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Abstract
Non-negative matrix factorization (NMF) is becoming an important tool for information
retrieval and pattern recognition. However, in the applications of image decomposition, it
is not enough to discover the intrinsic geometrical structure of the observation samples by
only considering the similarity of different images. In this paper, symmetric manifold regu-
larized objective functions are proposed to develop NMF based learning algorithms (called
SMNMF), which explore both the global and local features of the manifold structures for
image clustering and at the same time improve the convergence of the graph regularized
NMF algorithms. For different initializations, simulations are utilized to confirm the the-
oretical results obtained in the convergence analysis of the new algorithms. Experimental
results on COIL20, ORL, and JAFFE data sets demonstrate the clustering effectiveness of
the proposed algorithms by comparing with the state-of-the-art algorithms.

Keywords Structure retrieving · Manifold learning · Non-negative matrix factorization ·
Divergence · Symmetric regularization

1 Introduction

Nonnegative matrix factorization (NMF) algorithms were developed to separate data into
factorswith nonnegative entries. Thismethod allowedonly additive combinations of elements
[1,2], which aimed to capture a parts-based representation of sample observations. Currently,
the NMF has been applied in many fields, including signal processing, pattern recognition,
and neuroscience [3–8]. Lee and Seung proposed NMF to decompose images for feature
representation [2], and they further proved that in the updates, the objective functions of the
algorithms were non-increasing [9]. However, in general, the non-increasing of objective
functions cannot guarantee the convergence of learning rules. For this class of algorithms,
researchers obtained the convergence of their algorithms by proving that the algorithms
can converge to their local minima. Studies showed that Lee and Seung’s NMF learning
algorithms may not converge or converge to saddle points [10–12]. To solve this problem,
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some slight modifications of existing NMF update rules were proposed by Lin [13]. Recently,
the stability and the local minima of the NMF related learning algorithms were investigated
[14–18], from which, the local and global convergent properties of this class of algorithms
can be guaranteed.

For non-linear dimensionality reduction, learning performance can be significantly
enhanced if the geometrical structure of observed data is considered. Up to now, many man-
ifold learning algorithms have been proposed for handling of the geometrical structures of
image data. Classical manifold learning algorithms including the Laplacian eigenmap (LE)
[19,20], the Roweis and Saul proposed locally linear embedding (LLE) [21], and the isomet-
ric feature mapping (ISOMAP) for discovering the non-linear degrees of freedom hiding in
human handwriting or face images [22]. From these basic methods, many interesting learning
algorithms were derived for the applications of intrinsic structure extracting of image data
[23–27].

By combiningmanifold featureswithNMF, some important graph regularizednonnegative
matrix factorization learning algorithms, such as non-negative graph embedding (NGE) [28],
graph regularized non-negative matrix factorization (GNMF) [29–32], and Group Sparse
graph algorithms (GS) [33] have been proposed recently, which explicitly considered the
intrinsic geometrical information of data space. The graph regularized NMF is only a class
of one-sided clustering methods and the redundant solutions may be generated by its graph
regularization [34,35]. Based on the duality between data points and features, several co-
clustering algorithms have been proposed [36–38]. Graph dual regularized NMF (DNMF)
algorithms simultaneously considered the geometric structures of the datamanifold aswell as
the feature manifold [38]. In semi-supervised and structured NMF algorithms [39,40], both
the labelled andunlabelled datawere simultaneously learned to explore the the block-diagonal
structure for data classifying, which was time consuming for data labeling. Comparing with
GNMF, DNMF can be applied to learn a sparser parts-based data representation. However,
our study will show that the graph dual regularized NMF learning algorithms may have
divergent points, which will degrade their performance in data clustering [41].

In this paper, based on the extended KL divergence and Euclidian distance, learning
algorithms of NMFwith symmetric manifold regularization (SMNMF) are derived, in which
both the global and local geometric features of sample data will be regularized. Convergence
properties of the novel learning algorithms are also analyzed. Comparing with other NMF
related algorithms, our analysis results show that the proposed NMF algorithms have the best
convergent feature. Experimental results on three different image datasets confirm that the
new algorithms can learn the state of art performance on parts-based representations.

The rest of this paper is organized as follows: In Sect. 2, the objective functions and
their related definitions of important terms are presented. Section 3, the proposed learning
algorithms are derived. In Sect. 4, the convergence of the proposed algorithms is analyzed. In
Sect. 5, experimental results are presented. In Sect. 6 conclusion and future works are given.

2 Preliminaries

In the original NMF algorithms, the sample data matrix Y = [y1, y2, . . . , yN ] ∈ R
m×N was

decomposed into matrices A = [a1, a2, . . . , am]T ∈ R
m×n and X = [x1, x2, . . . , xN ]T ∈

R
N×n with only nonnegative components in the matrices. To incorporate the decomposition

with manifold regularization, the decomposition model was defined as the following:

Y ≈ AXT . (1)
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In the convergence studies, a detailed scalar form of the model was used:

yik ≈
n∑

j=1

ai j xk j , (i = 1, . . . ,m; k = 1, . . . , N )

or

yk ≈
n∑

j=1

a j xk j , (k = 1, . . . , N ), (2)

where yk = [y1k , y2k, . . . , ymk]T is a vector of the k-th sample data; We called A the basis
of the sample matrix Y. Each column of XT is a representation of the sample in the low
dimensional space.

ForNMF, imposing nonnegativity constraint can provide sparseness of its components.We
can increase sparseness and smoothness by adding to the loss function suitable regularization
or penalty terms [8]. Thus, the regularized general KL divergence and the Euclidian distance
(Frobenius norm) in the following can be used as the cost functions:

DKL(Y||AXT ) =
m∑

i=1

N∑

k=1

(
yik log

yik
[AXT ]ik

+ [AXT ]ik − yik

)

+1

2
λX J (X) + 1

2
λA J (A)

s.t . ai j ≥ 0, xk j ≥ 0,
m∑

i=1

ai j = 1, i, j, k ∈ N , (3)

DF (Y,AXT ) = 1

2
||Y − AXT ||2F + 1

2
λX J (X) + 1

2
λA J (A)

s.t . ai j ≥ 0, xk j ≥ 0,
m∑

i=1

a2i j = 1, i, j, k ∈ N . (4)

Applying gradient descent approach to cost function (3), it follows that

xk j ← xk j − ηk j
∂DKL(Y||AXT )

∂xk j
,

ai j ← ai j − δi j
∂DKL(Y||AXT )

∂ai j
,

where ηk j and δi j are learning rates. The partial derivatives of cost function with respect to
components in matrices X and A are:

∂DKL(Y||AXT )

∂xk j
=

m∑

i=1

(
ai j − ai j yik

[AXT ]ik

)
+ λX

2

∂ J (XT )

∂xk j
,

∂DKL(Y||AXT )

∂ai j
=

N∑

k=1

(
xk j − xk j yik

[AXT ]ik

)
+ λA

2

∂ J (A)

∂ai j
.
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Assuming

ηk j = xk j
∑m

i=1
ai j + 1

2
λX

∂ J (XT )

∂xk j

,

δi j = ai j
∑N

k=1
xk j + 1

2
λA

∂ J (A)

∂ai j

,

the following learning rules can be proposed:

xk j ← xk j

∑m

i=1
ai j (yik/[AXT ]ik)

∑m

q=1
aq j + 1

2
λX

∂ J (XT )

∂xk j

, (5)

ai j ← ai j

∑N

k=1
xk j (yik/[AXT ]ik)

∑N

p=1
xpj + 1

2
λA

∂ J (A)

∂ai j

. (6)

Experimental results in [8] showed that, for some given additional constraint terms J (A)

and J (X), this class of learning algorithms can learn very good sparseness and smoothness
features in the applications of blind source separation.

To apply rules (5) and (6) to manifold learning, we need to choose suitable new constraint
functions J (X) and J (A). NMF is a type of dimensionality reduction algorithm. For the
column vector y j ( j = 1, 2, . . . , N ) of matrix Y, the low dimensional representation corre-
sponding to the new basis is x j = [x j1, . . . , x jn]T . NMF algorithms are designed to learn a
set of basis vectors that can be used to best approximate the sample data [29]. If we consider
to obtain the geometric structure of images in the learning, a general assumption is, for any
two manifold data points y j and yk , if they are close in their geometric structures, then their
respective representations x j and xk will also be close to each other. For basis vectors ai and
a j of matrix A, we have similar assumption.

Assume that each vertex of an N vertex graph is represented by a data point. If each point
y j has p nearest neighbors, then edges are added between node y j and its neighbors. Each
edge has a corresponding weight. We have different choices to define the N × N weight
matrix W for these edges. Assuming w jk is the jk-th element of matrix W, usually the
following three weights defined in [19,29] can be used.

1. 0–1 weighting: if nodes j and k connected, w jk = 1; otherwise w jk = 0.

2. Heat kernel weighting: if nodes j and k connected, w jk = e− ||y j−yk ||
t , t ∈ R, t �= 0;

otherwise w jk = 0.
3. Dot-product weighting: if nodes j and k connected, w jk = yTj yk ; otherwise w jk = 0.

In fact, w jk is employed to measure the closeness of two nodes y j and yk . Usually, the
dot-product weighting is used for document analysis and the heat kernel weight is one of the
most popular choices for image data factorization.

In image feature extraction, experimental results in [2] showed that each column of sample
matrix Y represents a single image. Clearly, it is not enough for the feature extracting of
manifold structures by only considering the column vectors of Y and XT . For example,
alignment of the input image is essential for face classification and recognition. In this type of
sample decompositions, we often consider both matricesA andXT in a symmetric way. Each
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column vector ofA is a representation of some global features of all the observation samples.
Thus, if p nearest row vectors of images have similar features, then their corresponding
representations in A will also be close.

Assume ȳi and ȳ j are the row vectors of Y. The row vectors ai and a j of A are used to
measure the closeness of two points ȳi and ȳ j of graph. Similar to the computing of wi j , the
weight hi j can be computed from ȳi and ȳ j . For all i and j , hi j compose an m × m weight
matrix H.

The disadvantage of p nearest neighbors is that the computation results are less geometri-
cally intuitive. To overcome this problem,we can use ε-neighborhoods to define the closeness
of two points in a graph. The ε-neighborhoods definition is as follows:

For any two nodes yi and y j , if the Euclidian distance

||yi − y j ||2 < ε, ε ∈ R,

then these two nodes are close and an edge can be put between them. The only problem is,
for each application, we need different tests to find a suitable ε.

3 The Proposed Algorithms

For the extended KL-divergence in (3), we need an effective approach to define sparse and
smooth terms. Usually, Euclidian distance is one of the most popular choices for measuring
the geometrical structures of a graph. Thus, J (A) and J (X) are defined as follows:

J (X) = 1

2

N∑

j=1

N∑

k=1

||x j − xk ||2w jk = Tr(XTLX), (7)

J (A) = 1

2

m∑

i=1

m∑

j=1

||a j − ak ||2hi j = Tr(AATM), (8)

where Tr(.) is the trace of a matrix, L = DX − W is called a graph Laplacian, DX is a
diagonal matrix with dx j j = ∑

k w jk , and similarly, M = DA − H, DA is a diagonal matrix
with daii = ∑

j hi j .
From (5), (6), (7), and (8), the following manifold structure modelled NMF learning rules

can be proposed:

xk j ← xk j

∑m
i=1 ai j (yik/[AXT ]ik)∑m
q=1 aq j + λX[LX]k j , (9)

ai j ← ai j

∑N
k=1 xk j (yik/[AXT ]ik)∑N
p=1 xpj + λA[MA]i j

, (10)

where ai j is normalized in each update step as ai j = ai j/
∑

p apj . Learning algorithm (9)

is employed to obtain the update result of matrix XT . Since the above definitions show that
elements in matrices LX and MA may be negative, we can use a small positive number
ε > 0 to replace these non-positive terms in the learning rules. Thus, for any i , j , and k,
if

∑m
q=1 aq j + λX[LX]k j ≤ ε or

∑N
p=1 xpj + λA[MA]i j ≤ ε, we can set them equal to ε.

Typically we can set ε = 10−5.
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The objective of the learning algorithms is, for all i , j , and k, the NMF learning can obtain
some points ai j and xk j such that

xk j = xk j

∑m
i=1 ai j (yik/[AXT ]ik)∑m
q=1 aq j + λX[LX]k j , (11)

ai j = ai j

∑N
k=1 xk j (yik/[AXT ]ik)∑N
p=1 xpj + λA[MA]i j

, (12)

where yik are elements of observation samples, ai j ∈ [0, 1], xk j ∈ [0,+∞).
Equations (11) and (12) can be rewritten as

xk j = xk j

∑m
i=1 ai j (yik/[AXT ]ik) + λX[WX]k j∑m

q=1 aq j + λX[DXX]k j ,

ai j = ai j

∑N
k=1 xk j (yik/[AXT ]ik) + λA[HA]i j∑N

p=1 xpj + λA[DAA]i j
.

Thus, (9) and (10) can be modified as additive learning algorithms:

xk j ← xk j

∑m
i=1 ai j (yik/[AXT ]ik) + λX[WX]k j∑m

q=1 aq j + λX[DXX]k j , (13)

ai j ← ai j

∑N
k=1 xk j (yik/[AXT ]ik) + λA[HA]i j∑N

p=1 xpj + λA[DAA]i j
, (14)

Similar to (9) and (10), from the cost function in (4), the following learning rules can be
proposed:

xk j ← xk j
[YTA − λXLX]k j

[XATA]k j , (15)

ai j ← ai j
[YX − λAMA]i j

[AXTX]i j
. (16)

where ai j is normalized in each step as ai j = ai j/
√∑

p a
2
pj . To ensure the nonnegativity

of elements in the learning rules, if for some i , j , and k, [YTA − λXLX]k j ≤ ε or [YX −
λAMA]i j ≤ ε, ε can be used to replace them.

Same to (13) and (14), update rules (15) and (16) are equivalent to the following additive
learning algorithms:

xk j ← xk j
[YTA + λXWX]k j

[XATA + λXDXX]k j , (17)

ai j ← ai j
[YX + λAHA]i j

[AXTX + λADAA]i j
. (18)

The advantage of the learning rules (17) and (18) is that in the learning we don’t need to test
the nonnegativity of ai j and xk j since all terms in these two rules are nonnegative. However,
(17) and (18) are similar to the learning rules in DNMF. Our analysis in the next section will
show that the another type of expressions of these two rules in (15) and (16) can be non-
divergent under a specific condition. From this condition, the convergence of this algorithm
can be controlled in the learning.
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From Eq. (2), we can see that the learning can obtain the feature representation xk of
each sample vector yk and their corresponding basis vectors a j ( j = 1, 2, . . . , n). Thus, we
consider that LX is used for the local manifold regularization andMA is used for the global
manifold regularization of sample data. Comparing with the algorithms (15) and (16), our
analysis will show that the learning algorithms (9) and (10) have better convergent properties.
We only focus on the convergence analysis of these two learning rules in this paper.

4 Convergence Analysis of the Learning Algorithms

To present the convergence properties of the learning algorithms (9) and (10), let us introduce
the concept of fixed point first.

Definition 1 For the learning algorithm (9), a point xk j ∈ R is called a fixed point of the
update iterations, if and only if Eq. (11) holds. Similarly, for the learning algorithm (10), a
point ai j ∈ R is called a fixed point of the update iterations, if and only if Eq. (12) holds.

The point xk j satisfying Eq. (11) or the point ai j satisfying Eq. (12) is also called an
equilibrium point of the corresponding learning algorithm. At the fixed points, we can say
that the learning algorithms reach their equilibrium state.

For all i , j , and k, if a point (a11, a12, . . . , amn, x11, x12, . . . , xnN ) satisfies Eqs. (11) and
(12), then it is called the fixed point of its corresponding algorithms.

At the fixed point, Eq. (11) can be rewritten as

xk j = xk j

∑m
i=1 ai j

(
yik/

∑n
p=1 aipxkp

)

∑m
q=1 aq j + λX

∑N
p=1 lkpx pj

=
xk j

∑m
i=1 ai j yik/

(
ai j xk j + ∑n

p=1, �= j aipxkp
)

λXlkk xk j + ∑m
q=1 aq j + λX

∑N
p=1,p �=k lkpx pj

. (19)

Assuming

a j =
m∑

q=1

aq j + λX

N∑

p=1,p �=k

lkpx pj , bk = λXlkk,

ci = ai j yik, di =
n∑

p=1, �= j

aipxkp, ei = ai j , (20)

Equation (11) can be simplified to

xk j = xk j
a j + bkxk j

m∑

i=1

ci
di + ei xk j

, (21)

where xk j is the only variable in a single update computing and for all i , j , and k, a j , bk , di ,
and ei cannot be zeros at the same time. Here we must know that in the learning, xk j , a j , and
bk are all variables. In any update step, the only constants are λA, λX, yik , and lkp .

From Eq. (21), the t + 1-th update is

xk j (t + 1) ← xk j (t)

a j + bkxk j (t)

m∑

i=1

ci
di + ei xk j (t)

. (22)
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From (22), it is clear that t + 1-th update has the following possible results:

xk j (t + 1) =
⎧
⎨

⎩

0, if xk j (t) → 0,
1/bk, if xk j (t) → ∞.

constant, otherwise.

Since lkk > 0, if λ > 0, it always holds that bk > 0. Thus, in any cases, if the learning is
convergent, the update will converge to a constant.

It is clear that update rules (17) and (18) are similar to DNMF learning rules. For this class
of learning algorithms, the update result at the fixed point can be rewritten as

xk j (t + 1) = xk j (t)
[YTA − λXLX]k j

[XATA]k j

= xk j (t)

∑n
i=1 aik(t)yik − λX

∑N
p=1 lkpx pj (t)∑n

p=1
∑m

i=1 xkp(t)aip(t)ai j (t)
.

Therefore, similar to update rule (22), (15) can be simplified to

xk j (t + 1) ← xk j (t)
âk + b̂k xk j (t)

ĉ j + d̂k xk j (t)
. (23)

From update rule (23), if λX > 0, it follows that

xk j (t + 1) =
⎧
⎨

⎩

0, if xk j (t) → 0,
∞, if xk j (t) → ∞,

constant, otherwise.

Thus, for this class of learning algorithms, the convergence can not be guaranteed, which
indicates that for the GNMF and DNMF learning algorithms, the divergent points may exist.
We will analyze the detail convergent properties of all the learning algorithms later. For those
learning rules which may be divergent, we will find the the non-divergent conditions for
them.

For the update algorithm of ai j , the terms in Eq. (12) can also be rewritten; then we have
similar results as follows:

N∑

k=1

xk j (yik/[AXT ]ik) =
N∑

k=1

xk j yik∑n
p=1 aipxkp

=
N∑

k=1

xk j yik
ai j xk j + ∑n

p=1,p �= j aipxkp

and
N∑

p=1

xpj + λA[MA]i j =
N∑

p=1

xpj + λA

m∑

p=1

mipapj

= λAmiiai j +
N∑

p=1

xpj + λA

m∑

p=1,p �=i

mipapj .

Assuming

ã j =
N∑

p=1

xpj + λA

m∑

p=1,p �=i

mipapj , b̃i = λAmii ,
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c̃k = xk j yik, d̃k =
n∑

p=1,p �= j

aipx pj , ẽk = xk j , (24)

Equation (12) can be simply written as

ai j = ai j

ã j + b̃i ai j

N∑

k=1

c̃k

d̃k + ẽkai j
, (25)

where ai j is the only variable for a single update step of ai j .
FromEqs. (21) and (25), we can see that the updates of ai j and xk j have similar convergent

features. For the update of ai j , the only difference is the normalization of ai j in each update
step. Thus, ai j will not diverge to +∞ in the learning anyway.

4.1 Non-divergence of the Learning Algorithms

For NMF algorithms, previous studies have shown that the non-increasing of divergence
functions cannot guarantee the convergence of the learning algorithms. It is necessary to
show that the proposed algorithms will converge to the local minima of their corresponding
cost functions.

Theorem 1 For any initializations, ai j and xk j of update rules (9) and (10) are always upper
bounded by constants in the learning, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k = 1, 2, . . . , N;
thus, update algorithm (9) and (10) are non-divergent.

Theorem 1 guarantees that any trajectories of the algorithms (9) and (10) starting from
any limited points will be always bounded by a positive constant.

For the matrix L and X, we use vector x· j = (x1 j , x2 j , . . . , xN j )
T to represent the j-th

column vector ofX and lk· = (lk1, lk2, . . . , lkN ) to represent the k-th row vector ofL.We have
the following theorem for update rule (15) to guarantee the non-divergence in the learning.

Theorem 2 In the learning, if at any update step t, xk j in update rule (15) satisfies

xk j (t) ≤ ||x· j (t)|| ≤
√
N

∑m
i=1 yi j

1 − √
NλX ||lk·||

, (26)

then xk j are always upper bounded in the updates; thus, the update algorithm (15) will be
always non-divergent under the given condition.

In the test, if there exists a small enough λX such that 1 − λX||lk·|| > 0, then the non-
divergence of the learning can be guaranteed by choosing suitable initializations ofA andX.
On the other hand, if the condition in (26) is not met, it is possible to find initial data which
leads the divergence of the learning algorithms. For example, if in the applications we have
some λX and initial A and X such that 1 − λX||lk·|| < 0, then it may have the result that xk j
will diverge in the learning.

The learning rules proposed in DNMF are similar to (17) and (18), which have the same
convergence problem. Thus, the proposed learning algorithms in (9) and (10) will have
advantages in the applications.

For the updates of ai j , because of the normalization, it always holds that ai j ≤ 1. Mean-
while, because of the symmetry, we can give similar initial constraint such that the learning
converging to their local minima. Thus, under the condition (26), the learning algorithms
(17) and (18) will be always non-divergent.
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4.2 Existence of Fixed Points

For the NMF related learning algorithms, the objective function is non-convex for both
variables A and X, but if we only consider a single variable A or X, then the objective
function is convex. For the update rules (9) and (10), Theorems 1 and 2 can only guarantee
the non-divergence of the learning algorithms. If each learning algorithm has multiple fixed
points, the learning may vibrate between these fixed points. We have the following theorems
to guarantee the convergence of the algorithms. In the proof of the theorem, we will show
that in the updates, for given initializations, each learning rule has a unique fixed point.

Theorem 3 For any initializations ofA andX, there exists points xk j0 and ai j0 to be the fixed
points of the update algorithms (9) and (10) respectively. For any i , j , k ∈ N, xk j0 will be
the unique fixed point of the learning algorithm (9) and ai j0 will be the unique fixed point of
the learning algorithm (10).

Learning algorithms (15) and (16) have the same results. Generally, for the proposed
learning algorithms (9) and (10), the following results hold:

1. At any update step t , ai j (t) and xk j (t) are always upper bounded by a constant. Each
algorithm has unique fixed point, and the update algorithms will converge to their corre-
sponding fixed points.

2. If ∃ t such that xk j (t) = 0, the update will converge to zero fixed point. The update of
ai j has the same result.

For the proposed learning algorithms (15) and (16), the following result holds:
3. For any given initializations, the fixed point is unique. Under the condition (26), the

updates of ai j (t) and xk j (t) will always converge to their corresponding fixed points.

Therefore, for any initializations, the NMF updates (9) and (10) will converge to either
zero or nonzero constants. However, since each learning algorithm has infinite groups of
fixed points, the learning can only obtain a local minimum of the objective function.

5 Simulations

Numerical tests in this section will confirm the convergent properties and the effectiveness
of the proposed learning algorithms (9) and (10), and structures in the [35] are used in
the tests so that the redundant solutions caused by graph regularization can be eliminated.
Four existing methods are also employed to test, including: Normalized cut (NCut) [42],
Lee and Seung’s nonnegative matrix factorization (NMF) [2], graph regularized nonnegative
matrix factorization (GNMF) [29], and the graph dual regularization nonnegative matrix
factorization (DNMF) [36].

We perform experiments on the following three image data sets: COIL20 image library
[43], which contains total 1440 images of 20 classes. ORL face dataset [44], which contains
total 400 images of 40 classes, and JAFFE facial expression database [45], which contains
total 213 images of 10 classes. All the images are resized to 32× 32 pixels. 0–1 weighting is
used in all the tests. At last, heat kernel weighting is also employed to compute w jk and hi j .
When we set t = 5.1, λ = 1 ∼ 200, similar test results can be obtained. The experiments
are conducted on a Windows 10 system with i5-6200U CPU, 2.3GHz, 4 Processors. Matlab
programming is utilized to run all the algorithms.
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Fig. 1 For random initial matrices X and A, all the updates of ai j converge to constants in the updates. The
convergent results of ai j for different NMF learning algorithms: a Lee and Seung’s NMF, b the proposed
SMNMF, and c the Euclidian distance based DNMF algorithms
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Fig. 2 For random initial matrices X and A with ai j > 0, xk j > 0, all xk j converge to constants in the
updates. Trajectories show the convergent results of xk j for different NMF learning algorithms: a Lee and
Seung’s NMF, b the proposed SMNMF, and c the Euclidian distance based DNMF algorithms

To test the convergent properties of the proposed learning algorithms, we only choose a
single 128 × 128 image to run the algorithms so that we can take the shortest time to obtain
the convergence.

Figures 1 and 2 show the convergent results ofai j and xk j in the decomposition of the single
image. Since the learning of ai j and xk j are non-increasing, they will eventually converge
to constants. In this test, A and X are randomly initialized, λA = 0.0375, λX = 0.15, and
n = 50; thus, the image is separated into a 128 × 50 matrix A and a 50 × 128 matrix X.

Since we initialize components in A and X with ai j > 0 and xk j > 0, although the Fig. 1
shows that some ai j (i, j = 1, 2, . . .) converge to zeros, the practical data show that the
convergent results are just very close to zero.

From Fig. 3, we can see the non-increasing and converging to zero of KL-divergence and
Euclidian distance for different types of NMF algorithms. This figure also shows that for this
group of initializations, all the learning methods converge almost at the same time: at about
the update iteration 50, all of them begin to converge.
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Fig. 3 For random initial matricesX andA, the trajectories show the convergent results of KL-divergence and
Euclidian distance for different NMF learning algorithms: a Lee and Seung’s NMF, b the proposed SMNMF,
and c the Euclidian distance based DNMF algorithms
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Fig. 4 In a 128 × 128 face image factorization, for random initialization matrices X and A, the trajectories
show the update results of xk j for different NMF learning algorithms: a Lee and Seung’s NMF, b the proposed
SMNMF, and c DNMF algorithms

From Figs. 1, 2 and 3, we can see the convergent properties of the discussed algorithms.
For these learning algorithms, there always exist initializations such that the learning will
converge to constants.

However, Fig. 4 shows some different update results for xk j . In this test, we set λA =
0.11, λX = 0.5, and ε = 200. The image is still separated into a 128 × 50 matrix A and a
50× 128 matrix X. For Lee and Seung’s NMF and our proposed algorithms, Fig. 4a, b show
the convergence of xk j ; but Fig. 4c shows the update result for DNMF. Since the computing
result shows that in this case, it has 1 − √

NλX||l·k || < 0, the condition in (26) is not met;
there exists the situation that xk j are diverging even after 600 learning iterations. Therefore,
for the DNMF, the divergent points exist.

For this test, Fig. 5 shows the trajectories of Euclidian distance. For Lee and Seung’ NMF
and our proposed SMNMF, the Fig. 5a, b show that the objective function converges to zero
very fast. For the DNMF, however, since Fig. 4c indicates that for this group of initializa-
tions, the divergent points exist, comparing with Fig. 5a–c shows that the corresponding cost
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Fig. 5 In a 128×128 face image factorization, for random initializationmatricesX andAwithai j ≥ 0, xk j ≥ 0,
the trajectories show the convergent results of Euclidian distance for different NMF learning algorithms: a
Lee and Seung’s NMF, b the proposed SMNMF, and c DNMF algorithms
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Fig. 6 The basis vectors learned by different NMF algorithms in the COIL20 images decomposition: a Lee
and Seung’s NMF learned basis vectors, b the Euclidian distance based GNMF learned basis vectors with
λA = 0, λX = 0.015. c The proposed SMNMF learned basis vectors with λA = 0.245, λX = 0.015, and d
the proposed SMNMF learned basis vectors with λA = 0.0245, λX = 0.015

function has bigger errors although it is non-increasing in the learning. Thus, the results in
Figs. 4c and 5c confirm that the non-increasing of objective functions cannot guarantee the
convergence of each learning update.

However, in practical data decomposition, since matrix A and X are initialized randomly,
to test the condition (26) for each element in the learning is rather time-consuming. Thus,
the proposed SMNMF algorithms (9) and (10) are the best choice for manifold learning.

To further test the effectiveness of the proposed learning algorithms, we utilize the algo-
rithms to perform image clustering. In the experiments, different methods are employed so
that we can compare their clustering results.

Each image consists of 32 × 32 pixels. For the COIL20 image dataset, a 1024 × 1440
sample matrix can be used for learning. Figure 6 shows the basis images learned by different
NMF based methods on COIL20 dataset. In this figure, we only show four 5× 5 basis image
pictures. Figure 6c indicates that the proposed learning algorithms can learn sparser basis
vectors since λA and λX are used to increase the sparseness of the row vectors. Figure 6d
shows that the sparseness will decrease if we decrease λA.
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Fig. 7 The clustered COIL20 and JAFFE images from the proposed learning algorithms with λA = 0.0245,
λX = 56, and n = 150: a The clustered COIL20 images, b the clustered JAFFE images

Figure 7 shows part of the COIL20 and JAFFE images clustering results performed by
the proposed learning algorithms. For COIL20 images, we only choose 10 images from
each class to show the clustering effectiveness. From Fig. 7a, b we can see that the proposed
method can learn very high accuracy in image clustering. For the presented clustering results,
only three face images are clustered to wrong clusters for each dataset.

To show the performance of the learning algorithms, 30 runs were conducted on a given
data set for each learningmethod. The average accuracy results are presented on the following
figures.

The left figure in Fig. 8 shows the variations of accuracy on the test of COIL20 data set
for different values of λA. In this test, we have p = 3, λX = 56. For different methods, the
test results show that the highest accuracy is obtained at λA = 0.1. The right figure shows
the average clustering accuracy on COIL20 data set for different values of λX. In this test,
p = 3, λA = 0.1. For different types of learning algorithms, the tests show that the highest
accuracy is obtained at λX = 50.

Figure 9 shows the variations of clustering accuracy on COIL20 data set for different
settings of nearest neighbor number p. In this test, λA = 0.1, λX = 59. The test results show
that the highest accuracy is obtained at p = 3.

The left figure in Fig. 10 shows the clustering efficiency on JAFFE data set for different
values of λA. In this test, we have p = 3, λX = 56. Totally 1024× 213 samples are used for
image clustering. The test results show that, for different types of learning algorithms, the
highest accuracy is obtained at λA = 0.1. The right shows the average clustering results on
ORL data set for different values of λA. In this test, we set p = 5, λX = 65. 1024 × 400

123



Non-negative Matrix Factorization with Symmetric… 737

0.001 0.005 0.01 0.05 0.1 0.5 1 5 10
65

70

75

80

85

90

λA

A
cc

ur
ac

y 
(%

)

NCut
NMF
GNMF
DNMF
SMNMF

0.1 10 50 100 150
65

70

75

80

85

90

λX

A
cc

ur
ac

y 
(%

)

NCut
NMF
GNMF
DNMF
SMNMF

Fig. 8 The performance of different learning algorithms on COIL20 dataset versus the variations of λA (left)
and λX (right)

Fig. 9 The performance of
learning algorithms on COIL20
dataset versus the variations of p
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Fig. 10 The performance of learning algorithms on JAFFE (left) and ORL (right). Datasets for different values
of λA

sample images are used for clustering. The test results show that the highest accuracy is
obtained at λA = 0.1.

Comparing with different types of algorithms, test results in Figs. 8, 9 and 10 show that
our proposed algorithms have the best average accuracy in data clustering. Although DNMF

123



738 S. Yang et al.

and SMNMF have similar structures, they have different convergent features. Comparing
with DNMF, the detail test data show that the proposed algorithms have better stability in
image clustering. Clearly, algorithms that have better convergence can produce more stable
image recognition results.

6 Discussion and FutureWork

In the learning, NMF based algorithms switch between two different updates of factors A
and X. Thus, all the elements in A and X will be modified in each iteration, which greatly
increases the difficulties of convergence analysis of the learning algorithms.

For any given initializations, the fixed points of the proposed SMNMF algorithms can be
uniquely determined in the learning. Therefore, the non-divergence of the proposed SMNMF
algorithms can be guaranteed. For the proposed algorithms, we have the following important
results:

1. For any initial values, learning updates (9) and (10) are always non-divergent.
2. In the learning, since a small positive number ε > 0 is added to ensure that all the

denominator terms in the learning algorithms will not be zero or negative, the update
algorithms will converge to their unique fixed points for any initializations. This problem
can also be solved by using the update rule (13) and (14).

3. The non-divergence of the learning algorithm in (15) can be guaranteed if we control the
initial setting to a predefined value.

In general, because of their unconditional non-divergence, it is clear that the proposed
algorithms (9) and (10) can be safely applied to a wide range of manifold learning problems.

The future work in this research includes: Suitable values of λA and λX are critical to the
proposed algorithm. Theoretically, it is difficult to determine the efficient selections of these
parameters in the learning. The proof shows that our algorithms are non-divergent, but we
still cannot prove the convergence of the proposed algorithms.
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Appendix: Proofs of theorems

For matrix A, its row number m and column number n are limited numbers. Thus in the
proofs of theorems, m and n can be considered as constants. Because of the normalization,
we have

∑m
i=1 ai j = 1 or

∑m
i=1 a

2
i j = 1. For all i , ai j ≤ 1, from (20), it holds that there

always exists i , such that ei > 0. For the update algorithm of xk j , if xk j > 0, ci > 0, from
(20) and (21), ∀ i , di ≥ 0, it holds that

0 ≤ xk j (t)
m∑

i=1

ci
di + ei xk j (t)

≤
m∑

i=1

ci
ei

.

If ∃i , such that ei = 0, then ci = 0, it follows that

di > 0,
ci

di + ei xk j (t)
= 0,
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xk j (t)
m∑

i=1

ci
di + ei xk j (t)

≤
m∑

i=1

ci
ei

=
m∑

r=1,r �=i

cr
er

≤
m∑

i=1

yik .

From (20), if ∀ i , ei �= 0, then ai j > 0; it holds that

m∑

i=1

ci
ei

=
m∑

i=1

ai j yik
ai j

=
m∑

i=1

yik . (27)

For all i , k, and p, yik and lkp are constants and yik are nonnegative. Therefore, for all i
and p, there always exist some yik and lkp such that yik > 0 and l pk �= 0. Denote

Yk = max
i

{yik |yik > 0, i = 1, 2, . . . ,m} ,

yk = min
i

{yik |yik > 0, i = 1, 2, . . . ,m} ,

Z p = max
k

{|lkp|
∣∣lkp �= 0 , k = 1, 2, . . . , N

}
. (28)

Proof of Theorem 1 From (21) and (27), for the t+1-th update, if xk j (t) = 0, then xk j (t+1) =
0, Thus xk j (t + 1) is bounded by any positive constant. If xk j (t) > 0, it follows that

xk j (t + 1) = xk j (t)

a j + bkxk j (t)

m∑

i=1

ci
(di + ei xk j (t))

= 1

a j + bkxk j (t)

m∑

i=1

xk j (t)ci
(di + ei xk j (t))

≤ 1

a j + bkxk j (t)

m∑

i=1

xk j (t)ci
ei xk j (t)

= 1

a j + bkxk j (t)

m∑

i=1

ci
ei

≤
∑m

i=1 yik∑m
q=1 aq j + λX

∑N
p=1 lkpx pj (t)

≤
∑m

i=1 yik
ε

. (29)

From the definition of matrix L, if λX is small enough, we have λX
∑N

p=1 lkpx pj (t) <∑m
q=1 aq j . Thus xk j (t + 1) will be upper bounded by

∑m
i=1 yik .

Inequality (29) shows that in any update step, xk j is always upper bounded by a positive
constant.

On the other hand, assuming that C0 is a nonnegative constant, if xk j (t) ≥ C0, from Eq.
(19), it follows that:

xk j (t + 1) = xk j (t)

∑m
i=1 ai j (yik/

∑n
p=1 aipxkp(t))∑m

q=1 aq j + λX
∑N

p=1 lkpx pj (t)

≥
xk j (t)yk/

(
n

∑m
i=1 yik
ε

)

1 + λXZ p
∑N

k=1
∑m

i=1 yik
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= xk j (t)yk(
1 + λXZ p

∑N
k=1

∑m
i=1 yik

)
n

∑m
i=1 yik
ε

(30)

≥ C0yk

n
(
1 + λXZ p

∑N
k=1 Yk

) ∑m
i=1 yik
ε

> 0. (31)

From (31), assume

M0 = C0yk

n
(
1 + λXZ p

∑N
k=1 Yk

) ∑m
i=1 yik
ε

.

For any update step t , if xk j (t) ≥ C0, then it holds that

xk j (t + 1) ≥ M0. (32)

Inequality (32) shows for any update of xk j , if initialization xk j (0) > 0, then in any update
step t , it holds that xk j (t) > 0; if initialization xk j (0) = 0, then in any update step t , it holds
that xk j (t) = 0. The update of ai j has the similar result; to save page, we omit the detail
analysis steps here.

For the update of ai j , since mii ≥ 0, from (24), (25), and (32), it follows that

ai j (t + 1) = 1

ã j + b̃i ai j (t)

N∑

k=1

ai j (t)c̃k

d̃k + ẽkai j

≤ 1

ã j + b̃i ai j (t)

N∑

k=1

ai j (t)c̃k
ẽkai j (t)

= 1

λA
∑m

p=1 mipapj + ∑N
p=1 xpj

N∑

k=1

c̃k
ẽk

= 1

λA
∑m

p=1 mipapj + ∑N
p=1 xpj

N∑

k=1

xk j yik
xk j

≤
∑N

k=1 yik
λA

∑m
p=1,p �=i mip + NM0

. (33)

If λA
∑m

p=1,p �=i mip + NM0 ≤ 0, it holds that

ai j (t + 1) ≤
∑N

k=1 yik
ε

.

Inequality (33) shows that after the t+1-th update, ai j will be a limited number under the
condition (32). But in the update the denominator may become zero if we don’t have the
constraint

∑N
p=1 xpj +λA[MA]i j ≥ ε. Thus, we cannot guarantee the non-divergence of the

learning update of ai j . With this constraint, the normalization of ai j in each update iteration
can guarantee ai j ≤ 1 for any i and j . Thus, the proof of Theorem 1 is complete. ��

Proof of Theorem 2 Assume

xr j = max
{
x1 j , x2 j , . . . , xN j

}
.
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For the updates of xk j , at any update step t , if

xk j (t) ≤ ||x· j (t)|| ≤
√
N

∑m
i=1 yi j

1 − √
NλX ||lk·||

,

then it follows that

||x· j (t + 1)|| =
√
x21 j (t + 1) + x22 j (t + 1) + · · · + x2N j (t + 1)

≤
√
Nx2r j (t + 1)

= xr j (t + 1)

= √
Nxr j (t)

[YTA − λXLX]r j
[XATA]r j

= √
Nxr j (t)

∑n
i=1 aik(t)yi j − λX

(∑N
p=1 lrpx pj (t)

)

∑n
i=1

∑m
p=1 xri (t)api (t)apj (t)

= √
Nxr j (t)

∑m
i=1 yi j + λXlr ·(−x· j (t))∑n

i=1
∑m

p api (t)apj (t)xri (t)

≤ √
N

∑m
i=1 yi j + λX||lr ·||||x· j (t)||| cos θt |)∑m

p a2pj (t)

= √
N

(
m∑

i=1

yi j + λX||lr ·||||x· j (t)||| cos θt |
)

≤ √
N

(
m∑

i=1

yi j + λX||lr ·||||x· j (t)||
)

≤
√
N

∑m
i=1 yi j

1 − √
NλX||lr ·||

. (34)

Since
√
N

∑m
i=1 yi j

1−√
NλX||lr ·|| is a constant, if the initialization ||x· j (0)|| ≤

√
N

∑m
i=1 yi j

1−√
NλX ||lk·|| , (34) shows

that xk j is always upper bounded. Thus, the proof is complete. ��

Proof of Theorem 3 The update algorithms (9) and (10) show that for each update iteration,
all the elements in A and XT will be updated. However the updates of xk j can be considered
column by column and the updates of ai j can be considered row by row. Assuming xk· =
(xk1, xk2, . . . , xkn)T, ai · = (ai1, ai2, . . . , ain), we have the following update systems for xk j
and ai j :

xk· =

⎡

⎢⎢⎣

xk1
xk2
· · ·
xkn

⎤

⎥⎥⎦ ←

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk1

∑m
i=1 ai1

yik
ai ·xk·∑m

q=1 aq1+λX
∑N

p=1 lkp x p1

xk2

∑m
i=1 ai2

yik
ai ·xk·∑m

q=1 aq2+λX
∑N

p=1 lkp x p2

· · ·

xkn

∑m
i=1 ain

yik
ai ·xk·∑m

q=1 aqn+λX
∑N

p=1 lkp x pn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (35)
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ai · =

⎡

⎢⎢⎣

ai1
ai2
· · ·
ain

⎤

⎥⎥⎦

T

←

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai1

∑N
k=1 x1k

yik
ai ·xk·∑N

p=1 xp1+λA
∑m

p=1 mipap1

ai2

∑N
k=1 x2k

yik
ai ·xk·∑N

p=1 xp2+λA
∑m

p=1 mipap2

· · ·

ain

∑N
k=1 xnk

yik
ai ·xk·∑N

p=1 xpn+λA
∑m

p=1 mipapn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (36)

From systems (35) and (36), it is clear that for the update rules of xk j , if λX = 0, they
only include the column vector xk· of matrix XT as a variable, and for the update rules of
ai j , if λA = 0, they only include the row vector ai · of matrix A as a variable. Denoting

vi = vi (xk1, xk2, . . . , xkn) = yik
ai ·xk·

, (37)

sk = sk(ai1, ai2, . . . , ain) = yik
ai ·xk·

, (38)

the following two systems hold:

⎡

⎢⎢⎣

xk1
xk2
· · ·
xkn

⎤

⎥⎥⎦ ←

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk1
∑m

i=1 ai1vi (xk1,xk2,...,xkn)∑m
q=1 aq1+λX

∑N
p=1 lkp x p1

xk2
∑m

i=1 ai2vi (xk1,xk2,...,xkn)∑m
q=1 aq2+λX

∑N
p=1 lkp x p2

· · ·

xkn
∑m

i=1 ainvi (xk1,xk2,...,xkn)∑m
q=1 aqn+λX

∑N
p=1 lkp x pn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (39)

⎡

⎢⎢⎣

ai1
ai2
· · ·
ain

⎤

⎥⎥⎦

T

←

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai1
∑N

k=1 xk1sk (ai1,ai2,...,ain)∑N
p=1 xp1+λA

∑m
p=1 mipap1

ai2
∑N

k=1 xk2sk (ai1,ai2,...,ain)∑N
p=1 xp2+λA

∑m
p=1 mipap2

· · ·

ain
∑N

k=1 xknsk (ai1,ai2,...,ain)∑N
p=1 xpn+λA

∑m
p=1 mipapn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (40)

For NMF, sinceA andX are variables, the objective functions are not convex in both variables
together. Therefore, the learning algorithms have multiple fixed points if all the elements in
A andX are updated at the same time. However, in the practical data decomposition, updates
for matrix A and X are computed alternately. A reasonable assumption is that update system
(39) is used to find a group fixed points xk j0, j = 1, 2, . . . , n for some given matrix A, and
elements in A are not changed in the updates of xk j . Thus, we can temporarily consider A
as a constant matrix in the study of fixed point xk j0. For the update of ai j , we have similar
assumption.

For the k j-th update, if xk j = 0 is a solution of Eq. (11), then xk j = 0 is a fixed point of the
k j-th update in (9). However, elements in xk· cannot be all zeros, otherwise the denominators
in the learning algorithms may be zeros. In fact, inequality (31) shows that for any point xk j ,
it its initial point xk j (0) > 0, then at any update step t , it always holds that xk j (t) > 0. ai j
has the similar result.
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Let us find all the nonnegative fixed points for the k j-th update. From Eqs. (11) and (12),
if all the solutions xk j0 and ai j0 are nonzero, they are included in the following two linear
equation systems separately:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑m
i=1 ai1vi = ∑m

q=1 aq1 + λX
∑N

p=1 lkpx p1

∑m
i=1 ai2vi = ∑m

q=1 aq2 + λX
∑N

p=1 lkpx p2
· · ·

∑m
i=1 ainvi = ∑m

q=1 aqn + λX
∑N

p=1 lkpx pn

, (41)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑N
k=1 xk1sk = ∑N

p=1 xp1 + λA
∑m

p=1 mipap1

∑N
k=1 xk2sk = ∑N

p=1 xp2 + λA
∑m

p=1 mipap2
· · ·

∑N
k=1 xknsk = ∑N

p=1 xpn + λA
∑m

p=1 mipapn

. (42)

For linear equation system (41), only xk j ( j = 1, 2, 3, . . . , N ) are considered as variables
of the system. Denoting vi (xk1, xk2, . . . , xkn) = vi , linear equation system (41) can be
simplified to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑m
i=1 ai1vi = 1 + λXlk·xk·

∑m
i=1 ai2vi = 1 + λXlk·xk·

· · ·
∑m

i=1 ainvi = 1 + λXlk·xk·

, (43)

which can be rewritten as

AT

⎛

⎜⎜⎝

v1
v2
· · ·
vm

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 + λXlk·xk·
1 + λXlk·xk·

· · ·
1 + λXlk·xk·

⎞

⎟⎟⎠ . (44)

Assuming (v10, v20, . . . , vm0) is a solution of the equation system (44), if there exists some
i , such that yik = 0, then vi0 = 0; the number of variables will reduce to m − 1. Thus, we
can always assume for any i , vi0 > 0. From (37), it holds that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑n
p=1 a1pxkp = y1k

v10

∑m
p=1 a2pxkp = y2k

v20· · ·
∑n

p=1 ampxkp = ymk
vm0

, (45)
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which can be rewritten as

Axk· = A

⎛

⎜⎜⎜⎜⎜⎜⎝

xk1

xk2
· · ·

xkn

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

y1k
v10

y2k
v20· · ·
ymk
vm0

⎞

⎟⎟⎟⎟⎟⎟⎠
. (46)

If for someA, linear equation systems (44) and (46) have nonnegative solutions, then update
algorithm (9) will have nonnegative fixed points.

Similarly for the update of ai j , from (38) and (40), we have the following linear equation
systems.

X

⎛

⎜⎜⎝

s1
s2
· · ·
sN

⎞

⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∑N
p=1 xp1 + λAm1·a·k

∑N
p=1 xp2 + λAm2·a·k

· · ·
∑N

p=1 xpn + λAmn·a·k

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (47)

Assuming (s10, s20, . . . , sN0) is a solution of the equation system (47), it follows that

ai ·X = (ai1, ai2, . . . , ain)X =

⎛

⎜⎜⎜⎜⎜⎜⎝

yi1
s10

yi2
s20· · ·
yi N
sN0

⎞

⎟⎟⎟⎟⎟⎟⎠

T

. (48)

(48) is equivalent to

XT

⎛

⎜⎜⎝

ai1
ai2
· · ·
ain

⎞

⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎝

yi1
s10

yi2
s20· · ·
yi N
sN0

⎞

⎟⎟⎟⎟⎟⎟⎠
. (49)

Thus, if for some X, linear equation systems (47) and (49) have nonnegative solutions, then
update algorithm (10) will have nonnegative fixed points.

For the given initializations and observation sample matrix Y, the process of the NMF
learning is equivalent to solve linear systems Eqs. (44), (46) and (47), (49) alternately. When
solving Eqs. (44), (46), matrix A is temporarily considered as a constant. Similarly, when
solving Eqs. (47), (49), XT is considered temporarily as a constant. When the learning
converges, the fixed points of the learning algorithms are obtained, which indicates that the
solutions of these systems are obtained.
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If λA = λX = 0, systems (41) and (42) can be rewritten as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑m
i=1 ai1vi = ∑m

q=1 aq1

∑m
i=1 ai2vi = ∑m

q=1 aq2
· · ·

∑m
i=1 ainvi = ∑m

q=1 aqn,

(50)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑N
k=1 xk1sk = ∑N

p=1 xp1

∑N
k=1 xk2sk = ∑N

p=1 xp2
· · ·

∑N
k=1 xknsk = ∑N

p=1 xpn

. (51)

For any ai · and xk·, the only solutions for systems (50) and (51) are v1 = v2 = . . . ,= vm =
s1 = s2 = . . . ,= sN = 1. From Eqs. (37) and (38), it follows that

{
sk = 1 �⇒ ai ·xk· = yik, k = 1, 2, . . . , N
vi = 1 �⇒ ai ·xk· = yik, i = 1, 2, . . . ,m

Thus, For samplematrixY, NMF learning is to findmatricesA andX such thatY = AXT .
Clearly, this type of matrices A and X exists. The conditions of the solution existing are:

(a) For variables xk j , j = 1, 2, . . . , n, if the ranks of matrix A and the augmented matrix of
Eq. (46) are equal, then Eq. (46) has one or more groups of nonzero solutions.

(b) For variables ai j , j = 1, 2, . . . , n, if the ranks of matrix XT and the augmented matrix
of Eq. (49) are equal, then Eq. (49) has one or more groups of nonzero solutions.

Clearly, only if the conditions in both (a) and (b) are satisfied, theNMF learning algorithms
can reach their equilibrium state. At this state, we can say that the learning algorithms
converge.

In fact, for all k, if X is a group solution of Eq. (46), then the corresponding A is a group
solution of Eq. (49). For ai j , we have the same result.

At the equilibrium state, to simplify the expression, x1, x2, . . . , xn are used to replace
variables xk1, xk2 . . . , xkn in the following linear equation system. For the case of λX = 0,
(v1, v2, . . . , vm) = 1 is the only solution of Eq. (50). In the update of xk j , A is temporarily
considered as a constant matrix. From (46), for any given matrix A, assume r = rank(A).
Using Gaussian elimination, the following equivalent linear equation system holds:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g11x1 + · · · + g1r xr = d̄1 − g1r+1xr+1 − · · · − g1nxn
g22x2 + · · · + g2r xr = d̄2 − g2r+1xr+1 − · · · − g2nxn

· · ·
grr xr = d̄r − grr+1xr+1 − · · · − grr xn

xr+1 = xr+1

· · ·
xn = xn

, (52)

where gii �= 0 (i = 1, 2, . . . , r ), xr+1, xr+2, . . . , xn are the free variables of the system,
and (d̄1, d̄2, . . . , d̄r ) is uniquely determined by v = (v1, v2, . . . , vm). Clearly, system (52)
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has infinite number of solutions since usually we have n ≥ r in the NMF applications.
The solutions of system (52) depend on the values of xr+1, xr+2, . . . , xn . For each group
of determined values of xr+1, xr+2, . . . , xn , the linear equation system has only one group
solution. However, xr+1, xr+2, . . . , xn can be uniquely determined by the initializations in
the learning. Thus for a group of given initializations, the solution vector of system (52)
x = (x1, x2, . . . , xn) is unique. Thus, the update will converge to the unique fixed point of
the learning algorithm.

For the SMNMF, it always holds that λA �= 0 and/or λX �= 0. Thus, we have the following
different cases:
If λA = 0, λX �= 0, it holds that

{
sk = 1 �⇒ ai ·xk· = yik, k = 1, 2, . . . , N
vi > 1 �⇒ ai ·xk· < yik, i = 1, 2, . . . ,m

. (53)

If λA �= 0, λX = 0, it holds that
{
sk > 1 �⇒ ai ·xk· < yik, k = 1, 2, . . . , N
vi = 1 �⇒ ai ·xk· = yik, i = 1, 2, . . . ,m

(54)

In these two cases, the fixed points that simultaneously satisfy Eqs. (11) and (12) do not exist.
Therefore, the learning algorithms can only obtain their fixed points approximately.

If both λA > 0 and λX > 0, then it holds that
{
sk > 1 �⇒ ai ·xk· < yik, k = 1, 2, . . . , N
vi > 1 �⇒ ai ·xk· < yik, i = 1, 2, . . . ,m

(55)

Although the separation results haveAXT < Y, systems (44) and (46)may have solutions,
which are the fixed points of the learning algorithms (9) and (10) and at the same time the
sparseness is imposed. Assuming the ik-th error is dik , it follows that

{
sk > 1 �⇒ ai ·xk· + dik = yik, k = 1, 2, . . . , N
vi > 1 �⇒ ai ·xk· + dik = yik, i = 1, 2, . . . ,m

Combining Eqs. (44), (46), (47) and (49), we have vi ≥ 1 and sk ≥ 1. Thus, a unique
separation result Y = AXT + d can be achieved, where d is a displacement matrix. The proof
is complete. ��
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