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Abstract
This paper studies stochastic quasi-synchronization of delayed neural networks with param-
eter mismatches and stochastic perturbation mismatch via pinning impulsive control. By
pinning selected nodes of stochastic neural network at impulse time, an impulsive control
scheme is proposed. Some sufficient conditions are obtained to ensure that the error system
can converge to small region in the mean square. Meanwhile, numerical example is provided
to illustrate the effectiveness of theoretical results.

Keywords Quasi-synchronization · Stochastic neural networks · Delay · Pinning impulsive
control

1 Introduction

In the past few decades, neural networks as an emerging field have been drawing attention
from researchers due to their wide application in signal processing, pattern recognition,
dynamic optimization, deep learning and so on [1–6]. As an important collective behavior, the
synchronization of neural networks is an important topic because of its practical applications
in biological systems [7–13].

As is well known, randomnoiseswidely exist in the signal transmission of neural networks
due to environmental uncertainties, which usually lead to stochastic perturbation and uncer-
tainties of the process for dynamic evolution. Based on the theory of stochastic system [14],
a lot of stability and synchronization for neural networks with stochastic perturbations have
been obtained [15–17]. In the hardware implementation of neural networks, it is impossible
for neurons to respond and communicate simultaneously owing to time-delays. To reduce the
negative influence of time-delays, delay-independent method is a powerful tool to check the
stability and synchronization of neural networks by constructing Lyapunov–Krasovkii func-
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tional, see [18–20]. On the other hand, in the implementations of neural networks systems,
parameter mismatches and stochastic perturbation mismatch are unavoidable. If parameter
mismatch and stochastic perturbation mismatch are small, although the stochastic synchro-
nization error can not converge to zero in the mean square with time increasing, but we may
show that the error of system is small fluctuations about zero or even a nonzero mean value
in the mean square. For background material on parameter mismatch of system, we can find
in [21–23].

Pinning control, which is an effectively external control approach, has been widely used
for a variety of purposes due to low cost. It is characterized that the controllers are added on
only a small fraction of network nodes [24–27]. For example, in [26], the authors proposed
a variety of pinning control methods of cluster synchronization in an array of coupled neural
networks and proposed a new event-triggered sampled-data transmission strategy. Impulsive
control is an energy-saving control due to the instantaneous perturbations input at certain
moment, which has been applied efficiently in the fields of engineering, physics, and science
as well [28,29]. With the help of the impulsive system theory, a lot of synchronization
results of dynamical networks with impulsive input have been obtained [30–33]. It is worth
noting that the cost of control can be further reduce by adding the impulsive controllers to
a small fraction of networks nodes, which can combine the advantage of pinning control
and impulsive control. Recently, some research have been devoted to the synchronization of
delayedneural networkswith pinning and impulsive controls [34,35]. For instance, in [34], the
authors proposed a new pinning impulsive control scheme to investigate the synchronization
problem for a class complex networks with time-varying delay.

Motivated by the above discussion, this paper focuses on stochastic quasi-synchronization
of delayed neural networks under parameter mismatch and stochastic perturbation mismatch.
Although the error of systems will not converge exponentially to zero in the mean square,
some effectively sufficient condition are obtained to synchronize the error of systems up to a
relatively small bound in the mean square via pinning impulsive control. The contributions
in this paper are concluded as follows:

(i) By pinning certain selected nodes of stochastic neural networks at each impulsive time,
impulsive control strategy is proposed to achieve stochastic-synchronization.

(ii) Byestablishing anew lemmaof stochastic impulsive system, stochastic-synchronization
criteria are derived to guarantee that the nodes of stochastic neural networks can syn-
chronizes desired trajectory to small region in the mean square.

(iii) If the bound of time delay does not exceed the length of impulsive interval, delay-
independent method is used to overcome the effects of time delay and impulses by
constructing Lyapunov–Krasovkii functional.

The rest of this paper is organized as follows. In Sect. 2, the stochastic neural network
is presented and some definitions and lemmas are provided. In addition, a new lemma is
established, which plays an important role in the proof of obtained theorems. In Sect. 3,
some stochastic quasi-synchronization criteria are obtained via impulsive control technique.
In Sect. 4, numerical example is presented to illustrate our results. Finally, some conclusions
are given in Sect. 5.
Notations Rn and Rn×m denote n dimensional Euclidean space and the set of n × m real
matrices. The superscript T denotes the transpose. In represents the identity matrix with
n dimension. ‖ · ‖ denotes the Euclidean norm for a vector and a matrix. λmax(A) and
λmin(A) represent the maximum and minimum eigenvalues of matrix A. diag{· · · } stands
for a diagonal matrix. For real symmetric matrices X , the notation X > 0(X < 0) implies
that the matrix X is positive (negative) definite. ⊗ represents Kronecker product. Let ω(t) =
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(ω1(t), ω2(t), · · · , ωn(t))T be an n-dimensional Brownianmotion on a complete probability
space (�,F, P) with a natural filtration {Ft }t≥0 satisfying the usual conditions.

2 Model Description and Preliminaries

Consider stochastic neural network with delay and N coupled nodes. The dynamics of i th
neuron is described by the following form

dxi (t) = [C1xi (t) + B1 f (xi (t)) + D1 f (xi (t − τ(t))) +
N∑

j=1

ai j�x j (t) + ui (t)]dt

+h1(t, xi (t), xi (t − τ(t)))dω(t), i = 1, 2, · · · , N , (1)

where xi (t) = (xi1(t), xi2(t), · · · , xin(t))T is the state vector of the i-th neural networks at
time t ; C1 = diag{c11, c12, · · · , c1n} denotes the rate with which i th cell resets its potential
to the resting state when being isolated from other cells and inputs, B1 = (b(1)

i j )n×n, D1 =
(d(1)

i j )n×n ∈ Rn×n are the connectionweightmatrices; f (x) is the activation function at time t

satisfying f (xi (t)) = ( f1(xi1(t)), f2(xi2(t)), . . . , fn(xin(t)))T ; h1(t, xi (t), xi (t − τ(t))) =
(h11(xi1(t), xi1(t − τ(t))), h12(xi2(t), xi2(t − τ(t))), · · · , h1n(xin(t), xin(t − τ(t))))T ; τ(t)
is transmittal delay, and there exist constant τ and σ such that 0 < τ(t) ≤ τ , τ

′
(t) ≤ σ <

1; � = diag{γ1, γ2, · · · , γn} is the inner coupling positive definite matrix between two
connected nodes i and j ; and ai j is defined as follows: if there is a connection from node j
to node i( j �= i), then ai j �= 0; otherwise, ai j > 0.

Let s(t) be the desired trajectory described by the following form:

ds(t) = [C2s(t) + B2 f (s(t)) + D2 f (s(t − τ(t)))]dt + h2(t, s(t), s(t − τ(t)))dω(t),

(2)

whereC2 = diag{c21, c22, · · · , c2n}, B2 = (b(2)
i j )n×n , D2 = (d(2)

i j )n×n ∈ Rn×n ; h2(t, xi (t),
xi (t−τ(t))) = (h21(xi1(t), xi1(t−τ(t))), h22(xi2(t), xi2(t−τ(t))), · · · , h2n(xin(t), xin(t−
τ(t))))T .

Define the error signal as ei (t) = xi (t)−s(t), i = 1, 2, · · · , N , thenwe have the following
error dynamical system

dei (t) = [C1ei (t) + 	Cs(t) + B1( f (xi (t)) − f (s(t))) + 	B f (s(t))

+D1( f (xi (t − τ(t))) − f (s(t − τ(t)))) + 	Df (s(t − τ(t)))

+
N∑

j=1

ai j�e j (t) + ui (t)]dt

+[h1(t, xi (t), xi (t − τ(t))) − h1(t, s(t), s(t − τ(t)))

+	h(t, s(t), s(t − τ(t)))]dω(t), (3)

where 	C = C1 −C2, 	B = B1 − B2, 	D = D1 − D2 are parameter mismatch errors and
	h = h1 − h2 is stochastic perturbation mismatch error.

Due to the parameter mismatch and the stochastic perturbation mismatches, the origin
ei = 0 is not an equilibrium point of the error system (3), which means that it is impossible
to be complete synchronization. However, by pinning impulsive control, stochastic quasi-
synchronization with a relatively small error bound can considered.
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Let tk ≥ 0 be impulsive moments satisfying 0 = t0 < t1 < · · · < tk < tk+1 < · · · ,
lim

k→+∞ tk = +∞ and sup
k≥0

{	k} < +∞, where 	k = tk+1 − tk . For t = tk , the node errors are

arranged in the following two forms

(i) E‖ei1(tk)‖ ≥ E‖ei2(tk)‖ ≥ · · · ≥ E‖eis (tk)‖ ≥ E‖eis+1(tk)‖ ≥ · · · ≥ E‖eiN (tk)‖,
and

(i i) E‖ei1(tk)‖ ≤ E‖ei2(tk)‖ ≤ · · · ≤ E‖eis (tk)‖ ≤ E‖eis+1(tk)‖ ≤ · · · ≤ E‖eiN (tk)‖,
where is ∈ {1, 2, · · · , N }, s = 1, 2, · · · , N , and iu �= iv for u �= v. Furthermore, if
E‖eis (tk)‖ = E‖eis+1(tk)‖, then is < is+1. To reach stochastic quasi-synchronization of
networks, the pinning impulsive control scheme is used on the nodes. Let δ(·) be a Dirac
function. dk denotes the impulsive gain. If −1 < uk < 1, the first q nodes are chosen as
pinned nodes according to the arrangement (i). If uk ≥ 1 or uk ≤ −1, then the first q nodes
are chosen as the pinning nodes according to the arrangement (ii). The set of pinned nodes
can be defined by χ(tk) = {i1, i2, · · · , iq} ⊂ {1, 2, · · · , N } and �χ(tk) = q . We design the
pinning impulsive controller as follows:

ui (t) =
⎧
⎨

⎩

+∞∑
k=1

(vk − 1)ei (t)δ(t − tk), i ∈ χ(tk),

0, i ∈ {1, 2, · · · , N }\χ(tk).
(4)

With the help of impulsive control, the error dynamical system can be obtained in the
following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dei (t) = [C1ei (t) + 	Cs(t) + B1( f (xi (t)) − f (s(t))) + 	B f (s(t))
+D1( f (xi (t − τ(t))) − f (s(t − τ(t)))) + 	Df (s(t − τ(t)))

+
N∑
j=1

ai j�e j (t)]dt + [h1(t, xi (t), xi (t − τ(t))) − h1(t, s(t), s(t − τ(t)))

+	h(t, s(t), s(t − τ(t)))]dω(t),
i = 1, 2, · · · , N , t �= tk,

ei (t
+
k ) = vkei (tk), i ∈ χ(tk),

ei (t
+
k ) = ei (tk), i ∈ {1, 2, · · · , N }\χ(tk),

(5)

where ei (t
+
k ) = lim

h→0+ ei (tk + h), ei (tk) = lim
h→0− ei (tk + h) is left-hand continuous at

t = tk . The initial condition of ei (t) is denoted as ei (t) = φ(t) ∈ PCFt ([−τ, 0], Rn),
where PCFt ([−τ, 0], Rn) is the family of all Ft -measurable, PC([−τ, 0], Rn)-value ran-
domvariableφ satisfied

∫ 0
−τ

E[|φ(θ)|2]dθ < ∞, PC([−τ, 0], Rn) is the family of piecewise
continuous functions φ with the norm ‖φ‖ = sup

−τ≤θ≤0
‖φ(θ)‖.

Remark 1 Based on the proposed scheme, the norm of synchronization error may vary with
impulse time tk , which implies that the pinned nodes may be different at different tk . In view
of control cost, if −1 < vk < 1, some nodes with large norm value are chosen to be pinned
nodes. If vk ≤ 1 or vk ≥ 1, some nodes with small norm value are considered to be pinned
nodes.

Definition 1 Let � be a region in the phase space of system (2). The neural networks (1) and
(2) are said to be uniformly stochastic quasi-synchronized with error bound θ > 0 if there
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theists a t̃ ≥ 0 such that for t ≥ t̃ , E[‖xi (0)‖2], E[‖s(0)‖2] ∈ �, i = 1, 2, · · · , N

E[
N∑
i=1

‖ei (t)‖2] = E[
N∑
i=1

‖xi (t) − s(t)‖2] ≤ θ.

Assumption 1 There exists constant l > 0 such that for ∀x, y ∈ Rn

‖ f (x) − f (y)‖ ≤ l‖x − y‖.
Assumption 2 There exist matrices M1 ∈ Rn×n > 0, M2 ∈ Rn×n > 0 such that for
x, y, u, v ∈ Rn

trace[(h1(t, x, y) − h1(t, u, v))T h1(t, x, y) − h1(t, u, v))]
≤ (x − u)T M1(x − u) + (y − v)T M2(y − v).

Assumption 3 There exists constant ρ1 > 0 such that

‖	C‖ + l‖	B‖ + l‖	D‖ ≤ ρ1.

Assumption 4 There exists constants ρ2 > 0, ρ3 > 0 such that

trace[�hT (t, x(t), x(t − τ(t)))�h(t, x(t), x(t − τ(t)))] ≤ ρ2
2‖x(t)‖2 + ρ2

3‖x(t − τ(t))‖2.
For the following impulsive stochastic equation with delay:
{

dx(t) = F(t, x(t), x(t − τ(t))dt + G(t, x(t), x(t − τ(t))dω(t), t ≥ 0, t �= tk,
	x(tk) = Ik(t, x(tk)), k = 1, 2, · · · ,

(6)

where x(t) = (x1(t), x2(t), · · · , xn(t))T , F : [0,+∞) × Rn × PC([−τ, 0]; Rn) → Rn ,
G : [0,+∞) × Rn × PC([−τ, 0]; Rn) → Rn×n , 	x(tk) = x(t+k ) − x(tk), I : [0,+∞) ×
Rn → Rn .

Let C21([−τ,∞) × Rn; [0,+∞)) be the family of all nonnegative functions V (t, φ)

on [−τ,∞) × Rn , V , Vt , Vx , Vxx are continuous on (tk−1, tk] × Rn . For each V ∈
C21([−τ,∞)× Rn; [0,+∞)), φ = {φ(θ) : −τ ≤ θ ≤ 0} ∈ PCFt ([−τ, 0]; Rn), an operator
LV : (tk−1, tk] × PCFt ([−τ, 0]; Rn) → [0,+∞) associated with Eq. (6) is defined as the
following form:

LV (t, φ) = Vt (t, φ(0)) + Vx (t, φ(0))F(t, φ(0), φ(−τ(t))

+1

2
trace[GT

1 (t, φ(0), φ)VxxG(t, φ(0), φ(−τ(t)). (7)

Lemma 1 Assume that V ∈ C21([−τ,∞)×Rn; R+) and there exist constants d1 > 0, d2 > 0,
ηk > 0, k = 1, 2, · · · , μ ≥ 0, μ̂ ≥ 0, μ, δ such that

(i) d1‖x‖2 ≤ V (t, x) ≤ d2‖x‖2;
(ii) E[LV (t, x(t))] ≤ μE[V (t, x(t))] + μE[V (t, x(t − τ(t)))] + μ̂ for all t ∈ (tk−1, tk];
(iii) E[V (t+k , x(tk) + Ik(tk, x(tk)))] ≤ ηk E[V (tk, x(tk))];
(iv) ln ηk ≤ δ	k−1, k = 1, 2, · · · ;
(v) μ + βμ + δ < 0,

then the zero solution of Eq. (6) converges exponentially to small region K = {x(t) ∈
Rn |E[‖x(t)‖2] ≤ d} in the mean square with exponent λ, where β = sup

1≤k<+∞
{βk}, βk =

max{eδ	k−1 , e−δ	k−1}, λ is the unique solution of λ + μ + βeλτμ + δ = 0, d = −βμ̂
μ+δ+βμ

.
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Proof By Itô formula, we can obtain

dV (t, x) = LV (t, x(t)) + Vx (t, x(t))G(t, x(t), x(t − τ(t)))dω(t). (8)

For t ∈ (tk−1, tk], we chose ε > 0 such that t + ε ∈ (tk−1, tk]. It follows from integrating
the above inequality from t to t + ε and taking the expectations on both sides of (8) that

E[V (t + ε, x(t + ε))] − E[V (t, x(t))])
=

∫ t+ε

t
E[LV (s, x(s))]ds + E

∫ t+ε

t
Vx (s, x(s))G(s, x(s), x(s − τ(s))dω(s).

(9)

Let ε → 0, by (ii), it yields that for t ∈ (tk−1, tk]
D+V (t, x(t)) = E[LV (t, x(t))] = μE[V (t, x(t))] + μE[V (t, x(t − τ(t)))] + μ̂.

(10)

Let V (t) = V (t, x(t)) and z(t) = e−μt E[V (t)]. For t ∈ (tk−1, tk], we have
D+z(t) = e−μt D+E[V (t)] − μe−μt E[V (t)]

= μe−μt E[V (t − τ(t))] + μ̂e−μt .
(11)

By (iii), we have

z(t+k ) = e−μtk E[V (t+k )] ≤ ηk z(tk). (12)

For t ∈ [0, t1], integrating the inequality (11) from 0 to t , we obtain

z(t) = z(0) + ∫ t
0 μe−μs E[V (s − τ(s))]ds + ∫ t

0 μ̂e−μsds, (13)

and

z(t1) = z(0) + ∫ t1
0 μe−μs E[V (s − τ(s))]ds + ∫ t1

0 μ̂e−μsds. (14)

For t ∈ (t1, t2], by using the same method, we obtain

z(t) = z(t+1 ) + ∫ t
t1

μe−μs E[V (s − τ(s))]ds + ∫ t
t1

μ̂e−μsds

≤ η1{z(0) + ∫ t1
0 μe−μs E[V (s − τ(s))]ds + ∫ t1

0 μ̂e−μsds}
+ ∫ t

t1
μe−μs E[V (s − τ(s))]ds + ∫ t

t1
μ̂e−μsds

= η1z(0) + η1
∫ t1
0 μe−μs E[V (s − τ(s))]ds + ∫ t

t1
μe−μs E[V (s − τ(s))]ds

+η1
∫ t1
0 μ̂e−μsds + ∫ t

t1
μ̂e−μsds.

(15)

By induction, it yields that for t ∈ (tk−1, tk]
z(t) ≤ z(0)

∏
0≤ti<t

ηi + μ
∫ t
0

∏
s≤ti<t

ηi e−μs E[V (s − τ(s))]ds + μ̂
∫ t
0

∏
s≤ti<t

ηi e−μsds,

(16)

which implies that for t > 0

E[V (t)] ≤ E[V (0)]eμt
∏

0≤ti<t

ηi + μ

∫ t

0
eμ(t−s)

∏

s≤ti<t

ηi E[V (s − τ(s))]ds

+μ̂

∫ t

0
eμ(t−s)

∏

s≤ti<t

ηi ds. (17)
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For t > s, the impulsive points in [s, t) can be denoted by ti1,i2 , · · · , tip and ti1−1 is the
first impulsive point before ti1. If δ ≥ 0, by (iv), we have

∏
s≤ti<t

ηi = ηi1ηi2 · · · ηi p ≤ eδ(ti1−ti1−1)eδ(ti2−ti1) · · · eδ(tip−tip−1)

= eδ(tip−ti1−1) = eδ(t−s)eδ(tip−t)eδ(s−ti1−1)

≤ eδ(t−s)eδ(s−ti1−1) ≤ βeδ(t−s).

(18)

If δ < 0, by the similar methods, we can conclude that the above inequality holds. It
follows that

E[V (t)] ≤ βE[V (0)]e(μ+δ)t + βμ

∫ t

0
e(μ+δ)(t−s)E[V (s − τ(s))]ds

+βμ̂

∫ t

0
e(μ+δ)(t−s)ds. (19)

Let ϕ(λ) = λ + μ + βμeλτ + δ. By (v), we see that ϕ(0) < 0, ϕ(+∞) = +∞ and
ϕ

′
(λ) = 1 + βμτeλτ > 0, which means that ϕ(λ) = 0 has a unique positive solution λ.

Next, we can claim that for t ≥ −τ

E[V (t)] ≤ βe−λt sup
−τ≤ς≤0

E[V (ς)] + d. (20)

Indeed, for t ∈ [−τ, 0]
E[V (t)] ≤ β sup

−τ≤ς≤0
E[V (ς)] ≤ βe−λt sup

−τ≤ς≤0
E[V (ς)] + d. (21)

Thus we only need to prove that (20) holds for t > 0. Otherwise, there exists a t̃ > 0 such
that

E[V (t̃)] > βe−λt̃ sup
−τ≤ς≤0

E[V (ς)] + d,

E[V (t)] ≤ βe−λt sup
−τ≤ς≤0

E[V (ς)] + d,−τ ≤ t < t̃ . (22)

Noting ϕ(λ) = 0 and (20) (21) yields

E[V (t̃)] ≤ βE[V (0)]e(μ+δ)t̃ + βμ

∫ t̃

0
e(μ+δ)(t̃−s)E[V (s − τ(s))]ds (22)

+ βμ̂

∫ t̃

0
e(μ+δ)(t̃−s)ds

≤ β sup
−τ≤ς≤0

E[V (ς)]e(μ+δ)t̃ + β2μeλτ sup
−τ≤ς≤0

E[V (ς)]
∫ t̃

0
e(μ+δ)(t̃−s)e−λsds

+ βμd
∫ t̃

0
e(μ+δ)(t̃−s)ds + βμ̂

∫ t̃

0
e(μ+δ)(t̃−s)ds

= βe−λt̃ sup
−τ≤ς≤0

E[V (ς)] + d.

��
Lemma 2 [36]. For any vectors x, y ∈ Rn, there exist constant ϑ > 0, and � ∈ Rn×n > 0
such that

2xT y ≤ ϑxT�x + ϑ−1yT�−1y
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Lemma 3 ([36] Schur complement). The linear matrix inequality

U =
(
U11 U12

UT
12 U22

)
< 0

is equivalent to

U22 < 0, U11 −U12U
−1
22 UT

12 < 0,

where U11 = UT
11, and U22 = UT

22.

3 Stochastic Quasi-Synchronization in Mean Square

This section devotes to stochastic quasi-synchronization for stochastic neural networks by
adding pinning impulsive control.

Theorem 1 Under Assumption 1–4. Let � = {y ∈ Rn |E(‖y‖2) ≤ θ} is the range of system
(2). If there exist matrices P ∈ Rn×n > 0, Li ∈ Rn×n > 0, i = 1, 2, 3 and constants α1 > 0,
α2 > 0, α3 > 0, μ1, μ2, ν such that

⎛

⎜⎜⎝

�
√

α1 IN ⊗ PB1
√

α2 IN ⊗ PD1
√

α3 IN ⊗ P
∗ −IN ⊗ L1 0 0
∗ ∗ −IN ⊗ L2 0
∗ ∗ ∗ −IN ⊗ L3

⎞

⎟⎟⎠ < 0, (23)

α−1
2 l2L2 + λmax(P)M2 < μ2P, (24)

ln ξk ≤ ν	k−1, (25)

and

μ1 + νμ2 + ν < 0, (26)

then the error of system (3) can converge to small region D = {(e1(t), e2(t), · · · , eN (t))T

|E[
N∑
i=1

‖ei (t)‖2)] ≤ d
λmin(P)

, ei (t) ∈ Rn, i = 1, 2, · · · , N } in the mean square with exponent
λ, where� = IN⊗(PC+CT P+α−1

1 l2L1+λmax(P)M1)+A⊗P�+(A⊗P�)T −μ1 IN⊗P,

ξk = v2k − (vk − 1)(vk + 1) λmax(P)(N−q)
λmin(P)N , ν = sup

1≤k<∞
{νk}, νk = max{eν	k−1 , e−ν	k−1}, d =

−νθ [α−1
3 λmax(L3)ρ

2
1+λmax(P)(ρ2

2+ρ2
3 )]

μ1+νμ2+ν
, λ > 0 is the unique solution of λ+μ1 + νeλτμ2 + ν = 0.

Proof Construct a Lyapunov function

V (t) =
N∑
i=1

eTi (t)Pei (t). (27)

For t ∈ (tk−1, tk], by (7), we have

LV (t) = 2
N∑

i=1

eTi (t)P[Ciei (t) + 	Cs(t) + B1F(ei (t)) + 	B f (s(t))

+D1F(ei (t − τ(t))) + 	Df (s − τ(t)) +
N∑

j=1

ai j�e j (t)]
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+
N∑

i=1

trace[HT (t, ei (t), ei (t − τ(t)))PH(t, ei (t), ei (t − τ(t)))]

+
N∑

i=1

trace[	hT (t, s(t), s(t − τ(t)))Ph(t, s(t), s(t − τ(t)))]. (28)

From Assumption 1 and Lemma 2, there exist α1 > 0, α2 > 0 and L1 ∈ Rn×n > 0,
L2 ∈ Rn×n > 0 such that

2eTi (t)PB1F(ei (t)) ≤ α1e
T
i (t)PB1L

−1
1 BT

1 Pei (t) + α−1
1 FT (ei (t))L1F(ei (t))

≤ α1e
T
i (t)PB1L

−1
1 BT

1 Pei (t) + α−1
1 l2eTi (t)L1ei (t), (29)

and

2eTi (t)PD1F(ei (t − τ(t))) ≤ α2e
T
i (t)PD1L

−1
2 DT

1 Pei (t)

+α−1
2 FT (ei (t − τ(t)))L2F(ei (t − τ(t)))

≤ α2e
T
i (t)PD1L

−1
2 DT

1 Pei (t)

+α−1
2 l2eTi (t − τ(t))L2ei (t − τ(t)). (30)

In view of Assumption 2, we can obtain

trace[HT (t, ei (t), ei (t − τ(t)))PH(t, ei (t), ei (t − τ(t)))]
≤ λmax(P)[eTi (t)M1ei (t) + eTi (t − τ(t))M2ei (t − τ(t))]. (31)

Let e(t) = (eT1 (t), eT2 (t), · · · , eTN (t))T , then

2
N∑
i=1

eTi (t)P
N∑
j=1

ai j�e j (t) = 2eT (t)(A
⊗

P�)e(t). (32)

Noting that the parameter mismatches and stochastic perturbation mismatches satisfy
Assumption 3 and Assumption 4, it follows from Lemma 2 that there exist α3 > 0 and
L3 ∈ Rn×n > 0 such that

2eTi (t)P[	Cs(t) + 	B f (s(t)) + 	Df (s − τ(t))]
≤ α3e

T
i (t)PL−1

3 Pei (t) + α−1
3 [	Cs(t) + 	B f (s(t)) + 	Df (s − τ(t))]T

L3[	Cs(t) + 	B f (s(t)) + 	Df (s − τ(t))]. (33)

and

trace[	hT (t, s(t), s(t − τ(t)))P	h(t, s(t), s(t − τ(t)))]
≤ λmax(P)(ρ2

2‖s(t)‖2 + ρ2
3‖s(t − τ(t))‖2). (34)

Substituting (29)–(34) into (28) yields

LV (t) ≤
N∑

i=1

eTi (t)�1ei (t) + 2eT (t)(A
⊗

P�)e(t) +
N∑

i=1

eTi (t − τ(t))�2ei (t − τ(t))

+α−1
3 [	Cs(t) + 	B f (s(t)) + 	Df (s − τ(t))]T L3[	Cs(t) + 	B f (s(t))

+	Df (s − τ(t))] + λmax(P)(ρ2
2‖s(t)‖2 + ρ2

3‖s(t − τ(t))‖2), (35)
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where�1 = PC+CT P+α1PB1L
−1
1 BT

1 P+α−1
1 l2L1+α2PD1L

−1
2 DT

1 P+λmax(P)M1+
α3PL

−1
3 P . �2 = α−1

2 l2L2 + λmax(P)M2. By (23) (24) and Lemma 3, we have

E[LV (t)] ≤ μ1E[V (t)] + μ2E[V (t − τ(t))] + [α−1
3 λmax(L3)ρ

2
1

+λmax(P)(ρ2
2 + ρ2

3 )]θ. (36)

On the other hand, when t = tk , we have

V (t+k ) =
N∑
i=1

eTi (t+k )Pei (t
+
k )

= ∑
i∈χp(tk )

eTi (t+k )Pei (t
+
k ) + ∑

i∈χp(tk )
eTi (t+k )Pei (t

+
k )

= u2k
∑

i∈χ(tk )
eTi (tk)Pei (tk) + ∑

i∈χ(tk )
eTi (tk)Pei (tk)

= u2k
N∑
i=1

eTi (tk)Pei (tk) − (uk − 1)(uk + 1)
∑

i∈χ(tk )
eTi (tk)Pei (tk).

(37)

If −1 < uk < 1, in view of the selection of pinning nodes in set χp(tk), we get

1

N − q

∑

i∈χ(tk )

E[eTi (tk)Pei (tk)] ≤ λmax(P)

N − q

∑

i∈χ(tk )

E[eTi (tk)ei (tk)]

≤ λmax(P)

N

N∑

i=1

E[eTi (tk)ei (tk)] ≤ λmax(P)

λmin(P)N

N∑

i=1

E[eTi (tk)Pei (tk)] (38)

Then we have

E[V (t+k )] ≤ v2k

N∑

i=1

E[eTi (tk)Pei (tk)]

−(vk − 1)(vk + 1)
N∑

i=1

λmax(P)(N − q)

λmin(P)N
E[eTi (tk)Pei (tk)]

= ξk E[V (tk)], (39)

where ξk = v2k − (vk − 1)(vk + 1) λmax(P)(N−q)
λmin(P)N . For vk ≤ −1 or vk ≥ 1, we can conclude

that (39) holds by the same method. It follows from (23)–(26) and Lemma 1 that there exists
l > 0 such that

E[V (t)] ≤ le−λt E

[
sup

−τ≤ς≤0
V (ς)

]
+ d, t ≥ 0 (40)

which implies that

E

[
N∑
i=1

‖ei (t)‖2 ≤ λmax(P)l
λmin(P)

e−λt E

[
sup

−τ≤ς≤0
‖ei (ς)‖2

]
+ d

λmin(P)
, t ≥ 0. (41)

Therefore, the error system (3) can converges to small region in the mean square with
exponent λ. ��
Remark 2 From the proof of Theorem 1, the cluster synchronization criterion is related to
ρp , ηk and the impulsive interval tk+1 − tk . ηk depends on the impulsive gain dk and the
pinned number ρp at impulsive time tk . on the other hand, inequality (10) characterize the
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relation between ηk and tk+1 − tk . Therefore, a suitable pinning impulsive controller can be
determined by selecting the value dk , ρp and tk+1 − tk .

Remark 3 According to Theorem 1, if −1 < vk < 1, we can conclude that the number of
the pinned nodes is estimated as

q > [1 + (eν	k−1−v2k )λmin(P)

(vk−1)(vk+1)λmax(P)
]N .

Correspondingly, if vk ≤ −1 or vk ≥ 1, we see that

q < [1 + (eν	k−1−v2k )λmin(P)

(vk−1)(vk+1)λmax(P)
]N .

Remark 4 The obtained conditions for stochastic quasi-synchronization are condition (23)
(24) (25) and (26) in Theorem 1. To reduce the calculation burden, MATLAB LMI tool-
box is used to determine μ1 and μ2 by fixing the values of αi , i = 1, 2, 3. If taking

P = L1 = L2 = L3 = In, α1 = l√
λmax(B1BT

1 )
, α2 = l√

λmax(D1DT
1 )

, α3 = 1,μ1 = λmax(C1+

CT
1 ) + 2l

√
λmax(B1BT

1 ) + l
√

λmax(D1DT
1 ) + λmax[(A ⊗ �) + (A ⊗ �)T ] + λmax(M1) +

1, μ2 = l
√

λmax(D1DT
1 ) + λmax(M2), ν = sup

1≤k<+∞
{ ln[v

2
k−(vk−1)(vk+1) λmax(P)(N−q)

λmin(P)N ]
	k−1

},

d = −νθ(ρ2
1+ρ2

2+ρ2
3 )

μ1+νμ2+ν
, we can derive the following practical corollary.

Corollary 1 Under Assumption 1–4. Let � = {y ∈ Rn |E(‖y‖2) ≤ θ} is the range of system
(2). If

μ1 + νμ2 + ν < 0,

then the error of system (3) can converge to small region D = {(e1(t), e2(t), · · · , eN (t))T

|E[
N∑
i=1

‖ei (t)‖2)] ≤ d, ei (t) ∈ Rn, i = 1, 2, · · · , N } in the mean square.

Theorem 2 Under Assumption 1–4 and tk − tk−1 ≥ τ . Let � = {y ∈ Rn |E(‖y‖2) ≤ θ} is
the range of system (2). If there exist matrices P ∈ Rn×n > 0, Li ∈ Rn×n > 0, i = 1, 2, 3
and constants α1 > 0, α2 > 0, α3 > 0, μ1, μ2 satisfying (23), (24). Also if there exists a
constant λ > 0 such that for k = 1, 2 · · ·

ln(ξk + μ2
1−σ

	k−1) + ρ	k−1 ≤ − λ, (42)

then the error of system (3) can converge to small region D = {(e1(t), e2(t), · · · , eN (t))T

|E[
N∑
i=1

‖ei (t)‖2)] ≤ b̃
λmin(P)

, ei (t) ∈ Rn, i = 1, 2, · · · , N } in the mean square with expo-

nent λ

	 , where ρ = μ1 + μ2
1−σ

, b̃ = ε(e−λ−d̂)eρ	
ρ(1−e−λ)

+ ε
ρ
(eρ	 − 1), ε = [α−1

3 λmax(L3)ρ
2
1 +

λmax(P)(ρ2
2 + ρ2

3 )]θ , 	 = sup
k≥1

{	k−1}.

Proof Consider a Lyapunov–Krasovskii functional

V (t) = V1(t) + V2(t), (43)

where

V1(t) =
N∑
i=1

eTi (t)Pei (t), V2(t) = μ2
1−σ

∫ t
t−τ(t)

N∑
i=1

eTi (s)Pei (s)ds. (44)
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Similar to the proof of Theorem 3.1, for t ∈ (tk, tk+1], we see that
LV1(t) ≤ μ1V1(t) + μ2V (t − τ(t)) + [α−1

3 λmax(L3)ρ
2
1 + λmax(P)(ρ2

2 + ρ2
3 )]θ. (45)

For t ∈ (tk, tk+1], it yields
LV2(t) ≤ μ2

1−σ
V1(t) − μ2V1(t − τ(t)). (46)

Thus

E[LV (t)] ≤ (μ1 + μ2
1−σ

)E[V1(t)] + ε ≤ ρE[V (t)] + ε, (47)

where ρ = μ1 + μ2
1−σ

, ε = [α−1
3 λmax(L3)ρ

2
1 + λmax(P)(ρ2

2 + ρ2
3 )]θ . It follows that for

t ∈ (tk, tk+1]
E[V (t)] ≤ E[V (t+k )]eρ(t−tk ) + ε

ρ
[eρ(t−tk ) − 1]. (48)

When t = tk , according to the proof of Theorem 3.1 and by (48), we can obtain

E[V1(t+k )] ≤ ξk E[V1(tk)] ≤ ξk E[V (tk)] ≤ ξkeρ	k−1E[V (t+k−1)] + εξk
ρ

[eρ	k−1 − 1]. (49)
By (44), there exists a t̄k ∈ (tk−1, tk] such that

V2(t
+
k ) = μ2

1−σ

∫ tk
tk−τ(tk )

V1(s)ds ≤ μ2
1−σ

∫ tk
tk−1

V1(s)ds = μ2
1−σ

	k−1V1(tk)

≤ μ2
1−σ

	k−1V (tk).
(50)

It follows from (33) and the above inequality that

E[V2(t+k )] ≤ μ2
1−σ

	k−1eρ	k−1E[V (t+k−1)] + μ2ε
(1−σ)ρ

	k−1(eρ	k−1 − 1). (51)

Submitting (34) and (36) into (28), we have

E[V (t+k )] ≤
(
ξk + μ2

1−σ
	k−1

)
eρ	k−1E[V (t+k−1)] + ε

ρ

(
ξk + μ2

1−σ
	k−1

)
(eρ	k−1 − 1)

≤ e−λE[V (t+k−1)] + ε
ρ
(e−λ − b),

(52)

where b = inf
k≥1

{ξk + μ2
1−σ

	k−1}, which yields that

E[V (t+k )] ≤ e−λk E[ sup
−τ≤ς≤0

V (ς)] + ε(e−λ−b)
ρ(1−e−λ)

. (53)

For t ∈ (tk, tk+1], by (26) (33), we see that
E[V (t)] ≤ eρ(t−tk )E[V (t+k )] + ε

ρ
[eρ(t−tk ) − 1] ≤ eρ	k e−λk E[ sup

−τ≤ς≤0
V (ς)] + b̃

≤ eρ	k e
−λtk

	 E[ sup
−τ≤ς≤0

V (ς)]

+b̃ ≤ eρ	k e
−λ(tk−tk+1)

	 e
−λtk+1

	 E[ sup
−τ≤ς≤0

V (ς)] + b̃

≤ eρ	+λe
−λtk+1

	 E[ sup
−τ≤ς≤0

V (ς)] + b̃ ≤ eρ	+λe
−λt
	 E[ sup

−τ≤ς≤0
V (ς)] + b̃.

(54)

where b̃ = ε(e−λ−b)eρ	k

ρ(1−e−λ)
+ ε

ρ
(eρ	k − 1). This completes the proof. ��
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Fig. 1 The state variables s(t) with initial value (0.2, 0.5)

4 Numerical Simulations

In this section, a numerical example is given to demonstrate our results. Consider the follow-
ing neural networks with stochastic perturbation as the leader:

ds(t) = [C2s(t) + B2 f (s(t)) + D2 f (s(t − 1))]dt + [h2(t, s(t), s(t − 1))]dω(t), (55)

where s(t) = (s1(t), s2(t))T , f (s(t)) = ( f1(s1(t)), f2(s2(t)))T , f1(s1(t)) = arctan s1(t),
f2(s2(t)) = arctan s2(t),

C2 =
(−1 0

0 −1

)
, B2 =

(
2 −0.1

−5 1.5

)
, D2 =

(−1.5 −0.1
−0.2 −1

)
,

h2(t, s(t), s(t − 1)) =
(
0.1s1(t) 0

0 0.03s2(t)

)
+

(−0.1s1(t) 0
0 −0.05s2(t)

)

Figure 1 depicts the trajectory of (s1(t), s2(t)) with value (0.2, 0.5). This is a chaotic
attractor with stochastic perturbation and the range � = {s ∈ R2|E[‖s‖] ≤ 16}.

We assume the response neural networks is the following form:

dxi (t) = [C1xi (t) + B1 f (xi (t)) + D1 f (xi (t − 1)) +
4∑
j=1

ai j�xi (t) + ui (t)]dt
+[h1(t, xi (t), xi (t − 1))]dω(t), i = 1, 2, 3, 4,

(55)

where � = diag{1.2, 1.5}

C1 =
(−1.002 0

0 −1.003

)
, B1 =

(
2.001 −0.102
−4.99 1.502

)
,

D1 =
(−1.502 −0.09

−0.203 −1.002

)

A =

⎛

⎜⎜⎝

−2 0.6 0.8 0.6
0.5 −3 0.5 2
1 0.2 −2.5 1.3
0.8 0 1.2 −2

⎞

⎟⎟⎠ ,

h1(t, xi (t), xi (t − 1)) =
(−0.15xi1(t) 0

0 0.04xi2(t)

)
+

(−0.12xi1(t) 0
0 −0.04xi2(t)

)
.
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Fig. 2 The errors ‖ei‖, i = 1, 2, 3, 4 of synchronization with initial value (0.2, 0.5)
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Fig. 3 The errors ‖ei‖, i = 1, 2, 3, 4 of synchronization without pinning impulsive input

We design the pinning impulsive input with pinned nodes q = 2, tk = 0.02k, vk = 0.25. By
simple calculation, we conclude that μ1 + νμ2 + ν ≈ −13.8816 < 0. By Corollary 1, we

can estimate the convergence region D = {(e1, e2, e3, e4)|E[
4∑

i=1
‖ei‖2] ≤ 0.098}. Figure 2

depicts the errors ‖e1‖ and ‖e2‖ of synchronization with initial value (10,−5). Figure 2
depicts the errors ‖ei‖, (i = 1, 2, 3, 4) of synchronization with initial value (0.2, 0.5). Fig-
ure 3 depicts the errors ‖ei‖, (i = 1, 2, 3, 4) of synchronization without pinning impulsive
input.

Remark 5 It is necessary to select suitable nodes when applying pinning impulsive control
scheme. In [24,25], random nodes can be selected to control. However, since the expectation
of synchronization error ei (t)may be different at impulsive times t = tk , so the pinned nodes
are not invariant. Figure 2 implies that our pinning algorithm is more general than ones in
[24,25,35]. Figure 3 shows that pinning impulsive input plays an important role in stochastic
quasi-synchronization of delayed networks.
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5 Conclusions

In this paper, stochastic quasi-synchronization is studied in a leader-follower delayed neural
networks by using pinning impulsive control scheme. First, by pinning selected nodes of
stochastic neural networks and establishing a new lemma of stochastic impulsive system, a
general criterion is obtained to ensure stochastic quasi-synchronization between the leader
and the followers with two different topologies. Finally, an example is provided to illustrate
the effectiveness of the obtained results.
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