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Abstract
In this paper, we propose an unsupervised video object segmentation approach which is
mainly based on a saliency detection method and the Gaussian mixture model with Markov
random field. In our approach, the saliency detection method is developed as a preprocess-
ing technique to calculate the probability of each pixel as the target object. In contrast to
traditional saliency detection methods which are normally difficult to obtain the object’s pre-
cise boundary and are therefore hard to segment consistent objects, the developed saliency
detection method can calculate the saliency of each frame in the video sequence and extract
the position and region of the target object with more accurate object boundary. The refined
extracted object region is then taken as the prior information and incorporated into the Gaus-
sian mixture model with Markov random field to obtain the precise pixel-wise segmentation
result of each frame. The effectiveness of the proposed unsupervised video object segmen-
tation approach is validated through experimental results using both the SegTrack and the
SegTrack v2 data sets.

Keywords Video object segmentation · Gaussian mixture model · Markov random field ·
saliency detection

1 Introduction

Video object segmentation is the process of automatically segmenting the object of interest
from the entire video sequence, which is a critical step in various computer vision appli-
cations, such as video surveillance, behavioral understanding, activity recognition, video
summarization and video retrieval. Broadly speaking, video object segmentation approaches
can be divided into different categories based on the styles of segmentation: manual seg-
mentation, semi-automatic segmentation, and fully automatic segmentation. The manual
segmentation approaches mainly depend on the operator’s experience, and are normally
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time-consuming and laborious. On the other hand, semi-automatic video object segmenta-
tion approaches [2,32,45] need to annotate the target object in the key frame for initialization,
and then use the motion and appearance constrained optimization techniques to propagate
annotations throughout the video. Although these semi-automatic approaches can normally
provide promising segmentation results, most computer vision applications have to process a
large amount of video data, and the cost of manually annotating video frames is particularly
expensive. To tackle this problem, various fully automated methods for video object segmen-
tation have emerged. For instance, several fully automated segmentation methods process
each frame of given videos by adopting the appearance and motion constraints to make the
bottom-up segmentation [3,20,39].

A variety of other automatic segmentation methods have also been proposed, such as
graph-based methods [12,35], segmentation through clustering [5], binary partition tree [22]
and so on. In recent years, deep learning techniques have shown promising performance in
many applications, such as place recognition [44], dimension reduction [48], image ranking
[43], human pose recovery [18], etc. There are many video object segmentation approaches
based on deep learning have also been proposed. For instance, in [31], a method has been
developed for object segmentation in videos by using a convolutional neural network trained
with static images only. In [4], Caelles et al. have proposed the one-Shot video object segmen-
tation approach, based on a fully-convolutional neural network architecture. This approach is
able to successively transfer generic semantic information to the task of foreground segmen-
tation, and finally to learn the appearance of a single annotated object of the test sequence.
In [29], an efficient video object segmentation approach has been presented based on a deep
Siamese encoder-decoder network that is designed to take the advantage of mask propagation
and object detection while avoiding the weaknesses of both approaches. Although segmen-
tation based on deep learning methods have demonstrated good results, the involved models
often contain lots of parameters that require designated training steps and a large amount of
time to learn.

During the last decade, various video object segmentation approaches based on saliency
detectionmodels have been developed [13,23,25,33,34,40,41,47] inwhich an explicit concept
of howa foreground object looks like is formulated in the given video sequence. The basic idea
of this kind of approach is that normally we are interested only in some particular regions
of a given video. These regions correspond to noticeable objects that most attract users’
interest and best represent the content of the video. Thus, in these video object segmentation
approaches, saliency detectionmodels are used to locate object-like regions from each frame.
The problemof video object segmentation has then been recast as the problemof object region
selection. The objectiveness (i.e. the possibility of each pixel in the frame to be an object of
interest) is measured based on both motion and appearance based cues. The region of interest
in a video frame is considered to be an object of interest if it has a high similarity across the
frames with high objectiveness. Consequently, the obtained object of interest would provide
a reliable priori information for the video object segmentation task. However, as indicated
in [40], one major limitation of this kind of segmentation approach is that the dependency
of the extracted potential regions of interest in adjacent frames is not taken into account
which would downgrade the video segmentation performance. Moreover, it is very difficult
to define a precise boundary between the object and the background in the saliency map.

Model-based segmentation algorithms have also been proposed in the past few decades
and drawn considerable attention continuously. One of the most representative model-based
segmentation methods is based on mixture models [26]. Various mixture models have been
applied to different problems, ranging from visual scenes categorization [8], video back-
ground subtraction [9], gene expression clustering [11], to image segmentation [10,19]. The
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main advantage of mixture model-based approaches is that they can incorporate the prior
knowledge to model unknown uncertainties in a probabilistic manner. Although conven-
tional mixture model (such as Gaussian mixture model) is efficient for segmentation, it does
not take the spatial information between neighbouring pixels into account, which results in
that the segmentation performance is quite sensitive to noise. In recent years, mixture models
based on Markov random field (MRF) have received great attention in image segmentation
[6,15,28]. In these approaches, in order to reduce the segmentation sensitivity to noise, the
prior distribution of the calculated pixels is related to the corresponding parameters of its
neighboring pixels.

Inspired from aforementioned works, we propose an unsupervised video object segmen-
tation approach that is based on saliency detection and mixture models. In our approach, we
first obtain saliency maps for input frames by extracting the spatial static edges in the same
frame and the estimated motion boundary edges between adjacent frames. Next, potential
regions of interest are generated according to the self-adaptive method and the object of inter-
est is located. Then, the information of the obtained object of interest is used as the prior and
is incorporated into the Gaussian mixture model with MRF to acquire accurate pixel-wise
segmentation results. The contributions of our work can be summarized as follows. First, an
unsupervised video object segmentation approach is developed based on saliency detection,
Gaussian mixture models and MRF. Second, in order to identify and extract the region of the
target object (i.e. the object of interest) in a given video among several candidate regions, a
method of identifying the region of the object of interest is proposed. Third, the effective-
ness of the proposed unsupervised video object segmentation approach is validated through
experimental results using both the SegTrack [36] and SegTrack v2 [21] data sets .

The rest of this work is organized as follows. In Sect. 2, we provide details of our unsu-
pervised video object detection approach. In Sect. 3, experiments conducted on the SegTrack
and SegTrack v2 data sets are used to evaluate the proposed segmentation approach. Finally,
conclusion is presented in Sect. 4.

2 The Proposed Approach

2.1 The Framework

The framework of our method can be mainly divided into three steps. First, a spatiotemporal
saliency map of the input frame is obtained by extracting the spatial static edges in the same
frame and the estimated motion boundary edges between adjacent frames. Second, potential
regions of interest are generated according to the self-adaptive method and the object of
interest is located. Third, the information of the obtained object of interest is used as the
prior and is incorporated into the Gaussian mixture model with MRF to acquire accurate
pixel-wise segmentation results. The overview of the proposed unsupervised video object
segmentation method is shown in Fig. 1.

2.2 Saliency-Aware Segmentation

The method that we used to calculate the saliency map of the input frame is mainly based on
[40]. The framework for obtaining the saliency map is shown in Fig. 2. First, input frames
are partitioned into superpixels through the SLIC superpixel method [1]. Then, based on the
discontinuity of color and motion, we compute the edge probability and the optical flow to
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Fig. 1 Overview of the proposed unsupervised video object segmentation method

extract two types of edges: the spatial static edge in the same frame and the estimated motion
boundary edges between adjacent frames. After that, we combine the two edge maps into a
spatiotemporal edge probability map. Based on the probability map, the intra-frame graph
and inter-frame graph are constructed to calculate the object probability of each super pixel,
thereby obtaining the saliency of the current frame.

2.2.1 SLIC Superpixel Method

In our work, we adopt the SLIC method [1] to compute superpixels from each frame. Super-
pixel methods exploit the similarity between the features of the pixels to group these pixels,
and use a small number of superpixels instead of a large number of pixels to express the
image features. The motivation of using the SLIC superpixel method in our segmentation
method is that, the superpixels formed by SLIC are more compact and can better maintain
the original outline of the target object. Moreover, it has fewer parameters and faster com-
putational time than many existing superpixel methods. The main steps of the SLIC method
are described as follows: (1) initialize the seed point (cluster center); (2) reselect the seed
point in the neighborhood of the seed point: calculate the gradient value of all the pixels
in the neighborhood, and move the seed point to the place with the smallest gradient in the
neighborhood; (3) assign a class label to each pixel in the neighborhood around each seed
point; (4) calculate the distance D between the pixel and the seed point, including the color
distance and the spatial distance. The seed point corresponding to the minimum value of the
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Fig. 2 The framework for
obtaining the saliency map of a
given input frame

distance is taken as the cluster center of the pixel; (5) the iterative optimization is performed
until the cluster center of each pixel no longer changes. The distance in step 4 is calculated
by

dc =
√

(r j − ri )2 + (g j − gi )2 + (b j − bi )2 (1)

ds =
√

(x j − xi )2 + (y j − yi )2 (2)

D =
√(

dc
Nc

)2

+
(
ds
Ns

)2

(3)

where dc represents the color distance between the pixel i and the seed point j in terms of
RGB color information, ds represents the spatial distance, Ns denotes the maximum spatial
distance within the class, and Nc is the maximum color distance.

2.2.2 Intra-Frame Graph Construction

For the kth frame, an undirected weighted intra-frame graphGk is constructed by considering
superpixels within the kth frame as the nodes. The weight between two nodes in the kth frame
is denoted as Wk

mn . In this framework, an intra-frame graph is constructed to represent the
foreground probability map for locating foreground object and the geodesic distance [40] of
the shortest path between two superpixels on the image is used to calculate the objectiveness
of each superpixel. This is mainly based on the assumption that object region normally has
a high spatiotemporal edge value or is surrounded by an area with a high spatiotemporal
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edge value. For each superpixel ykn in the kth frame, the probability that ykn belongs to the
foreground object is calculated by

pk(ykn ) = min
t∈T k

dgeo(y
k
n , t,Gk) (4)

where T k indicates the superpixels along the four boundaries of the kth frame. The geodesic
distance between any two nodes (i.e. superpixels) v1 and v2 in graph Gk is defined by

dgeo(y
k
n , t,Gk) = min

Cv1,v2

∑
mn

Wk
mn, mn ∈ Cv1,v2 (5)

where Cv1,v2 denotes a path connecting the nodes v1 and v2. The weight Wk
mn is defined by

Wk
mn = ‖Ek(ykm) − Ek(ykn )‖ (6)

where Ek(ykm) and Ek(ykn ) denote the spatiotemporal boundary probability of superpixels
ykm and ykn , respectively.

2.2.3 Inter-Frame Graph Construction

We construct an undirected weighted inter-frame graphG ′k for each pair of the kth frame and
the k + 1th frame by treating all the superpixels in these two frames as the nodes. Two kinds
of edges are defined: all the spatially adjacent superpixels are connected by intra-frame edges
whereas all the temporally adjacent superpixels are linked by inter-frame edges. The edge
weights are specified as the Euclidean distance between the average colors in the CIE-Lab
color space.

For the kth frame, a self-adaptive threshold σ k for decomposing the kth frame into object-
like regions and background regions is calculated through the average of the probability map
pk . Therefore, the object-like regions Fk and background regions Bk in the kth frame are
defined as:

Fk = {ykn |pk(ykn ) > σ k} ∪ {ykn |ykn is temporally connected to Fk−1} (7)

and

Bk = Y k − Fk (8)

Then, in the inter-frame graph, the saliency of the kth frame is calculated by

Sk(ykn ) = min
b∈Bk∪BK+1

dgeo(y
k
n , b,G

′
k) (9)

Finally, a saliency map is obtained by calculating the saliency of each superpixel.

2.3 Object Region Extraction

After applying the saliency detectionmethod to calculate the saliencymap for the input frame,
the saliency map acquires the background and foreground labels of the frame according to
the self-adaptive threshold. However, multiple object regionsmay be located in the extraction
result because the camera moves following the object’s movement, and another active object
or dynamic background environment may also appear in the video. In order to identify and
extract the region of the object of interest in the video among several candidate regions, a
method of identifying the region of the object of interest is proposed in this section.
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Fig. 3 The example of detecting object of interest in the i th frame based on the object of interest region that
was found in the i − 1th frame as the reference

The main assumption of our method for identifying the region of the object of interest in
the saliency map is that, there is no significant movement of the camera for the first several
frames (i.e., normally 5–10 frames) of the video, and thus only the primary active object will
be detected. Therefore, we will treat the first frame that only contains the object of interest
as the reference for the following frames in order to refine the saliency map to have only
the target object. The object detected in the current frame may change in shape and position
compared to the one detected from the previous frame, but the displacement of the centroid
(i.e., the center position) of the object region in two consecutive frames is not significant
due to the limited time period. Based on this idea, when multiple object regions are detected
in one frame, we calculate the Euclidean distance from the centroid of each object detected
in this frame to the centroid of the object of interest found in the previous frame (i.e., the
reference frame), and then consider the object with the minimum value of the distance as the
true object of interest. For example, as shown in Fig. 3, if J object regions (r1, . . . , rJ ) were
found after applying the self-adaptive threshold for the i th frame, then we can use the object
of interest region that was found in the i − 1th frame as the reference to locate the object of
interest region in the i th frame. Specifically, in order to locate the correct object of interest
among all obtained objects that were found in the i th frame, we first compute the centroid
c j for each object region as

c(i)
j (x j , y j ) =

(∑N j
n=1 xnj
N j

,

∑N j
n=1 ynj
N j

)
(10)

where (x j , y j ) represents the coordinates of the centroid of the j th object region, N j denotes
the number of pixels in the object region j , xnj and ynj indicate the position of the nth pixel
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in the j th object region. Next, we calculate the Euclidean distance between the centroid of
object of interest cp that we found in the previous frame with each centroid of the object
region obtained in the i th frame as

c(i)
j (x j , y j ) − c(i−1)

p (xp, yp) =
√

(x j − xp)2 + (y j − yp)2 (11)

where (xp, yp) denotes the position of the object of interest region of the reference frame.
Then, the object of interest region pi in the i th frame corresponds to the one with the smallest
distance among all J regions

p(i) = argmin
j

[
c(i)
j (x j , y j ) − c(i−1)

p (xp, yp)
]

(12)

The object of interest in the i + 1th frame is obtained using the same fashion.

2.4 SegmentationVia GaussianMixture Model

In this step, Gaussian mixture model is adopted to perform object segmentation for input
frames by taking the detected object of interest in the previous step as the prior information.
We use the Gaussian mixture model to model the feature vectors of the object region and
the background region in each frame and divide them into two classes of labels (foreground
and background). These feature vectors represent the information of the video (such as pixel
value, location coordinate, etc.) where labels and pixels are independent of each other. In our
method, feature vectors in the foreground and background are subjected to multiple Gaussian
distributions, which are weighted and linearly combined together as a mixture model in order
to model the foreground and background. Assuming that there are K different regions in
background B and the vector in the j th region obeys the Gaussian distributionN (B|μ j , σ j )

with parameters μ j (mean) and Σ j (covariance matrix). Then, both the background region
of the video and the foreground object region can be expressed by mixtures of K Gaussian
distributions. Therefore, in order to have the probability of object region and background, it
is necessary to infer the parameters of Gaussian mixture model. Specifically, the Gaussian
mixture model representing the background B is given by

p(B) =
K∑
j=1

π jN (B|μ j ,Σ j ) (13)

where N (B|μ j ,Σ j ) is the Gaussian distribution associated with the j th component of the
mixture model. The parameters π j in Eq. (13) are called mixing coefficients which must
satisfy the following constraints

0 ≤ π j ≤ 1 and
K∑
j=1

π j = 1 (14)

Then, the likelihood function of the Gaussian mixture model is given by

L(B) =
N∑

n=1

log
K∑
j=1

π jN (Bn |μ j ,Σ j ) (15)
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Fig. 4 Sample segmentation results obtained by the Gaussian mixture model for the “monkeydog” video of
the SegTrack data set

where N denotes the total number of pixels in the background B. The parameters of the
Gaussian mixture model are obtained by maximizing the likelihood function as

(μ∗,Σ∗, π∗) = arg max
μ,Σ,π

L(B) (16)

where the optimal parametersμ∗,Σ∗,π∗ can be obtained by using the expectationmaximiza-
tion (EM) algorithm [27]. Then, based on the prior information obtained from the previous
step and the Gaussian mixture models defined for the background and the foreground, the
foreground and background probabilities based on color and location information are calcu-
lated respectively for the pixels of the original input frames. When the difference between
the probabilities of foreground and background is greater than 0, the label of the pixel is set
to foreground, otherwise it denotes background.

2.5 Markov Random Field

Although the Gaussian mixture model is an effective approach for segmentation, its seg-
mentation results may contain noise, for instance as shown in Fig. 4. This is due to the fact
that the image segmentation based on the Gauss mixture model considers pixels separately,
and does not take the spatial relationship between nearby pixels into account. In order to
tackle this problem, we adopt Markov random field (MRF) [14] to redefine the segmenta-
tion results. MRF considers that spatial information between pixels can distinguish different
texture distributions, and effectively solves the problem of noise.

In our case, we apply the pairwise potential MRF to redefine the segmentation results
to improve the segmentation accuracy [16]. The frame is represented by an array X =
(x1, x2, . . . , xN ), xn represents the pixel value at pixel n, and the image segmentation result
is represented by an array Y = (y1, y2, . . . , yN ), where yn ∈ (0, 1) such that 0 represents
the background and 1 denotes the foreground. In MRF, the image segmentation problem is
summarized as the optimization problem of the MRF-Gibbs energy function.

The unary potential is calculated by the Gaussian mixture model, which indicates whether
the pixel belongs to the category (background or foreground) described by the model. The
calculation of potential energy is performed using an isotropic second-order neighborhood
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system (eight neighborhoods), indicating the consistency of the type of two pixel points. The
unary potential and pairwise potential are defined by

Eunary(X , Y ) =
N∑

n=1

Un(yn |xn) (17)

and

Epairwise(X , Y ) =
N∑

n=1

∑
j∈εn

Vnj (yn, y j |xn, x j ) (18)

whereUn(yn |xn) is the negative logarithm of the probability of yn . ε indicates the neighbor-
hoods of the system, Vnj is obtained by calculating the difference between the pixel n and
the j th neighboring pixel. The closer the two pixels are, the larger the potential energy is.

3 Experimental Results

In this work, we propose an unsupervised method that can automatically detect and extract
the moving objects in video sequences. The goal of this section is to validate the proposed
method by conducting experiments on the SegTrack data set [36] and the SegTrack v2 data
set [21]. We also compare our segmentation results with several other video segmentation
methods to demonstrate its advantages. All experiments were conducted using Matlab and
tested using a PC with Windows platform (Core i7, running at 2.78 GHz with 32 GB of
RAM).

3.1 Experiments on the SegTrack Data Set

We first conducted our experiments on the SegTrack data set, which is a popular video
segmentation data set with full pixel-level annotations on multiple objects at each frame
within each video. Originally, the SegTrack data set contains six video sequences. Since one
of the videos (“penguin”) that does not have the ground-truth, it is not considered in our
experiments. Therefore, five video sequences in total with different characteristics from the
SegTrack data set were used in our experiments including “birdfall” (small object), “cheetah”
(object with fastmotion patterns), “girl” (object with large shape deformation), “monkeydog”
(object with large camera motion) and “parachute” (object with color overlap). We applied
a similar setting as in [46], such that videos were divided into two categories: videos with
static camera and with dynamic camera, respectively. For the video with static camera (the
“birdfall” video), we used background subtraction to extract the moving target region in the
video. For videos with the dynamic camera, we used the saliency segmentation and object
of interest extraction method as we introduced in Sects. 2.2 and 2.3 to extract the region of
the object of interest. After the region of the object of interest was detected, the extracted
object region was optimized and redefined by using the Gaussian mixture model and MRF.
In our case, the Gaussian mixture model was initialized with the k-means algorithm with the
number of centers set to 10.

The qualitative results for the proposed unsupervised video segmentation method are
shown in Figs. 5, 6, 7, 8 and 9 for the SegTrack data set. Fig. 10 shows the segmented results
with the red boundaries in original frames. Based on these results, we can observe that the
proposed video segmentation method is able to successfully extract primary moving object
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Fig. 5 The result of the segmentation for the “birdfall” video. The first row illustrates the original input
frames, the second row shows the ground-truth, and the third row demonstrates the segmentation results using
the proposed method

Fig. 6 The result of the segmentation for the “cheetah” video. The first row illustrates the original input
frames, the second row shows the ground-truth, and the third row demonstrates the segmentation results using
the proposed method

in given video sequences. Next, a visual comparison of the proposed method with several
other video segmentation methods which include [13,40,46] and [42], is provided in Fig. 11,
where higher saliency probabilities are denoted by brighter pixels. As shown in this figure,
the proposed method has better performance than other tested methods in terms of more
accurately estimated saliency maps at pixel level within and on the contour of the objects
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Fig. 7 The result of the segmentation for the “girl” video. The first row illustrates the original input frames,
the second row shows the ground-truth, and the third row demonstrates the segmentation results using the
proposed method

Fig. 8 The result of the segmentation for the “monkeydog” video. The first row illustrates the original input
frames, the second row shows the ground-truth, and the third row demonstrates the segmentation results using
the proposed method

in cluttered backgrounds. Another observation is that, the image saliency method [42] has
obtained the worst performance among all tested methods, where the foreground objects
cannot be precisely detected by saliency maps. This is due to the fact that the method of [42]
does not take motion information into account and therefore results in degraded performance
in locating object, especially when background and foreground have similar colors.
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Fig. 9 The result of the segmentation for the “parachute” video. The first row illustrates the original input
frames, the second row shows the ground-truth, and the third row demonstrates the segmentation results using
the proposed method

Table 1 The average per-frame
pixel error rate using the
SegTrack data set by different
segmentation methods

Video Ours [46] [40] [30] [37] [7]

Birdfall 148 155 209 189 252 454

Cheetah 613 633 796 806 1142 1217

Girl 1237 1488 1040 1698 1304 1755

Monkeydog 345 365 562 472 563 683

Parachute 201 220 207 221 235 502

Bold value indicates the best performance in terms of the lowest per-
frame pixel error rate

Furthermore, in order to quantitatively compare with other experimental results, we uti-
lized the average per-frame pixel error rate for evaluation, which is the number of pixels
misclassified comparing to the ground-truth segmentation [46], and is defined by

Error = XOR(m,GT )

M
(19)

where m is the final result of each frame segmentation, and GT is the ground-truth segmen-
tation result of the video, and M is the total number of frames in the video. The average
per-frame pixel error rate can effectively estimate the approximation between segmentation
results and the corresponding ground-truth. The smaller the error, the closer the segmentation
result is to the ground truth.

We compare the proposed method quantitatively with other recent video segmentation
methods including [7] and [30,37,40,46]. Among those tested methods, [30] and [40,46]
are unsupervised, while [7] and [37] are supervised (i.e. an initial annotation is required
for the first frame). In our experiments, for the tested segmentation methods, we adopted
the same settings as in their original works. The comparison results are shown in Table 1.
According to this table, for most cases, the proposed method provided better segmentation
performance than the testedmethods in terms of lower average per-frame pixel error rates.We
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Fig. 10 The segmentation results obtained by the proposed method for the SegTrack data set. The region
within the red boundary corresponds to the object of interest in the video. (Color figure online)

may notice that our method performed slightly worse than [40] for the “girl” sequence, this
might be caused by the large shape deformation of the primary object (i.e., the running girl)
and therefore degraded the performance of the object region extraction step in our method.
However, as we can observe from Table 1, our method was able to obtain better performance
than [40] for the other tested video sequences.

3.2 Experiments on the SegTrack v2 Data Set

To further demonstrate the effectiveness of the proposed unsupervised video object segmen-
tation method, more experiments were conducted on the SegTrack v2 data set, which is
an updated version of the SegTrack data set. In addition to the five video sequences in the
SegTrack data set, eight new sequences are introduced in the SegTrack v2 data set including
“frog”, “worm”, “soldier”, “monkey”, “bird of paradise”, “drifting car”, “hummingbird”, and
“BMX”. Our method was compared with several state-of-the-art video object segmentation
methods including [17] and [24,29,31,38]. We report the experimental results by different
methods on the SegTrack v2 data set in terms of the computational time and another seg-
mentation evaluation metric namely Intersection over Union (IoU) which is defined by
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Fig. 11 The segmentation results obtained by different methods using the SegTrack data set with ground truth

Table 2 The segmentation
performance in terms of the IoU
metric and the computational
time on the SegTrack v2 data set
by different methods

Methods IoU Time (s)

[24] 58.4 0.37

[38] 67.5 42.20

[31] 70.3 12.00

[4] 65.4 10.00

[29] 71.1 0.13

[17] 57.1 0.21

Ours 73.4 1.60

Bold value indicates the best performance in terms of the highest IoU
value and the fastest runtime

I oU = Segmentation result ∩ Ground-truth

Segmentation result ∪ Ground-truth
(20)

The experimental results of our method and other tested ones are shown in Table 2 in
terms of the IoUmetric and the computational time for segmenting one frame. As we can see
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from this table, the proposed method is able to obtain the highest IoU value among all tested
methods. We may also notice that although our method is relatively slower than [17,29] and
[24], it is significantly more computationally efficient than [4] and [31,38].

4 Conclusion

In this paper, an unsupervised video object segmentation approach was proposed based on
the Gaussian mixture model with MRF. In our approach, a saliency detection method was
developed to locate the object of interest. The developed saliency detection method can
calculate the saliency of each frame in the video sequence and extract the position and
region of the object of interest with more accurate object boundary. The refined extracted
object region was then taken as the prior information and incorporated into our Gaussian
mixture model and MRF to obtain the precise pixel-wise segmentation result of each frame.
The effectiveness of the proposed unsupervised video object segmentation approach was
validated by conducting experiments on both the SegTrack and the SegTrack v2 data sets.
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