP, named after the metaheuristics developed in our pre-
vious study [34, 35]. The MLP prefix highlights the fact the algorithm is being used to train a 
MLP (for the purpose of intrusion detection). This section is devoted to the results of evaluat-
ing these algorithms against a number of standard IDS datasets. Before listing the results, it is 
in order to explain the common setup in which all experimental evaluations were conducted.

First, each evaluation experiment compares ten algorithms, including the proposed algo-
rithms, against three different IDS benchmark datasets: KDD Cup 99, ISCX 2012, and 
UNSW-NB15. These datasets range from the old to the very recent and were introduced in 
Sect. 3.1. For the KDD Cup 99 we used a subset of it; this subset is divided into 4 sets of data, 
one for training (Dataset 1) and another three (Dataset 2, Dataset 3, Dataset 4) for testing. 
Each set of data has around 4000 randomly chosen records of the original dataset. Also for the 
ISCX 2012 dataset there is a set of five experiments, as the dataset comprises subsets of traffic 
on five different days. The compared algorithms include the following list: ABC, ACO, ALO, 
EHO, ES, HS, MBO, SCA, and WOA. Each of these algorithms is applied for training a MLP 
and trained as well as tested using the above datasets (our experiments used training dataset 
and a testing dataset).

Second, the results of each experiment are presented in three forms: a table that lists the 
numerical values of the performance indicators for each algorithm; a plot that visually repre-
sents the performance of each algorithm; a set of confusion matrices for all algorithms with 
the proposed HAMMLP. Each algorithm was run for a maximum of 50 iterations, and the 
results are calculated based on 10 runs. The aforementioned performance indicators include 
the accuracy ACC, detection rate DR, false alarm rate FAR, precision, specificity, and 
F-Measure. The FAR, DR, and ACC​ are calculated based on the certain types of instances: 
true positives TP, false positives FP, true negatives TN, and false negatives FN. The defini-
tions of these types are given in Sect. 3.3, while the definitions of all performance indicators 
are given in Eqs. (18–23).

Third, most of the benchmarking datasets contain data with different ranges; hence, there 
is a need to normalize feature values so that they can be effectively applied for training MLPs. 
The min–max normalization method was used, for which the formula is shown in Sect. 3.1.4 
in Eq. (17) above.

Finally, one of the most important factors that influence the outcome of a neural network 
is the network structure in terms of the number of nodes in the hidden layer(s). For all experi-
ments in this chapter the formula shown in Eq. (24) is used to determine the number of nodes 
in the hidden layer of the trained MLP. N is the number of attributes in the datasets (number of 
input nodes) and H is the number of hidden nodes.

(23)F − measure =
2 × Recall × Precision

Recall + Precision

(24)No. of hidden nodes = 2 × N + 1
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As mentioned earlier the results of evaluating the proposed algorithms comprise eight 
sets: one for the evaluation against the KDD Cup 99 dataset, one for NSL-KDD dataset, 
five sets for ISCX 2012 datasets (one subset per day for network traffic over five days), and 
a final set for the UNSW-NB15 dataset. Each set of results comprises a table, a plot, and a 
confusion matrix. The following subsections list the results by the datasets.

4.1 � KDD Cup 99 Results

Using the classic KDD Cup 99 dataset, Tables 5, 6, 7 and 8 show the detailed performance 
measurements of every compared algorithm when trying to detect anomalies via a MLP 
trained by the algorithm itself. As mentioned previously we have four sets of data for this 
experiment that will be conducted for each data set four times (one for training and three 
for testing) to evaluate the performance of the proposed approach. The results of our pro-
posed algorithm will be shown shaded in bold. Our experiments were only conducted on 
dataset 1 as training and datasets 2, 3 and 4 as testing. In order to make our experiences 
more effectively, we used data set 2, 3 and 4 also as training whilst other datasets are 
used as testing. Tables 5, 6, 7 and 8 show the results of twelve experiments which were 
conducted during the evaluation of our proposal by KDD Cup 99 dataset, Figs. 5 and 6, 
respectively. 

The results in Tables 5, 6, 7 and 8 are calculated based on the definitions in Sect. 3.3 
and Eqs. (18–23). The TP, TN, FN and FP measurements are averaged over 10 runs, the 
remaining columns are derived from these basic measurements. The most important indi-
cators are the classification accuracy, the false alarm rate, and the detection rate. It is evi-
dent from the results that our proposed algorithms are among the top performing MLP 
trainers. In particular, HAMMLP is the absolute best among the 9 compared algorithms as 
shown in Table 9. Table 9 shows the average of the classification accuracy, the false alarm 
rate, and the detection rate for the four datasets. The results of our proposed algorithm 
will be shown shaded in bold. In the listed experiment it was ranked first with respect to 
accuracy at around 87.19% score, the first with respect to detection rate at 90.89% score, 
and the first best with respect to false alarm rate at a score of 0.1670 (this is shown in the 
Fig. 5). 

The comparative performance of the 9 algorithms against the whole KDD Cup 99 data-
set for the average of ACC, DR and FAR measurements is also depicted visually in Fig. 5. 
Another useful descriptor for the performance of classification models is the confusion 
matrix, which is a tabular layout to visualize the performance of supervised classifiers. The 
content of this matrix is the basic measurements of TP, TN, FN, and FP, which result from 
the mapping between the number of correct and wrong predictions of the classifier for both 
positive (attack) and negative (normal) instances of testing data. The general template of a 
confusion matrix is shown in Table 4.

4.2 � ISCX 2012 Results

Similar to the previous set of results this section presents the numerical performance meas-
urements and their visual representation for the compared 10 metaheuristics including our 
proposal when running against the ISCX 2012 intrusion detection benchmark dataset. As 
before, sample confusion matrices are also given for the proposed algorithm. However, the 
ISCX 2012 dataset is different from the other dataset as it was divided due to its large size 
into a number of subsets, each of which corresponds to the collected traffic in a single day. 
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Five days were used in the experimental evaluation of the tested metaheuristics: 12, 13, 14, 
15 and 17. The respective subsets are named ISCX 2012-12, ISCX 2012-13, ISCX 2012-
14, ISCX 2012-15, and ISCX 2012-17. Consequently, the results of this section include 
five sets for each of ISCX 2012 subsets.

Tables 10, 11, 12, 13 and 14 list the detailed performance measurements of the evalu-
ated 10 algorithms, in the form of one table per day. The scores of our proposed algorithms 
are shaded in bold, and the last three columns show the rank of each algorithm with respect 
to the three main performance indicators: ACC, DR and FAR. The results of this data-
set are quite unique when compared to the results of all other datasets (KDD Cup 99 and 
UNSW-NB15). On the one hand, several algorithms perform outstandingly on most of the 
days. For example, accuracies of 100% and false alarm rates of zero can be found on sev-
eral rows of the 12th, 14th, 15th and 17th day. On the other hand, unlike the other datasets, 
our proposal outperformed by the other algorithms that are used to train the MLP on all 
days. The superior performance of our algorithm is, it is fair to say, remarkable (on this 
dataset particularly).

For the 12th day (Table  10), the results show that our algorithms have surprisingly 
achieved the perfect score of 100% accuracy and detection rate, as well as zero false 
alarms. It also outperforms the rest of the other algorithms in terms of specificity, preci-
sion, and F-measure. Besides our model (HAMMLP), there are two models which were 
able to record the perfect score of 100% detection rate: ABCMLP and HSMLP are all 
ranked the same. HSMLP records the second rank in the accuracy rate and false alarms fol-
lowed directly by SCAMLP. Conversely, the EHOMLP and ESMLP algorithms recorded 
zero false alarms but were not able to achieve perfect results in terms of accuracy and 
detection rate. This result is unusual and seems particular for this set of data.

The results for the second set of data on the 13th day are less impressive (Table 11). In 
terms of accuracy, HAMMLP did the best at a score of 94.69%, followed by ESMLP at an 
accuracy of 90% and then ABCMLP at a score of 88.53%. EHeOMLP is ranked the tenth 
at an accuracy of 30.37%. In terms of detection rate, HAMMLP is ranked the first (92.07% 
DR), followed by WOAMLP (91.60% DR). EHO has ranked again the tenth at a detection 
rate of 0.66%. In terms of false alarm rate, the HAMMLP is ranked the first and followed 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ABC ACO ALO EHO ES HAM HS MBO SCA WOA
ACC 78.77% 81.62% 80.98% 78.09% 72.25% 87.19% 84.23% 80.89% 79.67% 77.43%
FAR 0.2718 0.1829 0.2342 0.1975 0.4066 0.1670 0.2098 0.2450 0.3110 0.3449
DR 84.02% 82.29% 86.19% 76.76% 83.13% 90.89% 87.22% 85.87% 88.01% 87.23%

ACC FAR DR

Fig. 5   The average of the evaluation variables (ACC, FAR, and DR) for the four datasets
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by HSMLP and MBOMLP algorithm. Overall, combining the three performance indica-
tors (operating under the assumption they have equal importance), HAMMLP performed 
the most superior, followed by ESMLP then ABCMLP with respect to the 13th day ISCX 
2012 dataset.

On the dataset of the 14th day (Table 12), our proposed model is ranked at the top with 
superior performance across the three main performance indicators: ACC, DR and FAR. 
HAMMLP being the best performing algorithms here with the maximum score of 100% 
accuracy, 100% detection rate, and zero false alarm rate. The WOAMLP and SCAMLP 
follow our proposal only across the two main performance indicators: ACC and DR, where 
the score of the accuracy was 98.91%, 98.14% respectively, while the detection rate was 
99.76%, 99.60% respectively. On the contrary, the false alarm rate on this set scored the 
second and third ranks in favor of other algorithms which are ESMLP and ALOMLP; the 
score of the FAR was 0.0012, 0.0016 respectively.

The results of the following day (Table 13) showed our algorithm still stable in its abil-
ity to obtain the best results compared with the rest of the algorithms. In addition, the other 

Fig. 6   The confusion matrices for ABCMLP, MBOMLP, WOAMLP, and HAMMLP against the KDD Cup 
99 dataset by training across dataset 1 and testing across dataset 2
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Table 9   Performance measurements of 10 algorithms used to train an MLP to detect anomalies in the KDD 
Cup 99 dataset

Alg. Dataset 1 Dataset 2

ACC (%) FAR DR (%) ACC (%) FAR DR (%)

ABC 79.31 0.4325 96.52 79.06 0.2043 78.53
ACO 83.28 0.3345 98.48 79.12 0.1226 73.01
ALO 83.98 0.2883 96.17 83.87 0.1128 81.04
EHO 67.06 0.3650 69.99 83.38 0.1478 80.78
ES 75.86 0.5056 99.14 79.73 0.2742 87.47
HAM 87.62 0.2309 97.39 87.58 0.1197 88.34
HS 88.44 0.1544 92.09 83.15 0.1020 78.67
MBO 74.59 0.3250 85.08 82.80 0.2621 88.81
SCA 75.97 0.5091 99.52 81.01 0.2128 83.94
WOA 71.71 0.5286 94.83 82.03 0.2250 83.97

Alg. Dataset 3 Dataset 4

DR (%) ACC​ FAR (%) DR (%) ACC​ FAR (%)

ABC 83.79 0.1268 81.63 72.93 0.3236 79.39
ACO 82.76 0.1460 80.41 81.31 0.1284 77.26
ALO 74.06 0.4367 90.33 82.02 0.0991 77.20
EHO 83.48 0.1100 80.53 78.44 0.1672 75.75
ES 62.50 0.3289 60.24 70.90 0.5177 85.65
HAM 87.26 0.2193 95.36 86.29 0.0981 82.46
HS 82.97 0.2896 91.07 82.35 0.2932 87.06
MBO 83.04 0.2227 88.69 83.11 0.1701 80.90
SCA 79.83 0.3056 86.27 81.89 0.2163 82.33
WOA 73.79 0.3367 82.25 82.21 0.2894 87.88

Table 10   Performance measurements of 10 algorithms used to train an MLP to detect anomalies in the 
ISCX 2012-12 dataset

No. Alg. ACC (%) FAR DR (%) Spec. Prec. F-M. ACC-rank FAR-rank DR-rank

1 ABC 93.61 0.0958 100 0.9042 0.8392 0.9126 4 10 1
2 ACO 65.61 0.0159 0 0.9841 0 – 9 8 9
3 ALO 65.23 0.0216 0 0.9784 0 – 10 9 9
4 EHO 71.18 0 13.54 1 1 0.2386 8 1 8
5 ES 79.54 0 38.62 1 1 0.5572 6 1 7
6 HAM 100 0 100 1 1 1 1 1 1
7 HS 99.71 0.0043 100 0.9957 0.9914 0.9957 2 5 1
8 MBO 88.42 0 65.27 1 1 0.7899 5 1 5
9 SCA 95.82 0.0144 90.35 0.9856 0.9691 0.9351 3 7 4
10 WOA 79.30 0.0072 39.34 0.9928 0.9647 0.5589 7 6 6
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Table 11   Performance measurements of 10 algorithms used to train an MLP to detect anomalies in the 
ISCX 2012-13 dataset

No. Alg. ACC (%) FAR DR (%) Spec. Prec. F-M. ACC-rank FAR-rank DR-rank

1 ABC 88.53 0.1568 90.63 0.8432 0.9204 0.9133 3 8 3
2 ACO 66.64 0.0981 54.86 0.9019 0.9179 0.6868 8 4 9
3 ALO 88.51 0.1232 88.92 0.8768 0.9352 0.9116 4 7 5
4 EHO 30.37 0.1023 0.66 0.8977 0.1148 0.0125 10 6 10
5 ES 90.00 0.0984 89.92 0.9016 0.9481 0.9230 2 5 4
6 HAM 94.69 0.0006 92.07 0.9994 0.9997 0.9586 1 1 1
7 HS 75.20 0.0083 63.22 0.9917 0.9935 0.7727 7 2 7
8 MBO 82.40 0.0124 74.23 0.9876 0.9917 0.8491 6 3 6
9 SCA 57.73 0.3805 55.61 0.6195 0.7451 0.6369 9 10 8
10 WOA 88.47 0.1780 91.60 0.8220 0.9114 0.9137 5 9 2

Table 12   Performance measurements of 10 algorithms used to train an MLP to detect anomalies in the 
ISCX 2012-14 dataset

No. Alg. ACC (%) FAR DR (%) Spec. Prec. F-M. ACC-rank FAR-rank DR-rank

1 ABC 96.18 0.0072 89.98 0.9928 0.9843 0.9401 4 6 4
2 ACO 68.76 0.0374 13.76 0.9626 0.6479 0.2270 9 10 8
3 ALO 69.93 0.0016 10.10 0.9984 0.9695 0.1830 8 3 9
4 EHO 94.35 0.0052 84.09 0.9948 0.9879 0.9085 5 5 5
5 ES 68.07 0.0012 4.46 0.9988 0.9492 0.0851 10 2 10
6 HAM 100 0 100 1 1 1 1 1 1
7 HS 89.21 0.0179 71.20 0.9821 0.9521 0.8147 7 8 7
8 MBO 93.56 0.0040 81.46 0.9960 0.9903 0.8939 6 4 6
9 SCA 98.14 0.0259 99.60 0.9741 0.9506 0.9728 3 9 3
10 WOA 98.91 0.0151 99.76 0.9849 0.9706 0.9839 2 7 2

Table 13   Performance measurements of 10 algorithms used to train an MLP to detect anomalies in the 
ISCX 2012-15 dataset

No. Alg. ACC (%) FAR DR (%) Spec. Prec. F-M. ACC-rank FAR-rank DR-rank

1 ABC 76.15 0.1088 50.21 0.8912 0.6976 0.5839 10 8 10
2 ACO 90.15 0.1227 94.99 0.8773 0.7948 0.8655 9 10 8
3 ALO 97.77 0.0331 99.94 0.9669 0.9379 0.9677 4 5 3
4 EHO 96.78 0 90.34 1 1 0.9492 6 1 9
5 ES 96.07 0.0588 99.97 0.9412 0.8948 0.9444 7 7 2
6 HAM 100 0 100 1 1 1 1 1 1
7 HS 99.06 0.0090 98.97 0.9910 0.9822 0.9859 3 3 6
8 MBO 99.14 0.0119 99.81 0.9881 0.9768 0.9873 2 4 4
9 SCA 91.28 0.1140 96.63 0.8860 0.8091 0.8808 8 9 7
10 WOA 96.83 0.0466 99.81 0.9534 0.9147 0.9546 5 6 4
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algorithms were able to record the best results in this set by comparing it with the previous 
sets; excepting the ABCMLP algorithm which records the worst result across the two main 
performance indicators: ACC and DR.

Lastly, the results of the 17th day (Table 14) are quite different from the previous data-
sets, deviating from their normal pattern. In this set, ALOMLP got the first rank in perfor-
mance with an accuracy of 98.71%, a detection rate of 100% and got on the seventh rank 
in the performer with false alarms of 0.0193. Our proposal HAMMLP follows closely it 
records the second rank in the performer with an accuracy of 98.58%, a detection rate of 
99.19% and it records the sixth rank for false alarms by 0.0173. HAMMLP show rela-
tively inferior performance compared to their previous scores and to other algorithms with 
respect to this final subset of data. While the ACC and DR for WOAMLP recorded the 
third rank with 98.17%, 94.52% respectively and the first rank with zero. These last results 
suggest an important point: the HAMMLP shows more impressive results than the other 
nine algorithms with respect to the ISCX 2012 dataset. It is generally more consistent, 
across the various data subsets, and sometimes even the absolute best. This conclusion is 
also consistent with the results from the other benchmarking datasets, as will be shown 
in subsequent sections. Figure  7 show the confusion matrices from MATLAB program 
for the best three algorithms against the five days. It is a tabular layout to visualize the 
performance of supervised classifiers. The content of this matrix is the basic measure-
ments of TP, TN, FN and FP, which result from the mapping between the number of cor-
rect and wrong predictions of the classifier for both positive (attack) and negative (normal) 
instances of testing data. The general template of a confusion matrix is shown in Table 4.

4.3 � UNSW‑NB15 Results

Finally, this section presents the numerical performance measurements and their visual 
representation for the most recent UNSW-NB15 intrusion detection benchmark dataset. A 
sample of four confusion matrices is also given for our proposed algorithms in addition 
to other best performing algorithms. These results are shown in Table 15, Figs. 8 and 9, 
respectively. The results of our proposed algorithm will be shown shaded in bold.

Confirming all previous results, HAMMLP is the top performing algorithm in this data-
set, too. Looking at the three last columns of Table 15 showing the ranks per ACC, DR, 

Table 14   Performance measurements of 10 algorithms used to train an MLP to detect anomalies in the 
ISCX 2012-17 dataset

No. Alg. ACC (%) FAR DR (%) Spec. Prec. F-M. ACC-rank FAR-rank DR-rank

1 ABC 62.23 0.0663 0 0.9337 0 – 10 9 10
2 ACO 63.81 0.0467 0.81 0.9533 0.0795 0.0147 9 8 8
3 ALO 98.71 0.0193 100 0.9807 0.9628 0.9811 1 7 1
4 EHO 67.06 0 1.21 1 1 0.0239 6 1 6
5 ES 66.73 0 0.23 1 1 0.0046 8 1 9
6 HAM 98.58 0.0173 99.19 0.9827 0.9663 0.9790 2 6 2
7 HS 67.02 0.0006 1.21 0.9994 0.9130 0.0239 7 4 6
8 MBO 84.78 0.1101 76.37 0.8899 0.7762 0.7699 5 10 5
9 SCA 97.12 0.0124 93.83 0.9876 0.9743 0.9560 4 5 4
10 WOA 98.17 0 94.52 1 1 0.9719 3 1 3
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and FAR, HAMMLP is ranked first in ACC and DR, and FAR at scores of 95.72%, 96.41% 
and 0.0507, respectively. HAMMLP is followed by WOAMLP at an accuracy of 92.52%, 
detection rate of 92.01% and false alarm rate of 0.0701. This algorithm is ranked 2nd with 
respect to ACC, 3rd with respect to DR, and 3rd with respect to FAR. SCAMLP closely 
follows with ACC, DR and FAR of 90.75%, 92.50% and 0.1140, respectively. It is ranked 

Fig. 7   The confusion matrices for ABCMLP, ALOMLP, ESMLP, MBOMLP, SCAMLP, WOAMLP, and 
HAMMLP against the ISCX 2012 dataset
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3rd in ACC, 5th in DR and 2nd with respect to FAR. ESMLP; on the other hand, it per-
forms relatively poorly with the UNSW-NB15 dataset compared to the remaining algo-
rithms with an accuracy of 80.34%, a detection rate of 78.23% and a false alarm rate of 
0.1793, respectively.

Consistently, across all result sets in these experiments for the different benchmark-
ing datasets, HAMMLP outperformed all other algorithms in the set of 10 compared 
metaheuristics. This result is of profound importance and relevant to this article; for as the 
evaluation of the algorithm as an MLP trainer was conducted against actual and various 
IDS benchmarking datasets, which serve the very purpose of the article, it ought to lead 
inexorably to the selection of HAMMLP for the last step towards a complete IDS solution: 
feature selection.

The algorithms for training ANNs do not need only strong exploration ability, but 
also precise exploitation ability. The results of the classification accuracy, DR and FAR 

Table 15   Performance measurements of 10 algorithms used to train an MLP to detect anomalies in the 
UNSW-NB15 dataset

No. Alg. ACC (%) FAR DR (%) Spec. Prec. F-M. ACC-rank FAR-rank DR-rank

1 ABC 85.40 0.1208 83.35 0.8792 0.8942 0.8628 7 6 8
2 ACO 83.80 0.0822 77.29 0.9178 0.9201 0.8401 9 4 10
3 ALO 89.75 0.0594 85.86 0.9406 0.9414 0.8981 4 2 7
4 EHO 84.53 0.2346 91.05 0.7654 0.8262 0.8663 8 10 5
5 ES 80.34 0.1793 78.23 0.8207 0.7827 0.7825 10 9 9
6 HAM 95.72 0.0507 96.41 0.9493 0.9558 0.9599 1 1 1
7 HS 87.93 0.1316 88.81 0.8684 0.8921 0.8901 5 7 6
8 MBO 87.54 0.1713 91.35 0.8287 0.8672 0.8898 6 8 4
9 SCA 90.75 0.1140 92.50 0.8860 0.9086 0.9167 3 5 2
10 WOA 92.52 0.0701 92.01 0.9299 0.9231 0.9216 2 3 3
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Fig. 8   The performance of 10 MLP trainer algorithms for the UNSW-NB15 dataset
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obtained by ABCMLP, ACOMLP, ALOMLP, EHOMLP, ESMLP, HAMMLP, HSMLP, 
MBOMLP, SCAMLP, and WOAMLP, show that HAMMLP performs far better than the 
others due to more precise exploitation ability afforded by the HAM algorithm, while 
others still suffer from the problem of becoming trapped in local minima. This weakness 
means that the approach of others leads to unstable performance. The results obtained by 
HAMMLP prove that it has both strong exploitation and good exploration abilities. In other 
words, the strength of some the other algorithms have been successfully utilized, giving 
outstanding performance in the MLP training. This result means that HAMMLP is capable 
of solving the hitherto problem of becoming trapped in local minima, giving a fast conver-
gence speed.

The comparison of the performance results of the proposed approach and other 
approaches for the KDD Cup 99, ISCX 2012 dataset and UNSW-NB15 datasets are shown 
in Table 16, respectively. The proposed model clearly performs the best in terms of ACC, 
DR and FAR. The data correctly classified by the proposed approach are more than those 

Fig. 9   The confusion matrices for ACOMLP, SCAMLP, WOAMLP, and HAMMLP against the UNSW-
NB15 dataset
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correctly classified by the static approaches. Furthermore, HAMMLP exhibits a signifi-
cantly lower FAR. Therefore, the proposed method noticeably offers the greatest, explora-
tion and precise exploitation capabilities. The proposed training algorithm HAM is effec-
tive and feasible for application to IDS research.

5 � Conclusion and Future Work

In this article a new approach for an intrusion detection system, namely, a HAM trained 
MLP is proposed and presented. The study has mainly focused on the applicability of the 
new hybrid algorithm HAM to train MLP. The confusion matrix is the basic measure-
ments of TP, TN, FN, and FP of the proposed model; they have been obtained using the 
KDD Cup 99, ISCX 2012, and UNSW-NB15 datasets. The performance of the model was 
compared with those of popular intrusion detection techniques. Also it was compared with 

Table 16   Performance comparison of HAMMLP approach with other intrusion approaches

Dataset Method Reference ACC (%) DR (%) FAR

KDD Cup 99 SVDF [50–55] – 64.3 0.39
MARS – 79.27 11.88
Rough set – 64.71 0.26
Rough-DPSO – 79.2 10.1
BA – 90.22 4.56
BA-MC – 89.11 0.004
Rough set – 64.71 0.26
Markov model – 68.3 0.48
Rough-DPSO – 79.2 10.1
GDA-SVM – 90.84 0.17
HAMMLP-IDS 87.19 90.89 0.167

UNSW-NB15 ANN (MLP) [58] 81.34 – 21.13
LR (logistic regression) 83.15 – 18.84
DT (decision tree) 85.56 – 15.78
NB (Naive Bayes) 82.07 – 18.56
EM (expectation max) 78.47 – 23.79
Ramp-KSVCR [70] 93.52 98.68 02.46
GA-LR [71] 81.42 – 6.39
Dendron [72] 84.33 63.76 2.61
HAMMLP-IDS 96.86 97.54 0.04

ISCX 2012 MLP [73] – 90.6 0.660
Bagged MLP – 90.6 0.660
Boosted MLP – 94.7 0.083
AMGA2-MLP – 97 0.024
AMGA2-NB – 94.5 0.070
RFA-bigram [74] 92.9 89.6 2.6
NBC [75] 88.2 85.0 33.7
KMC + NBC [75] 99 98.8 2.2
HAMMLP-IDS 98.65 98.25 0.003
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nine optimization algorithms that are used to train MLP, these being ABC, ACO, ALO, 
EHO, ES, HS, MBO, SCA, and WOA. The HAMMLP showed it was a good candidate 
that trained with the KDD Cup 99, ISCX 2012, and UNSW-NB15 datasets, attaining a 
detection rate of 90.89%, 98.25%, and 96.41%, respectively. These values are higher than 
those currently obtained by other methods tested using the KDD Cup 99, ISCX 2012, and 
UNSW-NB15 datasets. The results evidence the potential applicability of the proposed 
model for developing practical IDSs. However, this study has mainly evaluated the models 
according to the feature intrusion detection datasets; an adequate feature selection tech-
nique has not yet been selected. Therefore future work will focus on minimizing the num-
ber of selected features and applying the proposed model to develop an effective IDS.
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